inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Manganese(II) octa­uranium(IV) hepta­deca­sulfide

aDepartment of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113, USA
*Correspondence e-mail: ibers@chem.northwestern.edu

(Received 10 July 2011; accepted 28 July 2011; online 6 August 2011)

Single crystals of manganese(II) octa­uranium(IV) hepta­deca­sulfide, MnU8S17, were grown from the reaction of the elements in a RbCl flux. MnU8S17 crystallizes in the space group C2/m in the CrU8S17 structure type. The asymmetric unit is composed of the following atoms with site symmetries shown: U1 (1), U2 (m), U3 (m), Mn1 (2/m), S1 (1), S2 (1); S3 (m), S4 (m), S5 (m), S6 (m) and S7 (2/m). The three UIV atoms are each coordinated by eight S atoms in a bicapped trigonal–prismatic arrangement. The MnII atom is coordinated by six S atoms in a distorted octa­hedral arrangement.

Related literature

MnU8S17 was previously determined to be isostructural with CrU8S17 (Noël et al., 1975)[Noël, H., Potel, M. & Padiou, J. (1975). Acta Cryst. B31, 2634-2637.] from powder diffraction data (Noël, 1973[Noël, H. (1973). C. R. Seances Acad. Sci. Ser. C, 277, 463-464.]). Single-crystal refinements have been carried out for the Cr, Fe (Kohlmann et al., 1997[Kohlmann, H., Stöwe, K. & Beck, H. P. (1997). Z. Anorg. Allg. Chem. 623, 897-900.]), and Sc (Vovan & Rodier, 1979[Vovan, T. & Rodier, N. (1979). C. R. Seances Acad. Sci. Ser. C, 289, 17-20.]) analogues. Magnetic data for these compounds are available (Noël & Troc, 1979[Noël, H. & Troc, R. (1979). J. Solid State Chem. 27, 123-135.]). The Mn—S distances are consistent with those expected for low-spin MnII (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). For synthetic details, see: Bugaris & Ibers (2008[Bugaris, D. E. & Ibers, J. A. (2008). Acta Cryst. E64, i55-i56.]); Haneveld & Jellinek (1969[Haneveld, A. J. K. & Jellinek, F. (1969). J. Less Common Met. 18, 123-129.]). For computational details, see: Gelato & Parthé (1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]).

Experimental

Crystal data
  • MnU8S17

  • Mr = 2504.20

  • Monoclinic, C 2/m

  • a = 13.3549 (6) Å

  • b = 8.3893 (4) Å

  • c = 10.4927 (5) Å

  • β = 101.658 (2)°

  • V = 1151.33 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 58.10 mm−1

  • T = 100 K

  • 0.15 × 0.09 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: numerical face indexed (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Göttingen, Germany.]) Tmin = 0.043, Tmax = 0.085

  • 8422 measured reflections

  • 1609 independent reflections

  • 1578 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.068

  • S = 2.10

  • 1609 reflections

  • 73 parameters

  • Δρmax = 3.90 e Å−3

  • Δρmin = −1.94 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2009[Palmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Oxfordshire, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Single crystals of MnU8S17 were obtained in an attempt to synthesize a quaternary arsenic-containing compound (see Experimental).

MnU8S17 crystallizes in the CrU8S17 structure type (Noël et al., 1975). Structure determinations based on single crystal data for isostructural ScU8S17 (Vovan & Rodier, 1979) and FeU8S17 (Kohlmann et al., 1997) have also been reported, and MnU8S17 was also determined to be isostructural from powder diffraction experiments (Noël, 1973).

The structure comprises three independent U atoms, each coordinated by eight S atoms in a bicapped trigonal prismatic arrangement, and one independent Mn atom that is coordinated by six S atoms in a distorted octahedral arrangement (Figs. 1,2). There are no S—S bonds in the structure, so formal oxidation states of +IV, +II, and -II may be assigned to U, Mn, and S, respectively. U—S distances have the following ranges: U1—S: 2.7546 (19) Å to 2.9509 (3) Å; U2—S: 2.735 (3) Å to 2.8559 (4) Å; U3—S: 2.680 (2) Å to 3.031 (3) Å. These distances are similar to those found in the structures of the Cr and Fe analogues. Mn—S distances range from 2.398 (3) Å to 2.5168 (19) Å; these are shorter than a typical high-spin six-coordinate MnII—S distance of 2.66 Å, but are consistent with the typical low-spin six-coordinate MnII—S distance of 2.51 Å (Shannon, 1976). Low-spin MnII is consistent with the 6S5/2 configuration assigned from magnetic studies (Noël & Troc, 1979).

Related literature top

MnU8S17 was previously determined to be isostructural with CrU8S17 (Noël et al., 1975) from powder diffraction data (Noël, 1973). Single-crystal refinements have been carried out for the Cr, Fe (Kohlmann et al., 1997), and Sc (Vovan & Rodier, 1979) analogues. Magnetic data for these compounds are available (Noël & Troc, 1979). The Mn—S distances are consistent with those expected for low-spin MnII (Shannon, 1976). For synthetic details, see: Bugaris & Ibers (2008); Haneveld & Jellinek (1969). For computational details, see: Gelato & Parthé (1987).

Experimental top

Black blocks of MnU8S17 were obtained by combining U (0.126 mmol), Mn (Johnson Matthey 99.3%, 0.126 mmol), and S (Mallinckrodt 99.6% sublimed, 0.504 mmol) in a RbCl flux (Alfa 99.8%, 1.26 mmol) with As as a mineralizer (Strem 2N, 0.126 mmol). U filings (Oak Ridge National Laboratory) were powdered by hydridization and subsequent decomposition under heat and vacuum (Bugaris & Ibers, 2008), in a modification of a previous literature method (Haneveld & Jellinek, 1969). The mixture was loaded into a carbon-coated fused-silica tube in an Ar filled glove box and then sealed under 10 -4 Torr vacuum. The vessel was heated in a computer-controlled furnace to 1073 K in 96 h, held for 96 h, cooled to 673 K in 96 h, then cooled to 298 K in 48 h. The flux was washed off with water and surface impurities were mechanically removed from a single crystal.

Refinement top

The structure was standardized by means of the program STRUCTURE TIDY (Gelato & Parthé, 1987). The highest peak of 3.9 (4) e/Å3 is 1.33 Å from atom U2 and the deepest hole of -1.9 (4) e/Å3 is 0.88 Å from atom U3.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: CrystalMaker (Palmer, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. A packing diagram for MnU8S17, viewed nearly along the b axis. U atoms are black, S atoms are yellow, and the MnSe6 octahedra are green.
[Figure 2] Fig. 2. The asymmetric unit of MnU8S17. Displacement ellipsoids at the 95% probability level are shown.
Manganese(II) octauranium(IV) heptadecasulfide top
Crystal data top
MnU8S17F(000) = 2066
Mr = 2504.20Dx = 7.223 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 8717 reflections
a = 13.3549 (6) Åθ = 2.9–30.5°
b = 8.3893 (4) ŵ = 58.10 mm1
c = 10.4927 (5) ÅT = 100 K
β = 101.658 (2)°Rectangular block, black
V = 1151.33 (9) Å30.15 × 0.09 × 0.08 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
1609 independent reflections
Radiation source: fine-focus sealed tube1578 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 29.1°, θmin = 2.0°
Absorption correction: numerical
face indexed (SADABS; Sheldrick, 2008a)
h = 1817
Tmin = 0.043, Tmax = 0.085k = 1011
8422 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0161Fo2)2]
wR(F2) = 0.068(Δ/σ)max = 0.001
S = 2.10Δρmax = 3.90 e Å3
1609 reflectionsΔρmin = 1.94 e Å3
73 parametersExtinction correction: SHELXL97 (Sheldrick, 2008a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00082 (4)
Crystal data top
MnU8S17V = 1151.33 (9) Å3
Mr = 2504.20Z = 2
Monoclinic, C2/mMo Kα radiation
a = 13.3549 (6) ŵ = 58.10 mm1
b = 8.3893 (4) ÅT = 100 K
c = 10.4927 (5) Å0.15 × 0.09 × 0.08 mm
β = 101.658 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1609 independent reflections
Absorption correction: numerical
face indexed (SADABS; Sheldrick, 2008a)
1578 reflections with I > 2σ(I)
Tmin = 0.043, Tmax = 0.085Rint = 0.034
8422 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02673 parameters
wR(F2) = 0.0680 restraints
S = 2.10Δρmax = 3.90 e Å3
1609 reflectionsΔρmin = 1.94 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.44179 (2)0.25549 (3)0.29633 (3)0.00531 (11)
U20.20440 (3)0.00000.45685 (4)0.00510 (12)
U30.68285 (3)0.00000.02025 (4)0.00541 (12)
Mn10.00000.00000.00000.0058 (5)
S10.12730 (15)0.3047 (2)0.46870 (18)0.0065 (4)
S20.36424 (15)0.3062 (2)0.03492 (18)0.0064 (4)
S30.0598 (2)0.00000.2314 (3)0.0066 (5)
S40.2086 (2)0.00000.7197 (3)0.0061 (5)
S50.3030 (2)0.00000.2463 (3)0.0058 (5)
S60.5211 (2)0.00000.1694 (3)0.0061 (5)
S70.00000.00000.50000.0056 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.0056 (2)0.00542 (18)0.00528 (17)0.00005 (10)0.00195 (13)0.00004 (10)
U20.0053 (2)0.0054 (2)0.0051 (2)0.0000.00217 (15)0.000
U30.0063 (2)0.0052 (2)0.00499 (19)0.0000.00170 (16)0.000
Mn10.0047 (12)0.0068 (11)0.0064 (10)0.0000.0024 (9)0.000
S10.0062 (10)0.0067 (9)0.0069 (8)0.0004 (8)0.0017 (7)0.0000 (7)
S20.0064 (10)0.0058 (9)0.0075 (8)0.0008 (7)0.0023 (7)0.0000 (7)
S30.0079 (14)0.0067 (13)0.0057 (11)0.0000.0024 (10)0.000
S40.0059 (14)0.0056 (12)0.0071 (12)0.0000.0018 (10)0.000
S50.0059 (14)0.0062 (12)0.0058 (11)0.0000.0027 (10)0.000
S60.0067 (14)0.0059 (12)0.0055 (12)0.0000.0006 (10)0.000
S70.0034 (19)0.0050 (16)0.0091 (17)0.0000.0025 (14)0.000
Geometric parameters (Å, º) top
U1—S3i2.7546 (19)U3—U1iv4.0205 (4)
U1—S22.7621 (19)U3—U1vii4.0205 (4)
U1—S1ii2.802 (2)Mn1—S32.398 (3)
U1—S52.8129 (19)Mn1—S3x2.398 (3)
U1—S62.8390 (18)Mn1—S2xi2.5168 (19)
U1—S1iii2.8469 (19)Mn1—S2xii2.5168 (19)
U1—S4iii2.852 (2)Mn1—S2xiii2.5168 (19)
U1—S7i2.9509 (3)Mn1—S2xiv2.5168 (19)
U1—U3iv4.0206 (4)S1—U2iii2.763 (2)
U1—U2iii4.0951 (5)S1—U1xiv2.802 (2)
U2—S32.735 (3)S1—U1iii2.8469 (19)
U2—S42.747 (3)S2—Mn1i2.5168 (19)
U2—S1iii2.763 (2)S2—U3iv2.680 (2)
U2—S1v2.763 (2)S2—U3xv2.896 (2)
U2—S12.768 (2)S3—U1xi2.7546 (19)
U2—S1vi2.768 (2)S3—U1xiv2.7546 (19)
U2—S52.791 (3)S4—U3viii2.819 (3)
U2—S72.8559 (4)S4—U1v2.852 (2)
U2—U1iii4.0952 (5)S4—U1iii2.852 (2)
U2—U1v4.0952 (5)S5—U1vi2.8130 (19)
U3—S2iv2.680 (2)S5—U3iv2.841 (3)
U3—S2vii2.680 (2)S6—U1vi2.8390 (18)
U3—S4viii2.819 (3)S6—U3iv3.031 (3)
U3—S5iv2.841 (3)S7—U2xvi2.8559 (4)
U3—S2ii2.896 (2)S7—U1xi2.9509 (3)
U3—S2ix2.896 (2)S7—U1iii2.9509 (3)
U3—S62.912 (3)S7—U1v2.9509 (3)
U3—S6iv3.031 (3)S7—U1xiv2.9509 (3)
S3i—U1—S276.01 (7)S2vii—U3—S2ix134.99 (5)
S3i—U1—S1ii79.55 (7)S4viii—U3—S2ix71.79 (6)
S2—U1—S1ii140.70 (6)S5iv—U3—S2ix80.27 (6)
S3i—U1—S5155.43 (8)S2ii—U3—S2ix68.33 (8)
S2—U1—S580.28 (7)S2iv—U3—S687.07 (5)
S1ii—U1—S5116.52 (6)S2vii—U3—S687.07 (5)
S3i—U1—S699.20 (7)S4viii—U3—S676.83 (8)
S2—U1—S675.58 (7)S5iv—U3—S6137.15 (8)
S1ii—U1—S678.56 (7)S2ii—U3—S6132.44 (5)
S5—U1—S668.37 (7)S2ix—U3—S6132.44 (5)
S3i—U1—S1iii130.39 (7)S2iv—U3—S6iv73.60 (4)
S2—U1—S1iii139.93 (6)S2vii—U3—S6iv73.60 (4)
S1ii—U1—S1iii78.93 (6)S4viii—U3—S6iv148.59 (8)
S5—U1—S1iii73.14 (7)S5iv—U3—S6iv65.38 (8)
S6—U1—S1iii119.29 (6)S2ii—U3—S6iv131.75 (5)
S3i—U1—S4iii83.16 (6)S2ix—U3—S6iv131.75 (5)
S2—U1—S4iii73.29 (7)S6—U3—S6iv71.77 (8)
S1ii—U1—S4iii133.46 (7)S2iv—U3—U1iv43.17 (4)
S5—U1—S4iii96.17 (6)S2vii—U3—U1iv107.02 (4)
S6—U1—S4iii147.19 (8)S4viii—U3—U1iv147.748 (6)
S1iii—U1—S4iii80.27 (7)S5iv—U3—U1iv44.40 (4)
S3i—U1—S7i65.25 (5)S2ii—U3—U1iv123.06 (4)
S2—U1—S7i127.10 (4)S2ix—U3—U1iv86.95 (4)
S1ii—U1—S7i65.71 (4)S6—U3—U1iv102.46 (5)
S5—U1—S7i137.07 (6)S6iv—U3—U1iv44.81 (3)
S6—U1—S7i142.74 (6)S2iv—U3—U1vii107.02 (4)
S1iii—U1—S7i65.18 (4)S2vii—U3—U1vii43.17 (4)
S4iii—U1—S7i67.79 (5)S4viii—U3—U1vii147.748 (6)
S3i—U1—U3iv110.77 (6)S5iv—U3—U1vii44.40 (4)
S2—U1—U3iv41.58 (4)S2ii—U3—U1vii86.95 (4)
S1ii—U1—U3iv126.98 (4)S2ix—U3—U1vii123.06 (4)
S5—U1—U3iv44.95 (6)S6—U3—U1vii102.46 (5)
S6—U1—U3iv48.80 (6)S6iv—U3—U1vii44.81 (3)
S1iii—U1—U3iv117.93 (4)U1iv—U3—U1vii64.432 (10)
S4iii—U1—U3iv99.54 (5)S3—Mn1—S3x180.0
S7i—U1—U3iv166.765 (10)S3—Mn1—S2xi87.41 (7)
S3i—U1—U2iii98.80 (5)S3x—Mn1—S2xi92.59 (7)
S2—U1—U2iii114.83 (4)S3—Mn1—S2xii92.59 (7)
S1ii—U1—U2iii98.88 (4)S3x—Mn1—S2xii87.41 (7)
S5—U1—U2iii96.86 (5)S2xi—Mn1—S2xii180.00 (11)
S6—U1—U2iii161.01 (4)S3—Mn1—S2xiii92.59 (7)
S1iii—U1—U2iii42.42 (4)S3x—Mn1—S2xiii87.41 (7)
S4iii—U1—U2iii42.01 (5)S2xi—Mn1—S2xiii99.50 (9)
S7i—U1—U2iii44.218 (7)S2xii—Mn1—S2xiii80.50 (9)
U3iv—U1—U2iii128.230 (12)S3—Mn1—S2xiv87.41 (7)
S3—U2—S4137.38 (8)S3x—Mn1—S2xiv92.59 (7)
S3—U2—S1iii129.53 (6)S2xi—Mn1—S2xiv80.50 (9)
S4—U2—S1iii82.29 (6)S2xii—Mn1—S2xiv99.50 (9)
S3—U2—S1v129.53 (6)S2xiii—Mn1—S2xiv180.00 (9)
S4—U2—S1v82.29 (6)U2iii—S1—U2105.75 (7)
S1iii—U2—S1v72.72 (8)U2iii—S1—U1xiv148.40 (8)
S3—U2—S180.49 (5)U2—S1—U1xiv95.33 (6)
S4—U2—S183.52 (5)U2iii—S1—U1iii104.35 (6)
S1iii—U2—S174.25 (7)U2—S1—U1iii93.65 (6)
S1v—U2—S1145.44 (5)U1xiv—S1—U1iii97.35 (6)
S3—U2—S1vi80.49 (5)Mn1i—S2—U3iv137.09 (8)
S4—U2—S1vi83.52 (5)Mn1i—S2—U196.17 (6)
S1iii—U2—S1vi145.44 (5)U3iv—S2—U195.25 (6)
S1v—U2—S1vi74.25 (7)Mn1i—S2—U3xv104.41 (7)
S1—U2—S1vi134.89 (9)U3iv—S2—U3xv111.68 (7)
S3—U2—S571.28 (8)U1—S2—U3xv106.32 (6)
S4—U2—S5151.35 (9)Mn1—S3—U2155.27 (12)
S1iii—U2—S574.75 (6)Mn1—S3—U1xi99.23 (8)
S1v—U2—S574.75 (6)U2—S3—U1xi97.20 (7)
S1—U2—S5105.95 (4)Mn1—S3—U1xiv99.23 (8)
S1vi—U2—S5105.95 (4)U2—S3—U1xiv97.20 (7)
S3—U2—S766.83 (6)U1xi—S3—U1xiv96.26 (9)
S4—U2—S770.55 (6)U2—S4—U3viii150.90 (11)
S1iii—U2—S7134.75 (4)U2—S4—U1v93.99 (7)
S1v—U2—S7134.75 (4)U3viii—S4—U1v105.98 (7)
S1—U2—S767.46 (4)U2—S4—U1iii93.99 (7)
S1vi—U2—S767.46 (4)U3viii—S4—U1iii105.98 (7)
S5—U2—S7138.10 (6)U1v—S4—U1iii91.99 (8)
S3—U2—U1iii101.73 (5)U2—S5—U1104.51 (7)
S4—U2—U1iii44.00 (4)U2—S5—U1vi104.51 (7)
S1iii—U2—U1iii89.36 (4)U1—S5—U1vi99.28 (9)
S1v—U2—U1iii125.64 (4)U2—S5—U3iv156.22 (12)
S1—U2—U1iii43.93 (4)U1—S5—U3iv90.65 (7)
S1vi—U2—U1iii101.83 (4)U1vi—S5—U3iv90.65 (7)
S5—U2—U1iii149.546 (11)U1vi—S6—U198.05 (8)
S7—U2—U1iii46.101 (7)U1vi—S6—U3129.76 (5)
S3—U2—U1v101.73 (5)U1—S6—U3129.76 (5)
S4—U2—U1v44.00 (4)U1vi—S6—U3iv86.39 (7)
S1iii—U2—U1v125.64 (4)U1—S6—U3iv86.39 (7)
S1v—U2—U1v89.36 (4)U3—S6—U3iv108.23 (8)
S1—U2—U1v101.83 (4)U2—S7—U2xvi180.0
S1vi—U2—U1v43.93 (4)U2—S7—U1xi90.317 (8)
S5—U2—U1v149.546 (10)U2xvi—S7—U1xi89.682 (8)
S7—U2—U1v46.101 (7)U2—S7—U1iii89.683 (8)
U1iii—U2—U1v60.118 (10)U2xvi—S7—U1iii90.318 (8)
S2iv—U3—S2vii146.88 (9)U1xi—S7—U1iii180.0
S2iv—U3—S4viii105.15 (4)U2—S7—U1v89.683 (8)
S2vii—U3—S4viii105.15 (4)U2xvi—S7—U1v90.318 (8)
S2iv—U3—S5iv81.18 (4)U1xi—S7—U1v91.925 (11)
S2vii—U3—S5iv81.18 (4)U1iii—S7—U1v88.075 (11)
S4viii—U3—S5iv146.02 (8)U2—S7—U1xiv90.317 (8)
S2iv—U3—S2ii134.99 (5)U2xvi—S7—U1xiv89.682 (8)
S2vii—U3—S2ii68.31 (7)U1xi—S7—U1xiv88.075 (11)
S4viii—U3—S2ii71.79 (6)U1iii—S7—U1xiv91.925 (11)
S5iv—U3—S2ii80.27 (6)U1v—S7—U1xiv180.0
S2iv—U3—S2ix68.31 (7)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1/2, z+1; (iv) x+1, y, z; (v) x+1/2, y1/2, z+1; (vi) x, y, z; (vii) x+1, y, z; (viii) x+1, y, z+1; (ix) x+1/2, y1/2, z; (x) x, y, z; (xi) x1/2, y1/2, z; (xii) x+1/2, y+1/2, z; (xiii) x+1/2, y1/2, z; (xiv) x1/2, y+1/2, z; (xv) x1/2, y+1/2, z; (xvi) x, y, z+1.

Experimental details

Crystal data
Chemical formulaMnU8S17
Mr2504.20
Crystal system, space groupMonoclinic, C2/m
Temperature (K)100
a, b, c (Å)13.3549 (6), 8.3893 (4), 10.4927 (5)
β (°) 101.658 (2)
V3)1151.33 (9)
Z2
Radiation typeMo Kα
µ (mm1)58.10
Crystal size (mm)0.15 × 0.09 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionNumerical
face indexed (SADABS; Sheldrick, 2008a)
Tmin, Tmax0.043, 0.085
No. of measured, independent and
observed [I > 2σ(I)] reflections
8422, 1609, 1578
Rint0.034
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.068, 2.10
No. of reflections1609
No. of parameters73
Δρmax, Δρmin (e Å3)3.90, 1.94

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), CrystalMaker (Palmer, 2009).

 

Acknowledgements

The research was kindly supported by the US Department of Energy, Basic Energy Sciences, Chemical Sciences, Bio­sciences, and Geosciences Division and Divison of Materials Science and Engineering Grant ER-15522. Use was made of the IMSERC X-ray Facility at Northwestern University, supported by the Inter­national Institute of Nanotechnology (IIN).

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBugaris, D. E. & Ibers, J. A. (2008). Acta Cryst. E64, i55–i56.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.  CrossRef Web of Science IUCr Journals Google Scholar
First citationHaneveld, A. J. K. & Jellinek, F. (1969). J. Less Common Met. 18, 123–129.  CrossRef CAS Web of Science Google Scholar
First citationKohlmann, H., Stöwe, K. & Beck, H. P. (1997). Z. Anorg. Allg. Chem. 623, 897–900.  CrossRef CAS Google Scholar
First citationNoël, H. (1973). C. R. Seances Acad. Sci. Ser. C, 277, 463–464.  Google Scholar
First citationNoël, H., Potel, M. & Padiou, J. (1975). Acta Cryst. B31, 2634–2637.  CrossRef IUCr Journals Web of Science Google Scholar
First citationNoël, H. & Troc, R. (1979). J. Solid State Chem. 27, 123–135.  Google Scholar
First citationPalmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Oxfordshire, England.  Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVovan, T. & Rodier, N. (1979). C. R. Seances Acad. Sci. Ser. C, 289, 17–20.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds