metal-organic compounds
catena-Poly[[cadmium-bis(μ-triethylenetetramine-κ4N,N′:N′′,N′′′)-cadmium-(μ-triethylenetetramine-κ4N,N′:N′′,N′′′)] hexafluoridogermanate]
aTeachers College, College of Chemistry, Chemical Engineering and Environment of Qingdao University, Shandong 266071, People's Republic of China, and bCollege of Chemistry, Chemical Engineering and Environment of Qingdao University, Shandong 266071, People's Republic of China
*Correspondence e-mail: gmwang_pub@163.com
The title fluoridogermanate, {[Cd2(C6H18N4)3][GeF6]}n, was synthesized hydrothermally. The comprises undulated cationic [Cd2(TETA)3]4+ chains (TETA is triethylenetetramine) propagating parallel to [101]. The central CdII atom is six-coordinated in a CdN6 set by three TETA ligands. The isolated [GeF6]2− units, serving as counter-anions, occupy the inter-chain spaces and simultaneously link adjacent chains into a three-dimensional network through extensive N—H⋯F hydrogen-bonding interactions. One of the ethylene bridges of one TETA ligand is disordered around a twofold rotation axis.
Related literature
For background to the structures and applications of microporous materials, see: Cheetham et al. (1999); Liang et al. (2006); Su et al. (2009); Zheng et al. (2003); Zou et al. (2005). For previously reported structures containing fluoridogermanate anions, see: Hoard & Vincent (1939); Brauer et al. (1980, 1986); Lukevics et al. (1997); Zhang et al. (2003); Wang et al. (2004). For polyamine CdII coordination complexes, see: Bartoszak-Adamska et al. (2002); Ma et al. (2005); Bose et al. (2006).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 1999); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536811033381/wm2519sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811033381/wm2519Isup2.hkl
The title compound was synthesized under hydrothermal conditions. Typically, a mixture of GeO2 (0.104 g,1 mmol) CdCO3 (0.174 g, 1 mmol), TETA (3.00 ml), pyridine (2.50 ml), hydrofluoric acid (40%, 0.20 ml), and H2O (1.00 ml), in a molar ratio 1:1:20:31:10:56, was sealed in a 25 ml Teflon-lined steel autoclave and heated under autogenous pressure at 443 K for 7 days. The block-shaped crystals obtained were recovered by filtration, washed with distilled water and dried in air.
Atom C9 of one TETA is equally disordered about a twofold rotation axis. The H atom bound to atom N6 was located in a difference Fourier map and refined as riding in its as-found position, with N—H = 0.93 Å and Uiso(H) = 1.2Ueq(N). The remaining H atoms were all positioned geometrically and allowd to ride on their parent atoms with C—H = 0.97 Å, N—H = 0.90 (NH2) or 0.91 (NH) Å, and with Uiso(H) = 1.2Ueq(C,N).
Data collection: SMART (Bruker, 1999); cell
SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1/2 - x, 1.5 - y, 1 - z;, (ii) 1 - x, y, 1.5 - z.] | |
Fig. 2. Dimeric Cd2 fragment found in (I); H atoms omitted for clarity. | |
Fig. 3. One-dimensional infinite cationic [Cd2(TETA)3]n chains in (I). | |
Fig. 4. The crystal packing of (I), projected along the b axis. |
[Cd2(C6H18N4)3][GeF6] | F(000) = 2056 |
Mr = 1036.71 | Dx = 2.099 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 3385 reflections |
a = 16.5034 (3) Å | θ = 1.9–26.5° |
b = 9.1072 (3) Å | µ = 3.20 mm−1 |
c = 22.1920 (4) Å | T = 295 K |
β = 100.354 (5)° | Block, colorless |
V = 3281.14 (14) Å3 | 0.10 × 0.06 × 0.05 mm |
Z = 4 |
Bruker APEX area-detector diffractometer | 3385 independent reflections |
Radiation source: fine-focus sealed tube | 2642 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
ϕ and ω scans | θmax = 26.5°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −20→20 |
Tmin = 0.741, Tmax = 0.857 | k = −11→11 |
11087 measured reflections | l = −27→27 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.076 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0321P)2] where P = (Fo2 + 2Fc2)/3 |
3385 reflections | (Δ/σ)max = 0.001 |
218 parameters | Δρmax = 0.69 e Å−3 |
0 restraints | Δρmin = −0.55 e Å−3 |
[Cd2(C6H18N4)3][GeF6] | V = 3281.14 (14) Å3 |
Mr = 1036.71 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 16.5034 (3) Å | µ = 3.20 mm−1 |
b = 9.1072 (3) Å | T = 295 K |
c = 22.1920 (4) Å | 0.10 × 0.06 × 0.05 mm |
β = 100.354 (5)° |
Bruker APEX area-detector diffractometer | 3385 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2642 reflections with I > 2σ(I) |
Tmin = 0.741, Tmax = 0.857 | Rint = 0.045 |
11087 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.076 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.69 e Å−3 |
3385 reflections | Δρmin = −0.55 e Å−3 |
218 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ge1 | 0.33579 (3) | 1.10395 (5) | 0.374972 (19) | 0.02492 (12) | |
Cd1 | 0.329148 (17) | 0.90058 (3) | 0.624812 (13) | 0.02438 (10) | |
F1 | 0.28347 (16) | 0.9992 (3) | 0.42434 (12) | 0.0490 (7) | |
F2 | 0.33638 (19) | 0.9446 (3) | 0.32858 (12) | 0.0551 (8) | |
F3 | 0.24171 (19) | 1.1545 (4) | 0.32908 (16) | 0.0789 (10) | |
F4 | 0.38899 (19) | 1.2061 (3) | 0.32551 (13) | 0.0611 (8) | |
F5 | 0.33215 (19) | 1.2603 (3) | 0.42160 (13) | 0.0561 (8) | |
F6 | 0.43124 (16) | 1.0523 (3) | 0.41810 (14) | 0.0574 (8) | |
C1 | 0.0710 (3) | 0.8812 (5) | 0.32142 (18) | 0.0321 (10) | |
H1A | 0.0226 | 0.8239 | 0.3048 | 0.039* | |
H1B | 0.0662 | 0.9762 | 0.3013 | 0.039* | |
C2 | 0.0756 (3) | 0.9018 (4) | 0.38958 (19) | 0.0329 (10) | |
H2A | 0.1242 | 0.9586 | 0.4062 | 0.039* | |
H2B | 0.0276 | 0.9557 | 0.3969 | 0.039* | |
C3 | 0.0854 (2) | 0.7744 (4) | 0.48790 (18) | 0.0286 (10) | |
H3A | 0.0860 | 0.6776 | 0.5062 | 0.034* | |
H3B | 0.0373 | 0.8263 | 0.4964 | 0.034* | |
C4 | 0.1630 (2) | 0.8575 (4) | 0.51675 (17) | 0.0264 (9) | |
H4A | 0.2072 | 0.8312 | 0.4953 | 0.032* | |
H4B | 0.1530 | 0.9620 | 0.5110 | 0.032* | |
C5 | 0.1347 (2) | 0.8992 (5) | 0.61866 (19) | 0.0319 (10) | |
H5A | 0.0843 | 0.8424 | 0.6147 | 0.038* | |
H5B | 0.1205 | 0.9964 | 0.6023 | 0.038* | |
C6 | 0.1729 (3) | 0.9119 (5) | 0.68592 (19) | 0.0344 (10) | |
H6A | 0.1342 | 0.9585 | 0.7080 | 0.041* | |
H6B | 0.1851 | 0.8147 | 0.7030 | 0.041* | |
C7 | 0.3999 (3) | 1.1777 (5) | 0.5701 (2) | 0.0465 (13) | |
H7A | 0.3915 | 1.2742 | 0.5514 | 0.056* | |
H7B | 0.4429 | 1.1286 | 0.5532 | 0.056* | |
C8 | 0.4258 (3) | 1.1934 (6) | 0.6381 (3) | 0.0561 (16) | |
H8A | 0.4726 | 1.2593 | 0.6467 | 0.067* | |
H8B | 0.3811 | 1.2364 | 0.6551 | 0.067* | |
C9 | 0.4699 (5) | 1.0170 (11) | 0.7371 (4) | 0.030 (2) | 0.50 |
H9A | 0.4210 | 1.0291 | 0.7552 | 0.036* | 0.50 |
H9B | 0.4871 | 0.9153 | 0.7423 | 0.036* | 0.50 |
C9' | 0.4641 (6) | 1.1120 (10) | 0.7305 (4) | 0.036 (2) | 0.50 |
H9'1 | 0.4820 | 1.2135 | 0.7309 | 0.043* | 0.50 |
H9'2 | 0.4152 | 1.1060 | 0.7490 | 0.043* | 0.50 |
N1 | 0.1450 (2) | 0.8060 (4) | 0.30945 (15) | 0.0321 (8) | |
H1C | 0.1884 | 0.8675 | 0.3163 | 0.038* | |
H1D | 0.1376 | 0.7768 | 0.2701 | 0.038* | |
N2 | 0.0791 (2) | 0.7592 (3) | 0.42059 (14) | 0.0262 (8) | |
H2C | 0.0282 | 0.7201 | 0.4078 | 0.031* | |
N3 | 0.19025 (18) | 0.8288 (3) | 0.58250 (14) | 0.0228 (7) | |
H3C | 0.1867 | 0.7302 | 0.5881 | 0.027* | |
N4 | 0.2490 (2) | 0.9988 (4) | 0.69334 (15) | 0.0309 (8) | |
H4C | 0.2765 | 0.9927 | 0.7321 | 0.037* | |
H4D | 0.2373 | 1.0938 | 0.6846 | 0.037* | |
N5 | 0.3231 (2) | 1.0924 (4) | 0.55588 (16) | 0.0339 (9) | |
H5C | 0.3168 | 1.0571 | 0.5175 | 0.041* | |
H5D | 0.2798 | 1.1505 | 0.5585 | 0.041* | |
N6 | 0.4478 (2) | 1.0527 (5) | 0.66701 (16) | 0.0434 (11) | |
H6 | 0.4918 | 1.0265 | 0.6480 | 0.052* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ge1 | 0.0254 (2) | 0.0250 (2) | 0.0255 (2) | 0.00042 (19) | 0.00756 (19) | 0.00145 (19) |
Cd1 | 0.02349 (17) | 0.02780 (17) | 0.02159 (16) | −0.00060 (14) | 0.00335 (12) | 0.00203 (13) |
F1 | 0.0584 (18) | 0.0460 (16) | 0.0511 (17) | −0.0165 (14) | 0.0329 (15) | 0.0000 (13) |
F2 | 0.089 (2) | 0.0400 (16) | 0.0407 (17) | −0.0092 (15) | 0.0232 (16) | −0.0141 (13) |
F3 | 0.051 (2) | 0.096 (3) | 0.078 (2) | 0.0250 (18) | −0.0195 (17) | 0.013 (2) |
F4 | 0.088 (2) | 0.0541 (18) | 0.0510 (18) | −0.0172 (17) | 0.0385 (17) | 0.0112 (15) |
F5 | 0.086 (2) | 0.0315 (15) | 0.0573 (19) | −0.0009 (15) | 0.0303 (17) | −0.0134 (13) |
F6 | 0.0343 (16) | 0.067 (2) | 0.066 (2) | 0.0066 (14) | −0.0047 (14) | 0.0115 (16) |
C1 | 0.031 (2) | 0.037 (3) | 0.025 (2) | 0.006 (2) | −0.0024 (19) | 0.0038 (19) |
C2 | 0.035 (2) | 0.033 (2) | 0.030 (2) | 0.012 (2) | 0.004 (2) | 0.004 (2) |
C3 | 0.023 (2) | 0.034 (2) | 0.030 (2) | −0.0027 (19) | 0.0072 (19) | −0.0004 (19) |
C4 | 0.024 (2) | 0.032 (2) | 0.024 (2) | 0.0006 (18) | 0.0051 (18) | 0.0019 (17) |
C5 | 0.023 (2) | 0.041 (2) | 0.032 (2) | −0.005 (2) | 0.0067 (18) | −0.005 (2) |
C6 | 0.038 (3) | 0.043 (3) | 0.026 (2) | −0.005 (2) | 0.014 (2) | −0.006 (2) |
C7 | 0.047 (3) | 0.035 (3) | 0.061 (4) | −0.005 (2) | 0.020 (3) | 0.009 (2) |
C8 | 0.041 (3) | 0.048 (3) | 0.086 (4) | −0.026 (3) | 0.029 (3) | −0.036 (3) |
C9 | 0.029 (5) | 0.037 (5) | 0.024 (5) | −0.012 (4) | 0.007 (4) | 0.003 (4) |
C9' | 0.038 (5) | 0.037 (5) | 0.030 (5) | 0.000 (5) | 0.001 (4) | 0.000 (5) |
N1 | 0.038 (2) | 0.0334 (19) | 0.0252 (19) | −0.0037 (18) | 0.0061 (16) | 0.0030 (16) |
N2 | 0.0225 (18) | 0.0313 (19) | 0.0237 (18) | −0.0041 (15) | 0.0014 (15) | −0.0010 (15) |
N3 | 0.0265 (18) | 0.0226 (17) | 0.0191 (17) | −0.0001 (15) | 0.0031 (14) | −0.0004 (14) |
N4 | 0.037 (2) | 0.033 (2) | 0.0221 (19) | −0.0009 (17) | 0.0039 (16) | −0.0029 (15) |
N5 | 0.033 (2) | 0.035 (2) | 0.035 (2) | 0.0049 (18) | 0.0080 (17) | 0.0095 (17) |
N6 | 0.029 (2) | 0.079 (3) | 0.023 (2) | −0.017 (2) | 0.0078 (17) | −0.015 (2) |
Ge1—F6 | 1.754 (3) | C6—N4 | 1.468 (5) |
Ge1—F3 | 1.758 (3) | C6—H6A | 0.9700 |
Ge1—F5 | 1.768 (2) | C6—H6B | 0.9700 |
Ge1—F2 | 1.780 (2) | C7—N5 | 1.471 (5) |
Ge1—F4 | 1.786 (2) | C7—C8 | 1.500 (7) |
Ge1—F1 | 1.788 (2) | C7—H7A | 0.9700 |
Cd1—N5 | 2.313 (3) | C7—H7B | 0.9700 |
Cd1—N4 | 2.363 (3) | C8—N6 | 1.451 (7) |
Cd1—N1i | 2.372 (3) | C8—H8A | 0.9700 |
Cd1—N3 | 2.406 (3) | C8—H8B | 0.9700 |
Cd1—N6 | 2.443 (4) | C9—C9'ii | 1.474 (10) |
Cd1—N2i | 2.444 (3) | C9—N6 | 1.566 (9) |
C1—N1 | 1.465 (5) | C9—H9A | 0.9700 |
C1—C2 | 1.513 (6) | C9—H9B | 0.9700 |
C1—H1A | 0.9700 | C9'—C9ii | 1.474 (10) |
C1—H1B | 0.9700 | C9'—N6 | 1.487 (9) |
C2—N2 | 1.466 (5) | C9'—H9'1 | 0.9700 |
C2—H2A | 0.9700 | C9'—H9'2 | 0.9700 |
C2—H2B | 0.9700 | N1—Cd1i | 2.372 (3) |
C3—N2 | 1.485 (5) | N1—H1C | 0.9000 |
C3—C4 | 1.526 (5) | N1—H1D | 0.9000 |
C3—H3A | 0.9700 | N2—Cd1i | 2.444 (3) |
C3—H3B | 0.9700 | N2—H2C | 0.9100 |
C4—N3 | 1.471 (5) | N3—H3C | 0.9100 |
C4—H4A | 0.9700 | N4—H4C | 0.9000 |
C4—H4B | 0.9700 | N4—H4D | 0.9000 |
C5—N3 | 1.469 (5) | N5—H5C | 0.9000 |
C5—C6 | 1.517 (6) | N5—H5D | 0.9000 |
C5—H5A | 0.9700 | N6—H6 | 0.9335 |
C5—H5B | 0.9700 | ||
F6—Ge1—F3 | 177.73 (16) | H6A—C6—H6B | 108.1 |
F6—Ge1—F5 | 91.05 (14) | N5—C7—C8 | 110.1 (4) |
F3—Ge1—F5 | 90.50 (16) | N5—C7—H7A | 109.6 |
F6—Ge1—F2 | 89.96 (14) | C8—C7—H7A | 109.6 |
F3—Ge1—F2 | 88.53 (15) | N5—C7—H7B | 109.6 |
F5—Ge1—F2 | 178.16 (13) | C8—C7—H7B | 109.6 |
F6—Ge1—F4 | 89.01 (14) | H7A—C7—H7B | 108.1 |
F3—Ge1—F4 | 89.32 (16) | N6—C8—C7 | 111.4 (4) |
F5—Ge1—F4 | 90.70 (13) | N6—C8—H8A | 109.3 |
F2—Ge1—F4 | 90.85 (13) | C7—C8—H8A | 109.3 |
F6—Ge1—F1 | 90.45 (13) | N6—C8—H8B | 109.3 |
F3—Ge1—F1 | 91.21 (15) | C7—C8—H8B | 109.3 |
F5—Ge1—F1 | 90.02 (12) | H8A—C8—H8B | 108.0 |
F2—Ge1—F1 | 88.44 (12) | C9'ii—C9—N6 | 112.5 (6) |
F4—Ge1—F1 | 179.11 (14) | C9'ii—C9—H9A | 109.1 |
N5—Cd1—N4 | 100.20 (12) | N6—C9—H9A | 109.1 |
N5—Cd1—N1i | 171.01 (12) | C9'ii—C9—H9B | 109.1 |
N4—Cd1—N1i | 87.93 (12) | N6—C9—H9B | 109.1 |
N5—Cd1—N3 | 91.29 (12) | H9A—C9—H9B | 107.8 |
N4—Cd1—N3 | 75.51 (11) | C9ii—C9'—N6 | 104.0 (6) |
N1i—Cd1—N3 | 94.47 (11) | C9ii—C9'—H9'1 | 111.0 |
N5—Cd1—N6 | 76.19 (13) | N6—C9'—H9'1 | 111.0 |
N4—Cd1—N6 | 92.37 (12) | C9ii—C9'—H9'2 | 111.0 |
N1i—Cd1—N6 | 99.84 (13) | N6—C9'—H9'2 | 111.0 |
N3—Cd1—N6 | 160.93 (13) | H9'1—C9'—H9'2 | 109.0 |
N5—Cd1—N2i | 97.66 (11) | C1—N1—Cd1i | 108.8 (2) |
N4—Cd1—N2i | 161.89 (11) | C1—N1—H1C | 109.9 |
N1i—Cd1—N2i | 74.05 (11) | Cd1i—N1—H1C | 109.9 |
N3—Cd1—N2i | 107.14 (10) | C1—N1—H1D | 109.9 |
N6—Cd1—N2i | 88.99 (12) | Cd1i—N1—H1D | 109.9 |
N1—C1—C2 | 110.2 (3) | H1C—N1—H1D | 108.3 |
N1—C1—H1A | 109.6 | C2—N2—C3 | 112.3 (3) |
C2—C1—H1A | 109.6 | C2—N2—Cd1i | 108.0 (2) |
N1—C1—H1B | 109.6 | C3—N2—Cd1i | 122.3 (2) |
C2—C1—H1B | 109.6 | C2—N2—H2C | 104.1 |
H1A—C1—H1B | 108.1 | C3—N2—H2C | 104.1 |
N2—C2—C1 | 110.5 (3) | Cd1i—N2—H2C | 104.1 |
N2—C2—H2A | 109.5 | C5—N3—C4 | 110.8 (3) |
C1—C2—H2A | 109.5 | C5—N3—Cd1 | 108.2 (2) |
N2—C2—H2B | 109.5 | C4—N3—Cd1 | 116.0 (2) |
C1—C2—H2B | 109.5 | C5—N3—H3C | 107.1 |
H2A—C2—H2B | 108.1 | C4—N3—H3C | 107.1 |
N2—C3—C4 | 111.7 (3) | Cd1—N3—H3C | 107.1 |
N2—C3—H3A | 109.3 | C6—N4—Cd1 | 106.8 (2) |
C4—C3—H3A | 109.3 | C6—N4—H4C | 110.4 |
N2—C3—H3B | 109.3 | Cd1—N4—H4C | 110.4 |
C4—C3—H3B | 109.3 | C6—N4—H4D | 110.4 |
H3A—C3—H3B | 107.9 | Cd1—N4—H4D | 110.4 |
N3—C4—C3 | 114.3 (3) | H4C—N4—H4D | 108.6 |
N3—C4—H4A | 108.7 | C7—N5—Cd1 | 109.0 (3) |
C3—C4—H4A | 108.7 | C7—N5—H5C | 109.9 |
N3—C4—H4B | 108.7 | Cd1—N5—H5C | 109.9 |
C3—C4—H4B | 108.7 | C7—N5—H5D | 109.9 |
H4A—C4—H4B | 107.6 | Cd1—N5—H5D | 109.9 |
N3—C5—C6 | 112.4 (3) | H5C—N5—H5D | 108.3 |
N3—C5—H5A | 109.1 | C8—N6—C9' | 95.0 (5) |
C6—C5—H5A | 109.1 | C8—N6—C9 | 128.2 (5) |
N3—C5—H5B | 109.1 | C8—N6—Cd1 | 102.2 (3) |
C6—C5—H5B | 109.1 | C9'—N6—Cd1 | 124.4 (4) |
H5A—C5—H5B | 107.9 | C9—N6—Cd1 | 106.9 (4) |
N4—C6—C5 | 110.3 (3) | C8—N6—H6 | 100.3 |
N4—C6—H6A | 109.6 | C9'—N6—H6 | 119.8 |
C5—C6—H6A | 109.6 | C9—N6—H6 | 109.5 |
N4—C6—H6B | 109.6 | Cd1—N6—H6 | 108.5 |
C5—C6—H6B | 109.6 |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1D···F4iii | 0.90 | 2.18 | 3.083 (4) | 176 |
N2—H2C···F6iv | 0.91 | 2.25 | 3.076 (4) | 150 |
N3—H3C···F1i | 0.91 | 2.17 | 3.026 (4) | 155 |
N4—H4C···F2v | 0.90 | 2.26 | 3.130 (4) | 162 |
N5—H5C···F1 | 0.90 | 2.11 | 2.998 (4) | 170 |
N5—H5D···F5vi | 0.90 | 2.14 | 3.013 (4) | 165 |
N6—H6···F6vii | 0.93 | 2.23 | 3.134 (5) | 164 |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x−1/2, y−1/2, z; (v) x, −y+2, z+1/2; (vi) −x+1/2, −y+5/2, −z+1; (vii) −x+1, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cd2(C6H18N4)3][GeF6] |
Mr | 1036.71 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 295 |
a, b, c (Å) | 16.5034 (3), 9.1072 (3), 22.1920 (4) |
β (°) | 100.354 (5) |
V (Å3) | 3281.14 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.20 |
Crystal size (mm) | 0.10 × 0.06 × 0.05 |
Data collection | |
Diffractometer | Bruker APEX area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.741, 0.857 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11087, 3385, 2642 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.076, 1.00 |
No. of reflections | 3385 |
No. of parameters | 218 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.69, −0.55 |
Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001), SHELXTL (Sheldrick, 2008).
Cd1—N5 | 2.313 (3) | Cd1—N3 | 2.406 (3) |
Cd1—N4 | 2.363 (3) | Cd1—N6 | 2.443 (4) |
Cd1—N1i | 2.372 (3) | Cd1—N2i | 2.444 (3) |
Symmetry code: (i) −x+1/2, −y+3/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1D···F4ii | 0.90 | 2.18 | 3.083 (4) | 176.4 |
N2—H2C···F6iii | 0.91 | 2.25 | 3.076 (4) | 150.0 |
N3—H3C···F1i | 0.91 | 2.17 | 3.026 (4) | 155.4 |
N4—H4C···F2iv | 0.90 | 2.26 | 3.130 (4) | 161.5 |
N5—H5C···F1 | 0.90 | 2.11 | 2.998 (4) | 169.7 |
N5—H5D···F5v | 0.90 | 2.14 | 3.013 (4) | 164.7 |
N6—H6···F6vi | 0.93 | 2.23 | 3.134 (5) | 164.3 |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x−1/2, y−1/2, z; (iv) x, −y+2, z+1/2; (v) −x+1/2, −y+5/2, −z+1; (vi) −x+1, −y+2, −z+1. |
Acknowledgements
This work was supported by the National Natural Science Foundation of China (No. 20901043), the Young Scientist Foundation of Shandong Province (No. BS2009CL041) and the Qingdao University Research Fund (No. 063–06300522).
References
Bartoszak-Adamska, E., Bregier-Jarzekowska, R. & Lomozik, L. (2002). Polyhedron, 21, 739–744. Google Scholar
Bose, D., Rahaman, S. H., Ghosh, R., Mostafa, G., Ribas, J., Hung, C. H. & Ghosh, B. K. (2006). Polyhedron, 25, 645–653. Google Scholar
Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brauer, D. J., Burger, H. & Eujen, R. (1980). Angew. Chem. Int. Ed. Engl. 19, 836–837. CSD CrossRef Web of Science Google Scholar
Brauer, D. J., Wilke, J. & Eujen, R. (1986). J. Organomet. Chem. 316, 261–269. CSD CrossRef CAS Web of Science Google Scholar
Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268–3292. Web of Science CrossRef CAS Google Scholar
Hoard, J. L. & Vincent, W. B. (1939). J. Am. Chem. Soc. 61, 2849–2852. CrossRef CAS Google Scholar
Liang, J., Li, Y. F., Yu, J. H., Chen, P., Fang, Q. R., Sun, F. X. & Xu, R. R. (2006). Angew. Chem. Int. Ed. 45, 2546–2548. Web of Science CSD CrossRef CAS Google Scholar
Lukevics, E., Belyakov, S., Arsenyan, P. & Popelis, J. (1997). J. Organomet. Chem. 549, 163–165. Web of Science CSD CrossRef CAS Google Scholar
Ma, G. B., Fischer, A., Nieuwendaal, R., Ramaswamy, K. & Hayes, S. E. (2005). Inorg. Chim. Acta, 358, 3165–3173. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Su, J., Wang, Y. X., Wang, Z. M. & Lin, J. H. (2009). J. Am. Chem. Soc. 125, 1138–1139. Google Scholar
Wang, G.-M., Sun, Y.-Q. & Yang, G.-Y. (2004). Acta Cryst. E60, m705–m707. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, H.-X., Yang, G.-Y. & Sun, Y.-Q. (2003). Acta Cryst. E59, m185–m187. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zheng, N. F., Bu, X. H. & Feng, P. Y. (2003). J. Am. Chem. Soc. 131, 6080–6081. Google Scholar
Zou, X. D., Conradsson, T., Klingsteddt, M., Dadachov, M. S. & O'Keeffe, M. (2005). Nature (London), 437, 716–719. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Much interest has been focused on the rational design and construction of microporous materials with intriguing topological architectures and promising applications (Cheetham et al., 1999; Zheng et al., 2003; Zou et al., 2005; Liang et al., 2006; Su et al., 2009). Compared to the rapid development of silicate and phosphate open-framework structures, the progress in the field of fluorides remains moderate. With the exception of some fluoridosilicates, fluoridoaluminates and fluoridotitanates, only a few fluoridogermanates (Brauer et al., 1980, 1986; Lukevics et al., 1997; Wang et al., 2004; Zhang et al., 2003) have been reported. In this structure family, the central Ge(IV) ions are octahedrally coordinated by fluorine atoms. In addition, various organic amines or metal-complex cations have frequently been employed in the synthesis of such fluorides. The main purpose of our work is to explore the construction of novel microporous germanates with CdII complexes as counter anions. Unexpectedly, the title compound, (I), was obtained, which represents a new fluoridogermanate with one-dimensional CdII complex cations.
As shown in Fig. 1, the asymmetric unit of (I) contains one unique germanium(IV) atom, one cadmium(II) atom, six fluoride anions, as well as one and a half TETA molecules (TETE = triethylenetetramine, C6H18N4), the latter being completed by a twofold rotation axis. The cadmium atom is six-coordinated in a distorted octahedral geometry by six amine N atoms from three TETA ligands. The Cd—N bond lengths span the range 2.313 (3)–2.444 (3) Å, which are comparable with those observed in other related compounds, e.g. (Bartoszak-Adamska et al., 2002; Ma et al., 2005; Bose et al., 2006). The Ge—F bond lengths in the fluoridogermanate anion are in the range 1.754 (3)–1.788 (2) Å (average 1.772 Å), similar to the distances observed in the inorganic complex K2GeF6 (Ge—F 1.77 Å) (Hoard & Vincent, 1939), or in other fluoridogermanates, such as [(CH3)4N][(CF3)3GeF2] (Brauer et al., 1986), [Ni(C2H8N2)(C6H18N4)][GeF6] (Wang et al., 2004) and [Ni(dien)2][GeF6] (Zhang et al., 2003).
The crystal structure of (I) features an undulated cationic chain [Cd2(TETA)3]4+, with discrete [GeF6]2- groups serving as the counter anions and occupying the inter-chain spaces. As shown in Fig. 2, two neighboring cadmium atoms are linked by two bridging TETA ligands to form a dimeric Cd2 fragment, with Cd···Cd contacts of 6.311 (2) Å. Such dimeric Cd2 motifs, which can be considered as secondary building units (SBUs), are interconnected by the third TETA linker to generate one-dimensional corrugated chains parallel the [101] directions (Fig. 3). Adjacent uniform chains are further interlinked and packed together through the [GeF6]2- groups into a three-dimensional supramolecular framework (Fig. 4). There are extensive N—H···F hydrogen-bonding interactions between the [GeF6]2- ions and amine groups within each of the chains (Table 2).