metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1174-m1175

catena-Poly[[aqua­[1,4-bis­­(1H-imidazol-4-yl)benzene]cadmium]-μ3-5-methyl­isophthalato]

aDepartment of Chemistry, Fuyang Normal College, Fuyang, Anhui 236041, People's Republic of China
*Correspondence e-mail: sscfync@163.com

(Received 20 July 2011; accepted 28 July 2011; online 2 August 2011)

In the title coordination polymer, [Cd(C9H6O4)(C12H10N4)(H2O)]n, the CdII atom has a NO6 donor set and is coord­inated by five carboxyl­ate O atoms from three different 5-methyl-1,3-phenyl­enediacetate (pda2−) anions, one O atom from a water mol­ecule and one N atom from a 1,4-bis­(1H-imidazol-4-yl)benzene (L) ligand, displaying a highly distorted penta­gonal–bipyramidal geometry. Each pda2− anion acts as a μ3-bridge, linking CdII atoms to form one-dimensional slabs extending parallel to [010]. In the crystal, adjacent mol­ecules are linked through N—H⋯N and N—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For background to metal-organic hybrid materials, see: Bradshaw et al. (2005[Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. (2005). Acc. Chem. Res. 38, 273-282.]); Ockwig et al. (2005[Ockwig, N. W., Delgado-Friedrichs, O., O'Keeffe, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176-182.]). For structures containing mixed ligands, see: Liu et al. (2007[Liu, Y. Y., Ma, J. F., Yang, J. & Su, Z. M. (2007). Inorg. Chem. 46, 3027-3037.]); Chen et al. (2006[Chen, P. K., Che, Y. X., Xue, L. & Zheng, J. M. (2006). Cryst. Growth Des. 6, 2517-2522.]); Choi & Jeon (2003[Choi, K. Y. & Jeon, Y. M. (2003). Inorg. Chem. Commun. 6, 1294-1296.]). For related structures, see: Chen et al. (2010[Chen, S. S., Fan, J., Okamura, T. A. & Chen, M. S. (2010). Cryst. Growth Des. 10, 812-822.]; 2011[Chen, S.-S., Yang, S.-L. & Zhang, S.-P. (2011). Acta Cryst. E67, m1031-m1032.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C9H6O4)(C12H10N4)(H2O)]

  • Mr = 518.80

  • Triclinic, [P \overline 1]

  • a = 6.9407 (9) Å

  • b = 9.8231 (13) Å

  • c = 15.506 (2) Å

  • α = 74.091 (2)°

  • β = 85.963 (2)°

  • γ = 70.707 (2)°

  • V = 959.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 296 K

  • 0.18 × 0.16 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.]) Tmin = 0.815, Tmax = 0.871

  • 15863 measured reflections

  • 4376 independent reflections

  • 4161 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.128

  • S = 1.09

  • 4376 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N1 2.222 (3)
Cd1—O1i 2.315 (3)
Cd1—O3ii 2.380 (3)
Cd1—O4ii 2.404 (2)
Cd1—O2i 2.473 (3)
Cd1—O5 2.520 (3)
Cd1—O3 2.539 (3)
Symmetry codes: (i) -x+1, -y-1, -z+2; (ii) -x+1, -y, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N4iii 0.86 2.17 2.975 (4) 157
N3—H3⋯O4iv 0.86 2.03 2.815 (4) 151
Symmetry codes: (iii) -x+2, -y, -z+1; (iv) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The rational design and synthesis of metal-organic frameworks (MOFs) has attracted considerable attention, which is stimulated by their intriguing aesthetic structures and topological features as well as their potential applications as materials (Bradshaw et al., 2005; Ockwig et al., 2005). The choice of suitable ligands is a key factor that greatly affects the structure and stabilization of the coordination architecture (Choi & Jeon 2003). For a more tunable ligand design mixed polycarboxylate and N-containing compounds (Liu et al., 2007; Chen et al., 2006) are favourable. Therefore we have focused on constructing complexes based on the organic ligand 1,4-di(1H-imidazol-4-yl)benzene (L) and polycarboxylate anions (Chen et al., 2010; 2011). As an extension of our work, we report the synthesis and structure of a new CdII complex (I), which was obtained by solvothermal reaction of CdI2 with L and 5-methylisophthalic acid (H2pda).

The asymmetric unit of (I) consists of one CdII atom, one L ligaqnd, one pda2- anion and one coordinated water molecule. Each CdII atom has a NO6 donor set and is coordinated by five carboxylate oxygen atoms from three different pda2- anions, one water oxygen atom and one nitrogen atom from L, displaying a highly distorted pentagonal-bipyramidal geometry (Fig. 1). The pda2- ligand acts as a µ3– bridge with two monodentate carboxylate groups to form one-dimensional slabs parellel to [010] (Fig. 2). In the crystal, adjacent molecules are linked through N—H···N and N—H···O hydrogen bonding interactions into a three-dimensional network (Fig. 3).

Related literature top

For background to metal-organic hybrid materials, see: Bradshaw et al. (2005); Ockwig et al. (2005). For structures containing mixed ligands, see: Liu et al. (2007); Chen et al. (2006); Choi & Jeon (2003). For related structures, see: Chen et al. (2010; 2011).

Experimental top

All reagents and solvents were used as obtained commercially without further purification. A mixture containing CdI2 (36.6 mg, 0.1 mmol), L (21.0 mg, 0.1 mmol), H2pda (18.0 mg, 0.1 mmol), DMF (N:N'- dimethylformamide, 1 ml), 10 ml H2O was sealed in a 16 ml Teflon-lined stainless steel container and heated at 453 K for 72 h. After cooling to room temperature within 12 h, colorless crystals of (I) suitable for X-ray diffraction analysis were obtained in 48% Yield.

Refinement top

H atoms bonded to C atoms were placed geometrically and treated as riding, with C—H distances 0.93 Å and 0.96 Å for aryl and methyl type H-atoms, respectively with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl). The amide H atoms were located from difference maps and refined with the N—H distances restrained to 0.86 Å and Uiso(H) = 1.2Ueq(N). The hydrogen atoms of the coordinated water molecule could not be located and thus were not included in the refinement.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination of the metal atom in compound (I). Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 1 - x, -y, 2 - z (ii) x, 1 + y, z (iii) 1 - x, -1 - y, 2 - z.]
[Figure 2] Fig. 2. The slab formed from CdII atoms and pda2- anions. Displacement ellipsoids are drawn at 30% probability level.
[Figure 3] Fig. 3. The three-dimensional network formed by hydrogen bonding interactions in the structure of compound (I).
catena-Poly[[aqua[1,4-bis(1H-imidazol-4-yl)benzene]cadmium]- µ3-5-methylisophthalato] top
Crystal data top
[Cd(C9H6O4)(C12H10N4)(H2O)]Z = 2
Mr = 518.80F(000) = 516
Triclinic, P1Dx = 1.789 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9407 (9) ÅCell parameters from 9986 reflections
b = 9.8231 (13) Åθ = 2.7–27.6°
c = 15.506 (2) ŵ = 1.18 mm1
α = 74.091 (2)°T = 296 K
β = 85.963 (2)°Block, colorless
γ = 70.707 (2)°0.18 × 0.16 × 0.12 mm
V = 959.4 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4376 independent reflections
Radiation source: fine-focus sealed tube4161 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 27.6°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 59
Tmin = 0.815, Tmax = 0.871k = 1212
15863 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.098P)2 + 0.8397P]
where P = (Fo2 + 2Fc2)/3
4376 reflections(Δ/σ)max = 0.002
281 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
[Cd(C9H6O4)(C12H10N4)(H2O)]γ = 70.707 (2)°
Mr = 518.80V = 959.4 (2) Å3
Triclinic, P1Z = 2
a = 6.9407 (9) ÅMo Kα radiation
b = 9.8231 (13) ŵ = 1.18 mm1
c = 15.506 (2) ÅT = 296 K
α = 74.091 (2)°0.18 × 0.16 × 0.12 mm
β = 85.963 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4376 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4161 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.871Rint = 0.022
15863 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.09Δρmax = 0.86 e Å3
4376 reflectionsΔρmin = 0.80 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.70159 (3)0.20380 (2)1.035182 (12)0.02480 (12)
C10.9950 (5)0.1669 (4)0.5262 (2)0.0261 (6)
H11.08410.14000.48150.031*
C20.9908 (5)0.0593 (4)0.6057 (2)0.0267 (6)
H21.07460.03910.61270.032*
C30.8630 (5)0.0969 (3)0.6747 (2)0.0241 (6)
C40.7404 (5)0.2448 (4)0.6627 (2)0.0311 (7)
H40.65650.27260.70870.037*
C50.7415 (6)0.3520 (4)0.5827 (2)0.0328 (7)
H50.65690.45030.57560.039*
C60.8676 (5)0.3143 (3)0.5130 (2)0.0243 (6)
C70.8556 (4)0.0187 (3)0.7570 (2)0.0226 (5)
C80.7980 (5)0.0084 (3)0.8415 (2)0.0262 (6)
H80.75460.07960.85970.031*
C90.8833 (5)0.2419 (3)0.8451 (2)0.0254 (6)
H90.91020.34480.86480.031*
C100.8657 (5)0.4250 (3)0.4273 (2)0.0246 (6)
C110.7830 (6)0.5769 (4)0.4057 (2)0.0338 (7)
H110.71150.63470.44330.041*
C120.9308 (6)0.5092 (4)0.2888 (2)0.0350 (7)
H120.97840.51460.23080.042*
C130.3642 (4)0.1324 (3)0.83307 (19)0.0197 (5)
C140.3608 (4)0.2719 (3)0.88386 (19)0.0213 (5)
H140.32910.28640.94430.026*
C150.4045 (4)0.3895 (3)0.8449 (2)0.0212 (5)
C160.4601 (5)0.3674 (3)0.7544 (2)0.0248 (6)
H160.49720.44770.72900.030*
C170.4607 (5)0.2279 (3)0.7021 (2)0.0236 (6)
C180.4118 (4)0.1095 (3)0.7421 (2)0.0216 (5)
H180.41100.01520.70810.026*
C190.3244 (4)0.0102 (3)0.8788 (2)0.0219 (5)
C200.3822 (5)0.5364 (3)0.8978 (2)0.0263 (6)
C210.5132 (6)0.2039 (4)0.6041 (2)0.0337 (7)
H21A0.52550.10600.58100.050*
H21B0.40730.21250.57140.050*
H21C0.64030.27800.59770.050*
N10.8142 (4)0.1499 (3)0.89632 (18)0.0255 (5)
N20.9098 (4)0.1684 (3)0.76096 (17)0.0245 (5)
H2A0.95310.20780.71720.029*
N30.8263 (5)0.6276 (3)0.3174 (2)0.0344 (6)
H30.79190.71950.28620.041*
N40.9599 (5)0.3820 (3)0.35234 (18)0.0317 (6)
O10.4754 (5)0.6519 (3)0.87238 (19)0.0408 (6)
O20.2711 (4)0.5384 (3)0.9641 (2)0.0344 (6)
O30.3531 (4)0.0476 (3)0.96292 (17)0.0282 (5)
O40.2703 (4)0.1241 (3)0.83420 (17)0.0345 (5)
O51.0670 (4)0.3593 (3)1.07976 (18)0.0375 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04272 (18)0.01512 (16)0.01673 (15)0.01121 (11)0.00698 (10)0.00380 (10)
C10.0299 (14)0.0252 (15)0.0192 (13)0.0072 (12)0.0048 (11)0.0026 (11)
C20.0300 (14)0.0203 (14)0.0218 (14)0.0019 (11)0.0034 (11)0.0013 (11)
C30.0292 (14)0.0218 (14)0.0177 (13)0.0080 (11)0.0024 (11)0.0004 (11)
C40.0399 (17)0.0245 (15)0.0242 (15)0.0078 (13)0.0128 (13)0.0051 (12)
C50.0430 (17)0.0196 (14)0.0275 (16)0.0039 (13)0.0088 (13)0.0028 (12)
C60.0289 (14)0.0229 (14)0.0190 (13)0.0095 (11)0.0005 (11)0.0007 (11)
C70.0247 (13)0.0199 (13)0.0205 (13)0.0078 (10)0.0034 (10)0.0013 (11)
C80.0343 (15)0.0197 (14)0.0225 (14)0.0081 (11)0.0046 (11)0.0042 (11)
C90.0303 (14)0.0192 (13)0.0212 (14)0.0040 (11)0.0037 (11)0.0022 (11)
C100.0309 (14)0.0219 (14)0.0207 (14)0.0108 (11)0.0008 (11)0.0023 (11)
C110.0473 (19)0.0228 (15)0.0242 (15)0.0069 (13)0.0038 (13)0.0013 (12)
C120.053 (2)0.0300 (17)0.0193 (15)0.0135 (15)0.0011 (14)0.0014 (13)
C130.0239 (12)0.0148 (12)0.0210 (13)0.0068 (10)0.0010 (10)0.0047 (10)
C140.0256 (13)0.0186 (13)0.0170 (12)0.0055 (10)0.0010 (10)0.0027 (10)
C150.0270 (13)0.0142 (12)0.0230 (14)0.0098 (10)0.0012 (10)0.0017 (10)
C160.0302 (14)0.0202 (14)0.0239 (14)0.0060 (11)0.0038 (11)0.0088 (11)
C170.0280 (13)0.0233 (14)0.0192 (13)0.0074 (11)0.0011 (10)0.0063 (11)
C180.0271 (13)0.0170 (12)0.0205 (13)0.0090 (10)0.0001 (10)0.0021 (10)
C190.0268 (13)0.0170 (13)0.0237 (14)0.0083 (10)0.0015 (10)0.0071 (11)
C200.0380 (16)0.0144 (13)0.0265 (15)0.0121 (11)0.0059 (12)0.0006 (11)
C210.0416 (17)0.0353 (18)0.0250 (16)0.0131 (14)0.0069 (13)0.0104 (13)
N10.0338 (13)0.0205 (12)0.0194 (12)0.0088 (10)0.0043 (10)0.0019 (10)
N20.0289 (12)0.0222 (12)0.0177 (11)0.0036 (10)0.0036 (9)0.0043 (9)
N30.0479 (16)0.0234 (13)0.0248 (14)0.0109 (12)0.0001 (12)0.0040 (11)
N40.0429 (15)0.0265 (14)0.0190 (12)0.0070 (11)0.0041 (11)0.0014 (11)
O10.0698 (18)0.0153 (11)0.0350 (13)0.0136 (11)0.0124 (13)0.0058 (10)
O20.0423 (13)0.0209 (12)0.0370 (14)0.0133 (10)0.0063 (11)0.0004 (10)
O30.0406 (13)0.0226 (11)0.0226 (12)0.0102 (9)0.0013 (9)0.0081 (9)
O40.0589 (15)0.0151 (10)0.0270 (12)0.0103 (10)0.0033 (11)0.0042 (9)
O50.0406 (13)0.0366 (14)0.0313 (13)0.0107 (11)0.0052 (10)0.0063 (11)
Geometric parameters (Å, º) top
Cd1—N12.222 (3)C11—H110.9300
Cd1—O1i2.315 (3)C12—N31.325 (5)
Cd1—O3ii2.380 (3)C12—N41.326 (4)
Cd1—O4ii2.404 (2)C12—H120.9300
Cd1—O2i2.473 (3)C13—C141.388 (4)
Cd1—O52.520 (3)C13—C181.399 (4)
Cd1—O32.539 (3)C13—C191.497 (4)
Cd1—C20i2.716 (3)C14—C151.384 (4)
Cd1—C19ii2.735 (3)C14—H140.9300
C1—C61.392 (4)C15—C161.407 (4)
C1—C21.392 (4)C15—C201.503 (4)
C1—H10.9300C16—C171.389 (4)
C2—C31.391 (4)C16—H160.9300
C2—H20.9300C17—C181.399 (4)
C3—C41.388 (4)C17—C211.510 (4)
C3—C71.469 (4)C18—H180.9300
C4—C51.391 (5)C19—O41.252 (4)
C4—H40.9300C19—O31.266 (4)
C5—C61.394 (5)C19—Cd1ii2.735 (3)
C5—H50.9300C20—O21.241 (5)
C6—C101.465 (4)C20—O11.260 (4)
C7—C81.364 (4)C20—Cd1i2.716 (3)
C7—N21.377 (4)C21—H21A0.9600
C8—N11.389 (4)C21—H21B0.9600
C8—H80.9300C21—H21C0.9600
C9—N11.315 (4)N2—H2A0.8600
C9—N21.340 (4)N3—H30.8600
C9—H90.9300O1—Cd1i2.315 (3)
C10—C111.362 (5)O2—Cd1i2.473 (3)
C10—N41.392 (4)O3—Cd1ii2.380 (3)
C11—N31.371 (5)O4—Cd1ii2.404 (2)
N1—Cd1—O1i142.24 (10)N2—C9—H9124.3
N1—Cd1—O3ii88.65 (10)C11—C10—N4109.0 (3)
O1i—Cd1—O3ii121.73 (9)C11—C10—C6129.7 (3)
N1—Cd1—O4ii133.01 (10)N4—C10—C6121.3 (3)
O1i—Cd1—O4ii84.74 (9)C10—C11—N3106.4 (3)
O3ii—Cd1—O4ii54.72 (8)C10—C11—H11126.8
N1—Cd1—O2i93.84 (10)N3—C11—H11126.8
O1i—Cd1—O2i54.45 (9)N3—C12—N4112.3 (3)
O3ii—Cd1—O2i175.37 (8)N3—C12—H12123.8
O4ii—Cd1—O2i125.04 (9)N4—C12—H12123.8
N1—Cd1—O586.01 (9)C14—C13—C18120.3 (3)
O1i—Cd1—O5101.86 (10)C14—C13—C19118.4 (3)
O3ii—Cd1—O5109.61 (10)C18—C13—C19121.2 (3)
O4ii—Cd1—O581.20 (9)C15—C14—C13120.2 (3)
O2i—Cd1—O574.49 (10)C15—C14—H14119.9
N1—Cd1—O384.46 (9)C13—C14—H14119.9
O1i—Cd1—O384.22 (10)C14—C15—C16119.2 (3)
O3ii—Cd1—O372.80 (10)C14—C15—C20120.1 (3)
O4ii—Cd1—O3107.31 (9)C16—C15—C20120.6 (3)
O2i—Cd1—O3103.55 (9)C17—C16—C15121.3 (3)
O5—Cd1—O3170.12 (9)C17—C16—H16119.4
N1—Cd1—C20i119.82 (10)C15—C16—H16119.4
O1i—Cd1—C20i27.56 (10)C16—C17—C18118.7 (3)
O3ii—Cd1—C20i149.23 (10)C16—C17—C21120.9 (3)
O4ii—Cd1—C20i104.05 (9)C18—C17—C21120.5 (3)
O2i—Cd1—C20i27.15 (10)C13—C18—C17120.2 (3)
O5—Cd1—C20i85.50 (10)C13—C18—H18119.9
O3—Cd1—C20i96.99 (9)C17—C18—H18119.9
N1—Cd1—C19ii112.60 (10)O4—C19—O3121.7 (3)
O1i—Cd1—C19ii103.13 (9)O4—C19—C13120.5 (3)
O3ii—Cd1—C19ii27.54 (9)O3—C19—C13117.8 (3)
O4ii—Cd1—C19ii27.23 (9)O4—C19—Cd1ii61.48 (16)
O2i—Cd1—C19ii151.79 (10)O3—C19—Cd1ii60.39 (17)
O5—Cd1—C19ii96.88 (9)C13—C19—Cd1ii173.5 (2)
O3—Cd1—C19ii89.19 (8)O2—C20—O1122.8 (3)
C20i—Cd1—C19ii127.55 (10)O2—C20—C15118.6 (3)
C6—C1—C2120.8 (3)O1—C20—C15118.6 (3)
C6—C1—H1119.6O2—C20—Cd1i65.48 (18)
C2—C1—H1119.6O1—C20—Cd1i58.25 (17)
C3—C2—C1120.9 (3)C15—C20—Cd1i168.7 (2)
C3—C2—H2119.5C17—C21—H21A109.5
C1—C2—H2119.5C17—C21—H21B109.5
C4—C3—C2118.4 (3)H21A—C21—H21B109.5
C4—C3—C7121.3 (3)C17—C21—H21C109.5
C2—C3—C7120.3 (3)H21A—C21—H21C109.5
C3—C4—C5120.7 (3)H21B—C21—H21C109.5
C3—C4—H4119.6C9—N1—C8105.8 (3)
C5—C4—H4119.6C9—N1—Cd1127.0 (2)
C4—C5—C6121.0 (3)C8—N1—Cd1126.6 (2)
C4—C5—H5119.5C9—N2—C7107.9 (3)
C6—C5—H5119.5C9—N2—H2A126.1
C1—C6—C5118.1 (3)C7—N2—H2A126.1
C1—C6—C10120.3 (3)C12—N3—C11107.5 (3)
C5—C6—C10121.6 (3)C12—N3—H3126.3
C8—C7—N2105.6 (3)C11—N3—H3126.3
C8—C7—C3131.0 (3)C12—N4—C10104.8 (3)
N2—C7—C3123.3 (3)C20—O1—Cd1i94.2 (2)
C7—C8—N1109.3 (3)C20—O2—Cd1i87.4 (2)
C7—C8—H8125.4C19—O3—Cd1ii92.07 (19)
N1—C8—H8125.4C19—O3—Cd1121.7 (2)
N1—C9—N2111.4 (3)Cd1ii—O3—Cd1107.20 (10)
N1—C9—H9124.3C19—O4—Cd1ii91.29 (19)
C6—C1—C2—C31.6 (5)O3ii—Cd1—N1—C9178.6 (3)
C1—C2—C3—C40.4 (5)O4ii—Cd1—N1—C9142.9 (2)
C1—C2—C3—C7178.2 (3)O2i—Cd1—N1—C95.3 (3)
C2—C3—C4—C51.6 (5)O5—Cd1—N1—C968.9 (3)
C7—C3—C4—C5176.9 (3)O3—Cd1—N1—C9108.5 (3)
C3—C4—C5—C60.9 (6)C20i—Cd1—N1—C913.6 (3)
C2—C1—C6—C52.3 (5)C19ii—Cd1—N1—C9164.7 (3)
C2—C1—C6—C10176.8 (3)O1i—Cd1—N1—C8134.4 (3)
C4—C5—C6—C11.1 (5)O3ii—Cd1—N1—C811.6 (3)
C4—C5—C6—C10178.0 (3)O4ii—Cd1—N1—C847.3 (3)
C4—C3—C7—C824.4 (5)O2i—Cd1—N1—C8164.5 (3)
C2—C3—C7—C8157.1 (3)O5—Cd1—N1—C8121.4 (3)
C4—C3—C7—N2155.1 (3)O3—Cd1—N1—C861.3 (3)
C2—C3—C7—N223.4 (5)C20i—Cd1—N1—C8156.2 (3)
N2—C7—C8—N10.8 (4)C19ii—Cd1—N1—C825.5 (3)
C3—C7—C8—N1178.8 (3)N1—C9—N2—C70.3 (4)
C1—C6—C10—C11167.0 (4)C8—C7—N2—C90.3 (3)
C5—C6—C10—C1113.8 (6)C3—C7—N2—C9179.3 (3)
C1—C6—C10—N412.0 (5)N4—C12—N3—C110.2 (5)
C5—C6—C10—N4167.2 (3)C10—C11—N3—C120.1 (4)
N4—C10—C11—N30.0 (4)N3—C12—N4—C100.2 (4)
C6—C10—C11—N3179.1 (3)C11—C10—N4—C120.1 (4)
C18—C13—C14—C150.0 (4)C6—C10—N4—C12179.0 (3)
C19—C13—C14—C15177.5 (3)O2—C20—O1—Cd1i11.8 (4)
C13—C14—C15—C162.5 (4)C15—C20—O1—Cd1i167.5 (2)
C13—C14—C15—C20174.4 (3)O1—C20—O2—Cd1i11.0 (3)
C14—C15—C16—C173.7 (5)C15—C20—O2—Cd1i168.3 (2)
C20—C15—C16—C17173.2 (3)O4—C19—O3—Cd1ii5.0 (3)
C15—C16—C17—C182.3 (5)C13—C19—O3—Cd1ii172.9 (2)
C15—C16—C17—C21177.8 (3)O4—C19—O3—Cd1116.8 (3)
C14—C13—C18—C171.4 (4)C13—C19—O3—Cd161.2 (3)
C19—C13—C18—C17176.1 (3)Cd1ii—C19—O3—Cd1111.7 (2)
C16—C17—C18—C130.2 (4)N1—Cd1—O3—C1913.3 (2)
C21—C17—C18—C13179.7 (3)O1i—Cd1—O3—C19130.6 (2)
C14—C13—C19—O4160.2 (3)O3ii—Cd1—O3—C19103.6 (3)
C18—C13—C19—O422.3 (4)O4ii—Cd1—O3—C19146.8 (2)
C14—C13—C19—O321.8 (4)O2i—Cd1—O3—C1979.3 (3)
C18—C13—C19—O3155.7 (3)C20i—Cd1—O3—C19106.1 (2)
C14—C15—C20—O220.9 (4)C19ii—Cd1—O3—C19126.1 (2)
C16—C15—C20—O2156.0 (3)N1—Cd1—O3—Cd1ii90.31 (11)
C14—C15—C20—O1159.8 (3)O1i—Cd1—O3—Cd1ii125.78 (11)
C16—C15—C20—O123.3 (4)O3ii—Cd1—O3—Cd1ii0.0
C14—C15—C20—Cd1i129.5 (11)O4ii—Cd1—O3—Cd1ii43.14 (12)
C16—C15—C20—Cd1i47.4 (13)O2i—Cd1—O3—Cd1ii177.06 (8)
N2—C9—N1—C80.8 (4)C20i—Cd1—O3—Cd1ii150.26 (11)
N2—C9—N1—Cd1170.7 (2)C19ii—Cd1—O3—Cd1ii22.49 (11)
C7—C8—N1—C91.0 (4)O3—C19—O4—Cd1ii5.0 (3)
C7—C8—N1—Cd1170.6 (2)C13—C19—O4—Cd1ii172.9 (2)
O1i—Cd1—N1—C935.4 (4)
Symmetry codes: (i) x+1, y1, z+2; (ii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N4iii0.862.172.975 (4)157
N3—H3···O4iv0.862.032.815 (4)151
Symmetry codes: (iii) x+2, y, z+1; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C9H6O4)(C12H10N4)(H2O)]
Mr518.80
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.9407 (9), 9.8231 (13), 15.506 (2)
α, β, γ (°)74.091 (2), 85.963 (2), 70.707 (2)
V3)959.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.18 × 0.16 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.815, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
15863, 4376, 4161
Rint0.022
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.128, 1.09
No. of reflections4376
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.80

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2000), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—N12.222 (3)Cd1—O2i2.473 (3)
Cd1—O1i2.315 (3)Cd1—O52.520 (3)
Cd1—O3ii2.380 (3)Cd1—O32.539 (3)
Cd1—O4ii2.404 (2)
Symmetry codes: (i) x+1, y1, z+2; (ii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N4iii0.862.172.975 (4)156.6
N3—H3···O4iv0.862.032.815 (4)150.5
Symmetry codes: (iii) x+2, y, z+1; (iv) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Anhui Provincial Education Commission (No. KJ2011B128).

References

First citationBradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. (2005). Acc. Chem. Res. 38, 273–282.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, P. K., Che, Y. X., Xue, L. & Zheng, J. M. (2006). Cryst. Growth Des. 6, 2517–2522.  CSD CrossRef CAS Google Scholar
First citationChen, S. S., Fan, J., Okamura, T. A. & Chen, M. S. (2010). Cryst. Growth Des. 10, 812–822.  CrossRef CAS Google Scholar
First citationChen, S.-S., Yang, S.-L. & Zhang, S.-P. (2011). Acta Cryst. E67, m1031–m1032.  CrossRef IUCr Journals Google Scholar
First citationChoi, K. Y. & Jeon, Y. M. (2003). Inorg. Chem. Commun. 6, 1294–1296.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y. Y., Ma, J. F., Yang, J. & Su, Z. M. (2007). Inorg. Chem. 46, 3027–3037.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOckwig, N. W., Delgado-Friedrichs, O., O'Keeffe, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176–182.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1174-m1175
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds