metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1289-m1290

Tetra­kis(μ-penta­fluoro­benzoato-κ2O:O′)bis­­[(tetra­hydro­furan-κO)molybdenum(II)]

aDepartment of Chemistry, Tongji University, Shanghai 200092, People's Republic of China
*Correspondence e-mail: 08hanlij@tongji.edu.cn

(Received 20 July 2011; accepted 17 August 2011; online 27 August 2011)

In the asymmetric unit of the title compound, [Mo2(C7F5O2)4(C4H8O)2], two independent half-mol­ecules are present, which are completed by a crystallographically imposed center of inversion between the individual Mo atoms. In each mol­ecule, four penta­fluoro­benzoate anions bridge the quadruply bonded Mo24+ unit that is, in addition, axially coordinated by two O atoms of tetra­hydro­furan (THF) mol­ecules. In the two independent mol­ecules, the mean Mo—Mo bond length is 2.110 Å. Since the THF mol­ecules are equally disordered over two sets of sites, there are four different Mo—O distances in both half-mol­ecules with an overall mean of 2.542 Å. A zigzag chain is formed by ππ stacking inter­actions between penta­fluoro­phenyl rings, indicated by a centroid–centroid distance of 3.7054 (11) Å and a centroid-to-plane distance of 3.4169 (3) Å. The extension of the unit gives a three-dimensional network structure with the THF mol­ecules located in the voids.

Related literature

For phen­yl–phenyl ππ stacking, see: Carroll et al. (2008[Carroll, W. R., Pellechia, P. & Shimizu, K. D. (2008). Org. Lett. 10, 3547-3550.]); Gung et al. (2005[Gung, B. W., Xue, X. & Reich, H. J. (2005). J. Org. Chem. 70, 3641-3644.]); McNeil et al. (2006[McNeil, A. J., Müller, P., Whitten, J. E. & Swager, T. M. (2006). J. Am. Chem. Soc. 128, 12426-12427.]); Sui & Glaser (2006[Sui, Y. & Glaser, R. (2006). Cryst. Growth Des. 6, 1014-1021.]). For phen­yl–perfluoro­phenyl ππ stacking, see: Vangala et al. (2002[Vangala, V. R., Nangia, A. & Lynch, V. M. (2002). Chem. Commun. pp. 1304-1305.]); Woody et al. (2007[Woody, K. B., Bullock, J. E., Parkin, S. R. & Watson, M. D. (2007). Macromolecules, 40, 4470-4473.]); Xu et al. (2008[Xu, R., Schweizer, W. B. & Frauenrath, H. (2008). J. Am. Chem. Soc. 130, 11437-11445.]); Zhu et al. (2005[Zhu, S., Jin, G. & Li, Z. (2005). Tetrahedron Lett. 46, 2713-2716.]). For perfluoro­phen­yl–perfluoro­phenyl ππ stacking, see: Adams et al. (2001[Adams, N., Cowley, A. R., Dubberley, S. B., Sealey, A. J., Skinner, M. E. G. & Mountford, P. (2001). Chem. Commun. pp. 2738-2739.]); Hair et al. (2003[Hair, G. S., Cowley, A. H., Gorden, J. D., Jones, J. N., Jones, R. A. & Macdonald, C. L. B. (2003). Chem. Commun. pp. 424-425.]); Liu et al. (2003[Liu, J., Murray, E. M. & Young, V. G. Jr (2003). Chem. Commun. pp. 1904-1905.]). For torsion angles about penta­fluoro­benzonate anions, see: Reddy et al. (2004[Reddy, L. S., Nangia, A. & Lynch, V. M. (2004). Cryst. Growth Des. 4, 89-94.]); Bach et al. (2001[Bach, A., Lentz, D. & Luger, P. (2001). J. Phys. Chem. A, 105, 7405-7412.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo2(C7F5O2)4(C4H8O)2]

  • Mr = 1180.37

  • Triclinic, [P \overline 1]

  • a = 11.101 (4) Å

  • b = 12.113 (4) Å

  • c = 15.741 (5) Å

  • α = 75.657 (4)°

  • β = 80.658 (4)°

  • γ = 86.813 (2)°

  • V = 2023.3 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.825, Tmax = 0.857

  • 10491 measured reflections

  • 6988 independent reflections

  • 5663 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.089

  • S = 1.02

  • 6988 reflections

  • 648 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected bond lengths (Å)

Mo1—O3i 2.096 (2)
Mo1—Mo1i 2.1090 (7)
Mo1—O1i 2.111 (2)
Mo1—O2 2.116 (2)
Mo1—O4 2.118 (2)
Mo1—O2S 2.530 (9)
Mo1—O1S 2.543 (12)
Mo2—O6 2.106 (3)
Mo2—O7ii 2.108 (2)
Mo2—Mo2ii 2.1101 (8)
Mo2—O5 2.113 (3)
Mo2—O8 2.118 (2)
Mo2—O4S 2.544 (14)
Mo2—O3S 2.552 (4)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR. Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Interactions between aromatic rings via ππ stacking are the basis of many phenomena with respect to organic material science and biological chemistry. In the last ten years, phenyl–phenyl (Carroll et al., 2008; Gung et al., 2005; McNeil et al., 2006; Sui & Glaser, 2006) and phenyl–perfluorophenyl (Vangala et al., 2002; Woody et al., 2007; Xu et al., 2008; Zhu et al., 2005) interactions have been widely discussed in terms of supermolecular chemistry, but there appear to be few examples about the interactions between perfluorophenyl rings (Adams et al., 2001; Hair et al., 2003; Liu et al., 2003). In the present study, ππ stacking interactions between the perfluorophenyl rings of the quadruply bonded dimetal paddlewheel molecule were investigated.

In the title compound, [Mo2(OOCC6F5)4(C4H8O)2], two independent half-molecules are present in the asymmetric unit, which are completed by a crystallographically imposed center of inversion between each of the Mo atoms. Each [Mo2(OOCC6F5)4(C4H8O)2] molecule has a paddle-wheel-type structure. There are four pentafluoro-benzoate (OOCC6F5) groups surrounding the quadruply bonded Mo24+ unit, that is additionally axially coordinated by two oxygen atoms of THF molecules. In the two independent molecules, the Mo—Mo bond lengths are 2.1090 Å and 2.1101 Å, with a mean of 2.110 Å. Since the THF molecules are equally disordered over two sets of sites, there are four Mo–O distances to the THF molecules in both half-molecules (Table 1), with an overall mean of 2.542 Å. The molecular structure of one of the two molecules is shown in Fig. 1. The torsion angles between the C6F5 group and the connected chelating ring (Mo2OCO) range from -28.1 (5) ° to 41.7 (5) ° because of the O···F repulsion within the pentafluoro-benzonate anion (Reddy et al., 2004; Bach et al., 2001).

A zigzag chain (Fig. 2) is formed by ππ stacking interactions between pentafluorophenyl rings [indicated by the center-to-center distance of 3.7054 (11) Å and center-to-plane distance of 3.4169 (3) Å between two pentafluorophenyl rings]. In the crystal, the extension of the unit gives a three-dimensional network structure (Fig. 3) with the THF molecules situated in the voids (Fig. 4).

Related literature top

For phenyl–phenyl ππ stacking, see: Carroll et al. (2008); Gung et al. (2005); McNeil et al. (2006); Sui & Glaser (2006). For phenyl–perfluorophenyl ππ stacking, see: Vangala et al. (2002); Woody et al. (2007); Xu et al. (2008); Zhu et al. (2005). For perfluorophenyl–perfluorophenyl ππ stacking, see: Adams et al. (2001); Hair et al. (2003); Liu et al. (2003). For torsion angles about pentafluorobenzonate anions, see: Reddy et al. (2004); Bach et al. (2001).

Experimental top

Mo(CO)6 (0.422 g, 1.60 mmol), pentafluorobenzoic acid (0.890 g, 4.20 mmol) and THF (2 ml) were mixed in 1,2-dichlorobenzene (6 ml) in a Schlenk flask equipped with a condenser. The mixture was then heated at 453 K for 24 h, during which a dark solution developed. After the reaction was cooled to room temperature, the THF was evaporated under reduced pressure, giving a yellow suspension. The mother liquor was decanted and the solid was washed first with dichloromethane (ca 8 × 2 ml), then with hexanes (ca 10 × 2 ml). The yellow solid product Mo2(O2CC6F5)4 was dried in vacuo. Yield: 0.68 g (82%). Anal. calcd. for C28O8F20Mo2: C,32.46; Found: C, 32.21. 0.207 g yellow powder of Mo2(O2CC6F5)4 was dissolved in 10 ml THF in a Schlenk tube and the solution was carefully layered with 30 ml hexanes. Yellow block-shaped crystals of the THF adduct formed after one week. Yield: 0.104 g (50%).

Refinement top

All H atoms were placed in idealized positions (C—H = 0.93–0.97 Å, O—H = 0.82 Å and refined as riding atoms with Uiso(H) = 1.2Ueq(C) and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg,1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of one of the two independent molecules drawn with displacement ellipsoids at the 30% probability level. All hydrogen atoms and the second set of the disordered THF molecule have been omitted for clarity. [Symmetry code (A): -x + 2, -y + 1, -z + 1.]
[Figure 2] Fig. 2. Part of a zigzag one-dimensional linear chain formed by the ππ stacking viewed in two different directions. All THF molecules have been omitted for clarity
[Figure 3] Fig. 3. Part of three-dimensional network viewed along c axis. All THF molecules have been omitted for clarity
[Figure 4] Fig. 4. Part of the network with THF molecules (displayed in the spacefill mode) in the voids.
Tetrakis(µ-pentafluorobenzoato-κ2O:O')bis[(tetrahydrofuran- κO)molybdenum(II)] top
Crystal data top
[Mo2(C7F5O2)4(C4H8O)2]Z = 2
Mr = 1180.37F(000) = 1152
Triclinic, P1Dx = 1.937 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.101 (4) ÅCell parameters from 5431 reflections
b = 12.113 (4) Åθ = 2.4–27.2°
c = 15.741 (5) ŵ = 0.77 mm1
α = 75.657 (4)°T = 293 K
β = 80.658 (4)°Block, yellow
γ = 86.813 (2)°0.25 × 0.20 × 0.20 mm
V = 2023.3 (11) Å3
Data collection top
Bruker APEXII CCD
diffractometer
6988 independent reflections
Radiation source: fine-focus sealed tube5663 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1213
Tmin = 0.825, Tmax = 0.857k = 1214
10491 measured reflectionsl = 1418
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0456P)2 + 1.0297P]
where P = (Fo2 + 2Fc2)/3
6988 reflections(Δ/σ)max = 0.001
648 parametersΔρmax = 0.54 e Å3
5 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Mo2(C7F5O2)4(C4H8O)2]γ = 86.813 (2)°
Mr = 1180.37V = 2023.3 (11) Å3
Triclinic, P1Z = 2
a = 11.101 (4) ÅMo Kα radiation
b = 12.113 (4) ŵ = 0.77 mm1
c = 15.741 (5) ÅT = 293 K
α = 75.657 (4)°0.25 × 0.20 × 0.20 mm
β = 80.658 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
6988 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
5663 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 0.857Rint = 0.015
10491 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0345 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.02Δρmax = 0.54 e Å3
6988 reflectionsΔρmin = 0.45 e Å3
648 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.96580 (2)0.42096 (2)0.539073 (17)0.03647 (8)
Mo20.40712 (3)0.98024 (2)0.02261 (2)0.04568 (9)
O10.86392 (19)0.62518 (17)0.41781 (14)0.0423 (5)
O20.79076 (19)0.45892 (17)0.50142 (14)0.0421 (5)
O31.0837 (2)0.51557 (18)0.34755 (14)0.0443 (5)
O41.0128 (2)0.34745 (17)0.42904 (14)0.0442 (5)
O50.3922 (2)0.9317 (2)0.09523 (16)0.0527 (6)
O60.4112 (2)1.0262 (2)0.14266 (16)0.0520 (6)
O70.6502 (2)0.85278 (19)0.03440 (16)0.0504 (6)
O80.4543 (2)0.81023 (18)0.08272 (16)0.0496 (6)
F120.6836 (2)0.77847 (16)0.38710 (17)0.0683 (6)
F130.4803 (2)0.82323 (19)0.31548 (19)0.0835 (8)
F140.3450 (2)0.6530 (2)0.29962 (17)0.0794 (7)
F150.4170 (2)0.4340 (2)0.35735 (18)0.0835 (7)
F160.6211 (2)0.38520 (17)0.42687 (17)0.0755 (7)
F221.2472 (2)0.4817 (3)0.20934 (17)0.0965 (9)
F231.2652 (3)0.4141 (4)0.05944 (19)0.1436 (15)
F241.1102 (3)0.2599 (3)0.0439 (2)0.1320 (13)
F250.9324 (3)0.1744 (2)0.18009 (19)0.1020 (9)
F260.9066 (2)0.24546 (19)0.32861 (15)0.0752 (7)
F320.3270 (2)1.1741 (2)0.24713 (18)0.0853 (8)
F330.3367 (3)1.2075 (2)0.4066 (2)0.1137 (11)
F340.5380 (4)1.1420 (3)0.48502 (19)0.1228 (12)
F350.7289 (3)1.0388 (3)0.4018 (2)0.1189 (11)
F360.7184 (2)1.0020 (2)0.24348 (18)0.0859 (8)
F420.4421 (2)0.58974 (19)0.06455 (16)0.0742 (7)
F430.5080 (3)0.3749 (2)0.13442 (19)0.0936 (9)
F440.7054 (3)0.3328 (2)0.2180 (2)0.1089 (10)
F450.8342 (3)0.5075 (2)0.2356 (2)0.1015 (9)
F460.7659 (2)0.7222 (2)0.16930 (18)0.0788 (7)
C10.7799 (3)0.5529 (3)0.4461 (2)0.0403 (7)
C21.0579 (3)0.4126 (3)0.3560 (2)0.0427 (8)
C30.5132 (3)1.0596 (3)0.1533 (2)0.0508 (9)
C40.5663 (3)0.7837 (3)0.0740 (2)0.0474 (8)
C110.6619 (3)0.5797 (3)0.4104 (2)0.0415 (8)
C120.6210 (3)0.6906 (3)0.3807 (2)0.0463 (8)
C130.5158 (3)0.7157 (3)0.3439 (3)0.0536 (9)
C140.4466 (3)0.6292 (3)0.3362 (2)0.0549 (9)
C150.4835 (3)0.5191 (3)0.3652 (2)0.0553 (9)
C160.5887 (3)0.4949 (3)0.4021 (2)0.0500 (9)
C211.0765 (3)0.3675 (3)0.2753 (2)0.0462 (8)
C221.1659 (4)0.4077 (4)0.2043 (3)0.0645 (11)
C231.1781 (4)0.3726 (5)0.1276 (3)0.0801 (14)
C241.1001 (4)0.2942 (4)0.1191 (3)0.0815 (14)
C251.0104 (4)0.2503 (4)0.1882 (3)0.0677 (11)
C260.9990 (4)0.2862 (3)0.2652 (2)0.0532 (9)
C310.5223 (4)1.0865 (3)0.2391 (2)0.0531 (9)
C320.4272 (4)1.1393 (3)0.2834 (3)0.0656 (11)
C330.4316 (5)1.1583 (4)0.3654 (3)0.0809 (14)
C340.5336 (6)1.1253 (4)0.4042 (3)0.0870 (15)
C350.6308 (5)1.0742 (4)0.3626 (3)0.0790 (13)
C360.6232 (4)1.0558 (3)0.2805 (3)0.0630 (11)
C410.6021 (3)0.6640 (3)0.1133 (2)0.0454 (8)
C420.5378 (3)0.5724 (3)0.1074 (2)0.0524 (9)
C430.5718 (4)0.4619 (3)0.1413 (3)0.0620 (10)
C440.6713 (4)0.4407 (3)0.1836 (3)0.0702 (12)
C450.7374 (4)0.5291 (4)0.1916 (3)0.0670 (11)
C460.7020 (3)0.6383 (3)0.1571 (3)0.0550 (9)
O1S0.9210 (13)0.2122 (11)0.6115 (10)0.099 (5)0.50
C11S1.0060 (11)0.1307 (9)0.6307 (8)0.087 (3)*0.50
H11A1.01760.12000.69190.104*0.50
H11B1.08310.15390.59310.104*0.50
C12S0.9670 (10)0.0177 (9)0.6161 (8)0.086 (3)*0.50
H12A1.02680.00960.57350.103*0.50
H12B0.95450.04060.67140.103*0.50
C13S0.8504 (18)0.0515 (17)0.5810 (13)0.150 (8)*0.50
H13A0.78730.00310.61090.181*0.50
H13B0.86100.05650.51780.181*0.50
C14S0.8182 (18)0.1656 (18)0.5997 (15)0.133 (10)0.50
H14A0.78410.21480.55040.160*0.50
H14B0.75760.15740.65260.160*0.50
O2S0.9156 (12)0.2129 (8)0.6036 (6)0.051 (3)0.50
C21S0.8251 (15)0.1678 (11)0.5661 (11)0.069 (4)0.50
H21A0.85200.17190.50370.082*0.50
H21B0.74810.20910.57280.082*0.50
C22S0.8129 (14)0.0451 (9)0.6193 (10)0.099 (4)0.50
H22A0.74420.03700.66700.119*0.50
H22B0.80170.00480.58170.119*0.50
C23S0.9201 (14)0.0206 (12)0.6521 (10)0.117 (5)*0.50
H23A0.95240.05280.64400.141*0.50
H23B0.90790.01830.71500.141*0.50
C24S1.0179 (9)0.1258 (8)0.5949 (7)0.068 (3)*0.50
H24A1.08530.13330.62510.082*0.50
H24B1.04690.12180.53420.082*0.50
O3S0.1960 (4)0.8917 (3)0.0690 (2)0.0499 (18)0.50
C31S0.1619 (5)0.8109 (5)0.0306 (4)0.117 (4)*0.50
H31A0.23350.77000.00930.140*0.50
H31B0.12140.84710.01960.140*0.50
C32S0.0765 (8)0.7290 (5)0.0986 (7)0.141 (5)*0.50
H32A0.11960.66450.13110.169*0.50
H32B0.01380.70220.07260.169*0.50
C33S0.0260 (3)0.8101 (9)0.1551 (9)0.277 (16)0.50
H33A0.00990.76980.21430.332*0.50
H33B0.03380.86280.12800.332*0.50
C34S0.1417 (7)0.8695 (10)0.1559 (3)0.111 (4)*0.50
H34A0.12360.93940.17540.133*0.50
H34B0.19320.82060.19430.133*0.50
O4S0.1905 (13)0.9120 (11)0.0840 (10)0.178 (6)0.50
C41S0.0973 (14)0.9482 (13)0.0497 (10)0.139 (5)*0.50
H41A0.11430.95050.01310.167*0.50
H41B0.07961.02550.05550.167*0.50
C42S0.0081 (12)0.8803 (16)0.0888 (14)0.206 (10)0.50
H42A0.04210.85120.04580.248*0.50
H42B0.07090.92040.12040.248*0.50
C43S0.0749 (17)0.7609 (15)0.1692 (12)0.152 (6)*0.50
H43A0.08120.78000.22460.183*0.50
H43C0.03890.68650.18060.183*0.50
C44S0.1788 (19)0.7709 (16)0.1144 (14)0.197 (8)*0.50
H44C0.17440.73910.06420.236*0.50
H44A0.24610.73520.14410.236*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.03771 (16)0.03352 (14)0.03634 (15)0.00466 (11)0.00365 (11)0.00546 (11)
Mo20.03164 (15)0.04565 (17)0.05316 (19)0.00679 (12)0.00261 (13)0.00081 (14)
O10.0402 (12)0.0391 (11)0.0445 (13)0.0045 (10)0.0066 (10)0.0033 (10)
O20.0395 (12)0.0380 (11)0.0459 (12)0.0067 (9)0.0062 (10)0.0037 (10)
O30.0504 (13)0.0417 (12)0.0375 (12)0.0060 (10)0.0000 (10)0.0068 (10)
O40.0522 (14)0.0386 (11)0.0415 (12)0.0039 (10)0.0043 (10)0.0101 (10)
O50.0407 (13)0.0553 (14)0.0587 (15)0.0092 (11)0.0058 (11)0.0067 (12)
O60.0408 (13)0.0548 (14)0.0542 (14)0.0079 (11)0.0008 (11)0.0045 (11)
O70.0344 (12)0.0490 (13)0.0594 (15)0.0054 (10)0.0017 (11)0.0000 (11)
O80.0360 (13)0.0464 (13)0.0587 (15)0.0062 (10)0.0027 (11)0.0001 (11)
F120.0596 (13)0.0445 (11)0.1041 (18)0.0037 (10)0.0266 (12)0.0145 (12)
F130.0676 (15)0.0561 (13)0.121 (2)0.0046 (11)0.0387 (15)0.0045 (13)
F140.0577 (14)0.0952 (17)0.0857 (17)0.0070 (12)0.0365 (13)0.0054 (14)
F150.0716 (15)0.0745 (15)0.115 (2)0.0246 (12)0.0376 (14)0.0216 (14)
F160.0752 (15)0.0434 (11)0.1131 (19)0.0069 (11)0.0370 (14)0.0131 (12)
F220.0740 (17)0.152 (2)0.0734 (16)0.0499 (17)0.0211 (13)0.0567 (17)
F230.111 (2)0.257 (4)0.0800 (19)0.073 (3)0.0390 (17)0.093 (2)
F240.121 (3)0.215 (3)0.096 (2)0.021 (2)0.0015 (18)0.112 (2)
F250.117 (2)0.109 (2)0.103 (2)0.0284 (18)0.0212 (17)0.0615 (17)
F260.0893 (17)0.0734 (14)0.0640 (14)0.0309 (13)0.0028 (13)0.0182 (12)
F320.0765 (17)0.0821 (16)0.0932 (19)0.0154 (14)0.0082 (15)0.0199 (15)
F330.139 (3)0.0940 (19)0.108 (2)0.0160 (19)0.027 (2)0.0506 (18)
F340.188 (3)0.118 (2)0.0710 (18)0.057 (2)0.013 (2)0.0309 (17)
F350.132 (3)0.130 (3)0.106 (2)0.027 (2)0.069 (2)0.0113 (19)
F360.0675 (16)0.0977 (18)0.0936 (19)0.0037 (14)0.0282 (14)0.0162 (15)
F420.0771 (16)0.0681 (14)0.0807 (16)0.0129 (12)0.0302 (13)0.0097 (12)
F430.118 (2)0.0549 (13)0.108 (2)0.0211 (14)0.0214 (17)0.0135 (14)
F440.128 (3)0.0550 (14)0.130 (3)0.0181 (15)0.031 (2)0.0057 (15)
F450.0787 (18)0.0917 (18)0.129 (2)0.0202 (15)0.0486 (17)0.0009 (17)
F460.0626 (14)0.0711 (14)0.1058 (19)0.0071 (12)0.0356 (13)0.0109 (14)
C10.0410 (18)0.0435 (17)0.0369 (17)0.0028 (14)0.0043 (14)0.0113 (15)
C20.0393 (18)0.0473 (19)0.0424 (18)0.0021 (14)0.0078 (14)0.0123 (15)
C30.049 (2)0.0427 (18)0.055 (2)0.0031 (16)0.0067 (17)0.0001 (16)
C40.043 (2)0.0466 (18)0.048 (2)0.0027 (16)0.0044 (16)0.0037 (16)
C110.0393 (18)0.0448 (17)0.0389 (17)0.0051 (14)0.0049 (14)0.0070 (14)
C120.0398 (18)0.0452 (18)0.053 (2)0.0065 (15)0.0086 (15)0.0090 (16)
C130.048 (2)0.048 (2)0.060 (2)0.0011 (16)0.0098 (17)0.0026 (17)
C140.0393 (19)0.072 (2)0.052 (2)0.0047 (18)0.0135 (16)0.0082 (19)
C150.052 (2)0.058 (2)0.058 (2)0.0193 (18)0.0111 (18)0.0110 (18)
C160.051 (2)0.0441 (19)0.055 (2)0.0055 (16)0.0133 (17)0.0081 (16)
C210.0435 (19)0.0516 (19)0.0464 (19)0.0069 (15)0.0084 (15)0.0179 (16)
C220.052 (2)0.089 (3)0.059 (2)0.010 (2)0.0025 (19)0.033 (2)
C230.060 (3)0.129 (4)0.059 (3)0.016 (3)0.008 (2)0.045 (3)
C240.076 (3)0.119 (4)0.066 (3)0.005 (3)0.013 (2)0.053 (3)
C250.071 (3)0.073 (3)0.073 (3)0.001 (2)0.023 (2)0.036 (2)
C260.061 (2)0.051 (2)0.052 (2)0.0050 (17)0.0126 (18)0.0203 (17)
C310.061 (2)0.0406 (18)0.053 (2)0.0109 (17)0.0088 (18)0.0005 (16)
C320.076 (3)0.049 (2)0.067 (3)0.010 (2)0.007 (2)0.006 (2)
C330.107 (4)0.052 (2)0.078 (3)0.022 (2)0.012 (3)0.018 (2)
C340.126 (5)0.071 (3)0.064 (3)0.043 (3)0.014 (3)0.009 (2)
C350.095 (4)0.070 (3)0.074 (3)0.030 (3)0.030 (3)0.003 (2)
C360.067 (3)0.053 (2)0.069 (3)0.0145 (19)0.016 (2)0.007 (2)
C410.0420 (19)0.0474 (18)0.0417 (18)0.0033 (15)0.0012 (15)0.0056 (15)
C420.049 (2)0.058 (2)0.046 (2)0.0034 (17)0.0040 (17)0.0061 (17)
C430.072 (3)0.051 (2)0.059 (2)0.011 (2)0.004 (2)0.0072 (19)
C440.077 (3)0.049 (2)0.073 (3)0.010 (2)0.006 (2)0.000 (2)
C450.059 (3)0.069 (3)0.066 (3)0.011 (2)0.015 (2)0.002 (2)
C460.044 (2)0.057 (2)0.059 (2)0.0016 (17)0.0048 (17)0.0075 (18)
O1S0.059 (7)0.067 (7)0.170 (12)0.000 (6)0.002 (7)0.037 (7)
C14S0.064 (9)0.140 (15)0.19 (2)0.018 (9)0.017 (11)0.031 (14)
O2S0.082 (8)0.025 (4)0.039 (4)0.014 (4)0.008 (4)0.006 (3)
C21S0.069 (7)0.044 (5)0.093 (8)0.036 (5)0.007 (6)0.013 (5)
C22S0.143 (11)0.046 (5)0.110 (10)0.057 (6)0.011 (9)0.012 (6)
O3S0.018 (2)0.052 (3)0.068 (4)0.017 (2)0.020 (3)0.007 (3)
C33S0.061 (9)0.35 (3)0.29 (3)0.089 (14)0.043 (12)0.19 (2)
O4S0.204 (12)0.115 (8)0.237 (14)0.066 (8)0.133 (11)0.007 (9)
C42S0.068 (9)0.219 (18)0.30 (2)0.051 (10)0.070 (12)0.044 (17)
Geometric parameters (Å, º) top
Mo1—O3i2.096 (2)C31—C321.384 (6)
Mo1—Mo1i2.1090 (7)C32—C331.375 (6)
Mo1—O1i2.111 (2)C33—C341.367 (7)
Mo1—O22.116 (2)C34—C351.369 (7)
Mo1—O42.118 (2)C35—C361.381 (6)
Mo1—O2S2.530 (9)C41—C461.381 (5)
Mo1—O1S2.543 (12)C41—C421.381 (5)
Mo2—O62.106 (3)C42—C431.369 (5)
Mo2—O7ii2.108 (2)C43—C441.361 (6)
Mo2—Mo2ii2.1101 (8)C44—C451.372 (6)
Mo2—O52.113 (3)C45—C461.362 (5)
Mo2—O82.118 (2)O1S—C11S1.341 (17)
Mo2—O4S2.544 (14)O1S—C14S1.36 (3)
Mo2—O3S2.552 (4)C11S—C12S1.538 (15)
O1—C11.264 (4)C11S—H11A0.9700
O1—Mo1i2.111 (2)C11S—H11B0.9700
O2—C11.263 (4)C12S—C13S1.49 (2)
O3—C21.265 (4)C12S—H12A0.9700
O3—Mo1i2.096 (2)C12S—H12B0.9700
O4—C21.265 (4)C13S—C14S1.50 (3)
O5—C3ii1.265 (4)C13S—H13A0.9700
O6—C31.272 (4)C13S—H13B0.9700
O7—C41.263 (4)C14S—H14A0.9700
O7—Mo2ii2.108 (2)C14S—H14B0.9700
O8—C41.261 (4)O2S—C21S1.44 (2)
F12—C121.336 (4)O2S—C24S1.520 (15)
F13—C131.328 (4)C21S—C22S1.516 (17)
F14—C141.334 (4)C21S—H21A0.9700
F15—C151.342 (4)C21S—H21B0.9700
F16—C161.335 (4)C22S—C23S1.363 (19)
F22—C221.330 (5)C22S—H22A0.9700
F23—C231.337 (5)C22S—H22B0.9700
F24—C241.335 (5)C23S—C24S1.697 (17)
F25—C251.339 (5)C23S—H23A0.9700
F26—C261.332 (4)C23S—H23B0.9700
F32—C321.332 (5)C24S—H24A0.9700
F33—C331.336 (5)C24S—H24B0.9700
F34—C341.345 (5)O3S—C34S1.3700 (11)
F35—C351.336 (6)O3S—C31S1.3703 (11)
F36—C361.339 (5)C31S—C32S1.5097 (11)
F42—C421.330 (4)C31S—H31A0.9700
F43—C431.337 (4)C31S—H31B0.9700
F44—C441.344 (4)C32S—C33S1.5098 (11)
F45—C451.350 (5)C32S—H32A0.9700
F46—C461.339 (4)C32S—H32B0.9700
C1—C111.496 (4)C33S—C34S1.5101 (11)
C2—C211.485 (5)C33S—H33A0.9700
C3—O5ii1.265 (4)C33S—H33B0.9700
C3—C311.486 (5)C34S—H34A0.9700
C4—C411.488 (5)C34S—H34B0.9700
C11—C121.385 (5)O4S—C41S1.251 (18)
C11—C161.389 (4)O4S—C44S1.66 (2)
C12—C131.373 (5)C41S—C42S1.431 (18)
C13—C141.373 (5)C41S—H41A0.9700
C14—C151.362 (5)C41S—H41B0.9700
C15—C161.372 (5)C42S—C43S1.97 (2)
C21—C221.377 (5)C42S—H42A0.9700
C21—C261.397 (5)C42S—H42B0.9700
C22—C231.361 (6)C43S—C44S1.32 (2)
C23—C241.365 (6)C43S—H43A0.9700
C24—C251.370 (6)C43S—H43C0.9700
C25—C261.371 (5)C44S—H44C0.9700
C31—C361.375 (6)C44S—H44A0.9700
O3i—Mo1—Mo1i92.91 (6)C43—C42—C41122.4 (4)
O3i—Mo1—O1i87.28 (9)F43—C43—C44119.7 (4)
Mo1i—Mo1—O1i91.21 (6)F43—C43—C42121.1 (4)
O3i—Mo1—O291.98 (9)C44—C43—C42119.2 (4)
Mo1i—Mo1—O292.05 (6)F44—C44—C43120.1 (4)
O1i—Mo1—O2176.69 (8)F44—C44—C45119.5 (4)
O3i—Mo1—O4176.72 (8)C43—C44—C45120.4 (4)
Mo1i—Mo1—O490.36 (6)F45—C45—C46120.6 (4)
O1i—Mo1—O492.37 (9)F45—C45—C44120.1 (4)
O2—Mo1—O488.19 (9)C46—C45—C44119.3 (4)
O3i—Mo1—O2S100.2 (2)F46—C46—C45117.6 (4)
Mo1i—Mo1—O2S166.1 (2)F46—C46—C41120.1 (3)
O1i—Mo1—O2S84.8 (3)C45—C46—C41122.4 (4)
O2—Mo1—O2S92.1 (3)C11S—O1S—C14S110.0 (14)
O4—Mo1—O2S76.5 (2)C11S—O1S—Mo1124.9 (9)
O3i—Mo1—O1S97.8 (3)C14S—O1S—Mo1119.8 (12)
Mo1i—Mo1—O1S167.2 (3)O1S—C11S—C12S110.6 (11)
O1i—Mo1—O1S82.4 (3)O1S—C11S—H11A109.5
O2—Mo1—O1S94.5 (3)C12S—C11S—H11A109.5
O4—Mo1—O1S78.9 (3)O1S—C11S—H11B109.5
O2S—Mo1—O1S3.3 (6)C12S—C11S—H11B109.5
O6—Mo2—O7ii89.90 (10)H11A—C11S—H11B108.1
O6—Mo2—Mo2ii92.15 (7)C13S—C12S—C11S101.7 (11)
O7ii—Mo2—Mo2ii92.32 (6)C13S—C12S—H12A111.4
O6—Mo2—O5176.67 (9)C11S—C12S—H12A111.4
O7ii—Mo2—O590.01 (10)C13S—C12S—H12B111.4
Mo2ii—Mo2—O591.18 (6)C11S—C12S—H12B111.4
O6—Mo2—O889.85 (10)H12A—C12S—H12B109.3
O7ii—Mo2—O8176.77 (8)C12S—C13S—C14S104.9 (16)
Mo2ii—Mo2—O890.91 (6)C12S—C13S—H13A110.8
O5—Mo2—O890.05 (9)C14S—C13S—H13A110.8
O6—Mo2—O4S87.9 (3)C12S—C13S—H13B110.8
O7ii—Mo2—O4S93.5 (3)C14S—C13S—H13B110.8
Mo2ii—Mo2—O4S174.1 (3)H13A—C13S—H13B108.8
O5—Mo2—O4S88.8 (3)O1S—C14S—C13S108.7 (16)
O8—Mo2—O4S83.2 (3)O1S—C14S—H14A110.0
O6—Mo2—O3S95.48 (11)C13S—C14S—H14A110.0
O7ii—Mo2—O3S97.35 (11)O1S—C14S—H14B110.0
Mo2ii—Mo2—O3S167.68 (9)C13S—C14S—H14B110.0
O5—Mo2—O3S81.23 (11)H14A—C14S—H14B108.3
O8—Mo2—O3S79.47 (11)C21S—O2S—C24S99.8 (10)
O4S—Mo2—O3S8.5 (4)C21S—O2S—Mo1116.3 (8)
C1—O1—Mo1i116.9 (2)C24S—O2S—Mo1117.6 (7)
C1—O2—Mo1115.87 (19)O2S—C21S—C22S103.9 (12)
C2—O3—Mo1i115.9 (2)O2S—C21S—H21A111.0
C2—O4—Mo1117.2 (2)C22S—C21S—H21A111.0
C3ii—O5—Mo2117.1 (2)O2S—C21S—H21B111.0
C3—O6—Mo2116.3 (2)C22S—C21S—H21B111.0
C4—O7—Mo2ii115.9 (2)H21A—C21S—H21B109.0
C4—O8—Mo2116.8 (2)C23S—C22S—C21S104.4 (11)
O2—C1—O1123.8 (3)C23S—C22S—H22A110.9
O2—C1—C11118.4 (3)C21S—C22S—H22A110.9
O1—C1—C11117.8 (3)C23S—C22S—H22B110.9
O3—C2—O4123.5 (3)C21S—C22S—H22B110.9
O3—C2—C21118.1 (3)H22A—C22S—H22B108.9
O4—C2—C21118.4 (3)C22S—C23S—C24S106.6 (10)
O5ii—C3—O6123.2 (3)C22S—C23S—H23A110.4
O5ii—C3—C31118.5 (3)C24S—C23S—H23A110.4
O6—C3—C31118.3 (3)C22S—C23S—H23B110.4
O8—C4—O7124.0 (3)C24S—C23S—H23B110.4
O8—C4—C41118.1 (3)H23A—C23S—H23B108.6
O7—C4—C41117.9 (3)O2S—C24S—C23S89.3 (8)
C12—C11—C16115.8 (3)O2S—C24S—H24A113.8
C12—C11—C1122.2 (3)C23S—C24S—H24A113.8
C16—C11—C1121.9 (3)O2S—C24S—H24B113.8
F12—C12—C13117.1 (3)C23S—C24S—H24B113.8
F12—C12—C11120.6 (3)H24A—C24S—H24B111.0
C13—C12—C11122.4 (3)C34S—O3S—C31S109.1 (5)
F13—C13—C14119.6 (3)C34S—O3S—Mo2120.4 (3)
F13—C13—C12120.5 (3)C31S—O3S—Mo2121.2 (3)
C14—C13—C12119.9 (3)O3S—C31S—C32S108.9 (5)
F14—C14—C15120.4 (3)O3S—C31S—H31A109.9
F14—C14—C13120.2 (3)C32S—C31S—H31A109.9
C15—C14—C13119.4 (3)O3S—C31S—H31B109.9
F15—C15—C14119.8 (3)C32S—C31S—H31B109.9
F15—C15—C16119.9 (3)H31A—C31S—H31B108.3
C14—C15—C16120.3 (3)C31S—C32S—C33S97.5 (6)
F16—C16—C15117.0 (3)C31S—C32S—H32A112.3
F16—C16—C11120.7 (3)C33S—C32S—H32A112.3
C15—C16—C11122.2 (3)C31S—C32S—H32B112.3
C22—C21—C26116.3 (3)C33S—C32S—H32B112.3
C22—C21—C2122.2 (3)H32A—C32S—H32B109.9
C26—C21—C2121.4 (3)C32S—C33S—C34S99.9 (6)
F22—C22—C23117.0 (4)C32S—C33S—H33A111.8
F22—C22—C21120.4 (3)C34S—C33S—H33A111.8
C23—C22—C21122.6 (4)C32S—C33S—H33B111.8
F23—C23—C22121.2 (4)C34S—C33S—H33B111.8
F23—C23—C24118.9 (4)H33A—C33S—H33B109.5
C22—C23—C24119.9 (4)O3S—C34S—C33S103.0 (6)
F24—C24—C23120.5 (4)O3S—C34S—H34A111.2
F24—C24—C25119.6 (4)C33S—C34S—H34A111.2
C23—C24—C25119.9 (4)O3S—C34S—H34B111.2
F25—C25—C24120.3 (4)C33S—C34S—H34B111.2
F25—C25—C26120.0 (4)H34A—C34S—H34B109.1
C24—C25—C26119.7 (4)C41S—O4S—C44S105.8 (13)
F26—C26—C25117.4 (3)C41S—O4S—Mo2125.7 (12)
F26—C26—C21120.8 (3)C44S—O4S—Mo2113.8 (11)
C25—C26—C21121.6 (4)O4S—C41S—C42S113.5 (15)
C36—C31—C32116.5 (4)O4S—C41S—H41A108.9
C36—C31—C3121.8 (4)C42S—C41S—H41A108.9
C32—C31—C3121.6 (4)O4S—C41S—H41B108.9
F32—C32—C33117.3 (4)C42S—C41S—H41B108.9
F32—C32—C31120.5 (4)H41A—C41S—H41B107.7
C33—C32—C31122.2 (5)C41S—C42S—C43S96.4 (12)
F33—C33—C34120.7 (5)C41S—C42S—H42A112.5
F33—C33—C32120.2 (5)C43S—C42S—H42A112.5
C34—C33—C32119.1 (5)C41S—C42S—H42B112.5
F34—C34—C33119.6 (6)C43S—C42S—H42B112.5
F34—C34—C35119.4 (6)H42A—C42S—H42B110.0
C33—C34—C35121.0 (5)C44S—C43S—C42S93.6 (15)
F35—C35—C34121.0 (5)C44S—C43S—H43A113.0
F35—C35—C36120.5 (5)C42S—C43S—H43A113.0
C34—C35—C36118.4 (5)C44S—C43S—H43C113.0
F36—C36—C31120.6 (4)C42S—C43S—H43C113.0
F36—C36—C35116.6 (4)H43A—C43S—H43C110.4
C31—C36—C35122.8 (4)C43S—C44S—O4S100.4 (16)
C46—C41—C42116.3 (3)C43S—C44S—H44C111.7
C46—C41—C4121.8 (3)O4S—C44S—H44C111.7
C42—C41—C4121.9 (3)C43S—C44S—H44A111.7
F42—C42—C43117.4 (3)O4S—C44S—H44A111.7
F42—C42—C41120.1 (3)H44C—C44S—H44A109.5
O1—C1—C11—C1228.1 (5)O5ii—C3—C31—C3639.1 (5)
O2—C1—C11—C1629.3 (5)O6—C3—C31—C3237.7 (5)
O3—C2—C21—C2230.4 (5)O7—C4—C41—C4640.9 (5)
O4—C2—C21—C2631.6 (5)O8—C4—C41—C4241.7 (5)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Mo2(C7F5O2)4(C4H8O)2]
Mr1180.37
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.101 (4), 12.113 (4), 15.741 (5)
α, β, γ (°)75.657 (4), 80.658 (4), 86.813 (2)
V3)2023.3 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.825, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
10491, 6988, 5663
Rint0.015
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.089, 1.02
No. of reflections6988
No. of parameters648
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.45

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg,1999).

Selected bond lengths (Å) top
Mo1—O3i2.096 (2)Mo2—O62.106 (3)
Mo1—Mo1i2.1090 (7)Mo2—O7ii2.108 (2)
Mo1—O1i2.111 (2)Mo2—Mo2ii2.1101 (8)
Mo1—O22.116 (2)Mo2—O52.113 (3)
Mo1—O42.118 (2)Mo2—O82.118 (2)
Mo1—O2S2.530 (9)Mo2—O4S2.544 (14)
Mo1—O1S2.543 (12)Mo2—O3S2.552 (4)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z.
 

Acknowledgements

This work was supported by the National Natural Scientific Foundation of China (No. 20741004/B010303).

References

First citationAdams, N., Cowley, A. R., Dubberley, S. B., Sealey, A. J., Skinner, M. E. G. & Mountford, P. (2001). Chem. Commun. pp. 2738–2739.  Google Scholar
First citationBach, A., Lentz, D. & Luger, P. (2001). J. Phys. Chem. A, 105, 7405–7412.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR. Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarroll, W. R., Pellechia, P. & Shimizu, K. D. (2008). Org. Lett. 10, 3547–3550.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGung, B. W., Xue, X. & Reich, H. J. (2005). J. Org. Chem. 70, 3641–3644.  Google Scholar
First citationHair, G. S., Cowley, A. H., Gorden, J. D., Jones, J. N., Jones, R. A. & Macdonald, C. L. B. (2003). Chem. Commun. pp. 424–425.  Google Scholar
First citationLiu, J., Murray, E. M. & Young, V. G. Jr (2003). Chem. Commun. pp. 1904–1905.  Google Scholar
First citationMcNeil, A. J., Müller, P., Whitten, J. E. & Swager, T. M. (2006). J. Am. Chem. Soc. 128, 12426–12427.  Google Scholar
First citationReddy, L. S., Nangia, A. & Lynch, V. M. (2004). Cryst. Growth Des. 4, 89–94.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSui, Y. & Glaser, R. (2006). Cryst. Growth Des. 6, 1014–1021.  Google Scholar
First citationVangala, V. R., Nangia, A. & Lynch, V. M. (2002). Chem. Commun. pp. 1304–1305.  Web of Science CSD CrossRef Google Scholar
First citationWoody, K. B., Bullock, J. E., Parkin, S. R. & Watson, M. D. (2007). Macromolecules, 40, 4470–4473.  Google Scholar
First citationXu, R., Schweizer, W. B. & Frauenrath, H. (2008). J. Am. Chem. Soc. 130, 11437–11445.  Google Scholar
First citationZhu, S., Jin, G. & Li, Z. (2005). Tetrahedron Lett. 46, 2713–2716.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1289-m1290
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds