metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1278-m1279

catena-Poly[[cadmium-bis­­(μ-tri­ethyl­ene­tetra­mine-κ4N,N′:N′′,N′′′)-cadmium-(μ-tri­ethyl­ene­tetra­mine-κ4N,N′:N′′,N′′′)] hexa­fluoridogermanate]

aTeachers College, College of Chemistry, Chemical Engineering and Environment of Qingdao University, Shandong 266071, People's Republic of China, and bCollege of Chemistry, Chemical Engineering and Environment of Qingdao University, Shandong 266071, People's Republic of China
*Correspondence e-mail: gmwang_pub@163.com

(Received 5 August 2011; accepted 17 August 2011; online 27 August 2011)

The title fluoridogermanate, {[Cd2(C6H18N4)3][GeF6]}n, was synthesized hydro­thermally. The crystal structure comprises undulated cationic [Cd2(TETA)3]4+ chains (TETA is triethyl­ene­tetra­mine) propagating parallel to [101]. The central CdII atom is six-coordinated in a CdN6 set by three TETA ligands. The isolated [GeF6]2− units, serving as counter-anions, occupy the inter-chain spaces and simultaneously link adjacent chains into a three-dimensional network through extensive N—H⋯F hydrogen-bonding inter­actions. One of the ethyl­ene bridges of one TETA ligand is disordered around a twofold rotation axis.

Related literature

For background to the structures and applications of microporous materials, see: Cheetham et al. (1999[Cheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268-3292.]); Liang et al. (2006[Liang, J., Li, Y. F., Yu, J. H., Chen, P., Fang, Q. R., Sun, F. X. & Xu, R. R. (2006). Angew. Chem. Int. Ed. 45, 2546-2548.]); Su et al. (2009[Su, J., Wang, Y. X., Wang, Z. M. & Lin, J. H. (2009). J. Am. Chem. Soc. 125, 1138-1139.]); Zheng et al. (2003[Zheng, N. F., Bu, X. H. & Feng, P. Y. (2003). J. Am. Chem. Soc. 131, 6080-6081.]); Zou et al. (2005[Zou, X. D., Conradsson, T., Klingsteddt, M., Dadachov, M. S. & O'Keeffe, M. (2005). Nature (London), 437, 716-719.]). For previously reported structures containing fluoridogermanate anions, see: Hoard & Vincent (1939[Hoard, J. L. & Vincent, W. B. (1939). J. Am. Chem. Soc. 61, 2849-2852.]); Brauer et al. (1980[Brauer, D. J., Burger, H. & Eujen, R. (1980). Angew. Chem. Int. Ed. Engl. 19, 836-837.], 1986[Brauer, D. J., Wilke, J. & Eujen, R. (1986). J. Organomet. Chem. 316, 261-269.]); Lukevics et al. (1997[Lukevics, E., Belyakov, S., Arsenyan, P. & Popelis, J. (1997). J. Organomet. Chem. 549, 163-165.]); Zhang et al. (2003[Zhang, H.-X., Yang, G.-Y. & Sun, Y.-Q. (2003). Acta Cryst. E59, m185-m187.]); Wang et al. (2004[Wang, G.-M., Sun, Y.-Q. & Yang, G.-Y. (2004). Acta Cryst. E60, m705-m707.]). For polyamine CdII coordination complexes, see: Bartoszak-Adamska et al. (2002[Bartoszak-Adamska, E., Bregier-Jarzekowska, R. & Lomozik, L. (2002). Polyhedron, 21, 739-744.]); Ma et al. (2005[Ma, G. B., Fischer, A., Nieuwendaal, R., Ramaswamy, K. & Hayes, S. E. (2005). Inorg. Chim. Acta, 358, 3165-3173.]); Bose et al. (2006[Bose, D., Rahaman, S. H., Ghosh, R., Mostafa, G., Ribas, J., Hung, C. H. & Ghosh, B. K. (2006). Polyhedron, 25, 645-653.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(C6H18N4)3][GeF6]

  • Mr = 1036.71

  • Monoclinic, C 2/c

  • a = 16.5034 (3) Å

  • b = 9.1072 (3) Å

  • c = 22.1920 (4) Å

  • β = 100.354 (5)°

  • V = 3281.14 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.20 mm−1

  • T = 295 K

  • 0.10 × 0.06 × 0.05 mm

Data collection
  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.741, Tmax = 0.857

  • 11087 measured reflections

  • 3385 independent reflections

  • 2642 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.076

  • S = 1.00

  • 3385 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N5 2.313 (3)
Cd1—N4 2.363 (3)
Cd1—N1i 2.372 (3)
Cd1—N3 2.406 (3)
Cd1—N6 2.443 (4)
Cd1—N2i 2.444 (3)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯F4ii 0.90 2.18 3.083 (4) 176
N2—H2C⋯F6iii 0.91 2.25 3.076 (4) 150
N3—H3C⋯F1i 0.91 2.17 3.026 (4) 155
N4—H4C⋯F2iv 0.90 2.26 3.130 (4) 162
N5—H5C⋯F1 0.90 2.11 2.998 (4) 170
N5—H5D⋯F5v 0.90 2.14 3.013 (4) 165
N6—H6⋯F6vi 0.93 2.23 3.134 (5) 164
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [x, -y+2, z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+1]; (vi) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Much interest has been focused on the rational design and construction of microporous materials with intriguing topological architectures and promising applications (Cheetham et al., 1999; Zheng et al., 2003; Zou et al., 2005; Liang et al., 2006; Su et al., 2009). Compared to the rapid development of silicate and phosphate open-framework structures, the progress in the field of fluorides remains moderate. With the exception of some fluoridosilicates, fluoridoaluminates and fluoridotitanates, only a few fluoridogermanates (Brauer et al., 1980, 1986; Lukevics et al., 1997; Wang et al., 2004; Zhang et al., 2003) have been reported. In this structure family, the central Ge(IV) ions are octahedrally coordinated by fluorine atoms. In addition, various organic amines or metal-complex cations have frequently been employed in the synthesis of such fluorides. The main purpose of our work is to explore the construction of novel microporous germanates with CdII complexes as counter anions. Unexpectedly, the title compound, (I), was obtained, which represents a new fluoridogermanate with one-dimensional CdII complex cations.

As shown in Fig. 1, the asymmetric unit of (I) contains one unique germanium(IV) atom, one cadmium(II) atom, six fluoride anions, as well as one and a half TETA molecules (TETE = triethylenetetramine, C6H18N4), the latter being completed by a twofold rotation axis. The cadmium atom is six-coordinated in a distorted octahedral geometry by six amine N atoms from three TETA ligands. The Cd—N bond lengths span the range 2.313 (3)–2.444 (3) Å, which are comparable with those observed in other related compounds, e.g. (Bartoszak-Adamska et al., 2002; Ma et al., 2005; Bose et al., 2006). The Ge—F bond lengths in the fluoridogermanate anion are in the range 1.754 (3)–1.788 (2) Å (average 1.772 Å), similar to the distances observed in the inorganic complex K2GeF6 (Ge—F 1.77 Å) (Hoard & Vincent, 1939), or in other fluoridogermanates, such as [(CH3)4N][(CF3)3GeF2] (Brauer et al., 1986), [Ni(C2H8N2)(C6H18N4)][GeF6] (Wang et al., 2004) and [Ni(dien)2][GeF6] (Zhang et al., 2003).

The crystal structure of (I) features an undulated cationic chain [Cd2(TETA)3]4+, with discrete [GeF6]2- groups serving as the counter anions and occupying the inter-chain spaces. As shown in Fig. 2, two neighboring cadmium atoms are linked by two bridging TETA ligands to form a dimeric Cd2 fragment, with Cd···Cd contacts of 6.311 (2) Å. Such dimeric Cd2 motifs, which can be considered as secondary building units (SBUs), are interconnected by the third TETA linker to generate one-dimensional corrugated chains parallel the [101] directions (Fig. 3). Adjacent uniform chains are further interlinked and packed together through the [GeF6]2- groups into a three-dimensional supramolecular framework (Fig. 4). There are extensive N—H···F hydrogen-bonding interactions between the [GeF6]2- ions and amine groups within each of the chains (Table 2).

Related literature top

For background to the structures and applications of microporous materials, see: Cheetham et al. (1999); Liang et al. (2006); Su et al. (2009); Zheng et al. (2003); Zou et al. (2005). For previously reported structures containing fluoridogermanate anions, see: Hoard & Vincent (1939); Brauer et al. (1980, 1986); Lukevics et al. (1997); Zhang et al. (2003); Wang et al. (2004). For polyamine CdII coordination complexes, see: Bartoszak-Adamska et al. (2002); Ma et al. (2005); Bose et al. (2006).

Experimental top

The title compound was synthesized under hydrothermal conditions. Typically, a mixture of GeO2 (0.104 g,1 mmol) CdCO3 (0.174 g, 1 mmol), TETA (3.00 ml), pyridine (2.50 ml), hydrofluoric acid (40%, 0.20 ml), and H2O (1.00 ml), in a molar ratio 1:1:20:31:10:56, was sealed in a 25 ml Teflon-lined steel autoclave and heated under autogenous pressure at 443 K for 7 days. The block-shaped crystals obtained were recovered by filtration, washed with distilled water and dried in air.

Refinement top

Atom C9 of one TETA is equally disordered about a twofold rotation axis. The H atom bound to atom N6 was located in a difference Fourier map and refined as riding in its as-found position, with N—H = 0.93 Å and Uiso(H) = 1.2Ueq(N). The remaining H atoms were all positioned geometrically and allowd to ride on their parent atoms with C—H = 0.97 Å, N—H = 0.90 (NH2) or 0.91 (NH) Å, and with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1/2 - x, 1.5 - y, 1 - z;, (ii) 1 - x, y, 1.5 - z.]
[Figure 2] Fig. 2. Dimeric Cd2 fragment found in (I); H atoms omitted for clarity.
[Figure 3] Fig. 3. One-dimensional infinite cationic [Cd2(TETA)3]n chains in (I).
[Figure 4] Fig. 4. The crystal packing of (I), projected along the b axis.
catena-Poly[[cadmium-bis(µ-triethylenetetramine- κ4N,N':N'',N''')-cadmium- (µ-triethylenetetramine-κ4N,N':N'',N''')] hexafluoridogermanate] top
Crystal data top
[Cd2(C6H18N4)3][GeF6]F(000) = 2056
Mr = 1036.71Dx = 2.099 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3385 reflections
a = 16.5034 (3) Åθ = 1.9–26.5°
b = 9.1072 (3) ŵ = 3.20 mm1
c = 22.1920 (4) ÅT = 295 K
β = 100.354 (5)°Block, colorless
V = 3281.14 (14) Å30.10 × 0.06 × 0.05 mm
Z = 4
Data collection top
Bruker APEX area-detector
diffractometer
3385 independent reflections
Radiation source: fine-focus sealed tube2642 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 26.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2020
Tmin = 0.741, Tmax = 0.857k = 1111
11087 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0321P)2]
where P = (Fo2 + 2Fc2)/3
3385 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Cd2(C6H18N4)3][GeF6]V = 3281.14 (14) Å3
Mr = 1036.71Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.5034 (3) ŵ = 3.20 mm1
b = 9.1072 (3) ÅT = 295 K
c = 22.1920 (4) Å0.10 × 0.06 × 0.05 mm
β = 100.354 (5)°
Data collection top
Bruker APEX area-detector
diffractometer
3385 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2642 reflections with I > 2σ(I)
Tmin = 0.741, Tmax = 0.857Rint = 0.045
11087 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.00Δρmax = 0.69 e Å3
3385 reflectionsΔρmin = 0.55 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ge10.33579 (3)1.10395 (5)0.374972 (19)0.02492 (12)
Cd10.329148 (17)0.90058 (3)0.624812 (13)0.02438 (10)
F10.28347 (16)0.9992 (3)0.42434 (12)0.0490 (7)
F20.33638 (19)0.9446 (3)0.32858 (12)0.0551 (8)
F30.24171 (19)1.1545 (4)0.32908 (16)0.0789 (10)
F40.38899 (19)1.2061 (3)0.32551 (13)0.0611 (8)
F50.33215 (19)1.2603 (3)0.42160 (13)0.0561 (8)
F60.43124 (16)1.0523 (3)0.41810 (14)0.0574 (8)
C10.0710 (3)0.8812 (5)0.32142 (18)0.0321 (10)
H1A0.02260.82390.30480.039*
H1B0.06620.97620.30130.039*
C20.0756 (3)0.9018 (4)0.38958 (19)0.0329 (10)
H2A0.12420.95860.40620.039*
H2B0.02760.95570.39690.039*
C30.0854 (2)0.7744 (4)0.48790 (18)0.0286 (10)
H3A0.08600.67760.50620.034*
H3B0.03730.82630.49640.034*
C40.1630 (2)0.8575 (4)0.51675 (17)0.0264 (9)
H4A0.20720.83120.49530.032*
H4B0.15300.96200.51100.032*
C50.1347 (2)0.8992 (5)0.61866 (19)0.0319 (10)
H5A0.08430.84240.61470.038*
H5B0.12050.99640.60230.038*
C60.1729 (3)0.9119 (5)0.68592 (19)0.0344 (10)
H6A0.13420.95850.70800.041*
H6B0.18510.81470.70300.041*
C70.3999 (3)1.1777 (5)0.5701 (2)0.0465 (13)
H7A0.39151.27420.55140.056*
H7B0.44291.12860.55320.056*
C80.4258 (3)1.1934 (6)0.6381 (3)0.0561 (16)
H8A0.47261.25930.64670.067*
H8B0.38111.23640.65510.067*
C90.4699 (5)1.0170 (11)0.7371 (4)0.030 (2)0.50
H9A0.42101.02910.75520.036*0.50
H9B0.48710.91530.74230.036*0.50
C9'0.4641 (6)1.1120 (10)0.7305 (4)0.036 (2)0.50
H9'10.48201.21350.73090.043*0.50
H9'20.41521.10600.74900.043*0.50
N10.1450 (2)0.8060 (4)0.30945 (15)0.0321 (8)
H1C0.18840.86750.31630.038*
H1D0.13760.77680.27010.038*
N20.0791 (2)0.7592 (3)0.42059 (14)0.0262 (8)
H2C0.02820.72010.40780.031*
N30.19025 (18)0.8288 (3)0.58250 (14)0.0228 (7)
H3C0.18670.73020.58810.027*
N40.2490 (2)0.9988 (4)0.69334 (15)0.0309 (8)
H4C0.27650.99270.73210.037*
H4D0.23731.09380.68460.037*
N50.3231 (2)1.0924 (4)0.55588 (16)0.0339 (9)
H5C0.31681.05710.51750.041*
H5D0.27981.15050.55850.041*
N60.4478 (2)1.0527 (5)0.66701 (16)0.0434 (11)
H60.49181.02650.64800.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0254 (2)0.0250 (2)0.0255 (2)0.00042 (19)0.00756 (19)0.00145 (19)
Cd10.02349 (17)0.02780 (17)0.02159 (16)0.00060 (14)0.00335 (12)0.00203 (13)
F10.0584 (18)0.0460 (16)0.0511 (17)0.0165 (14)0.0329 (15)0.0000 (13)
F20.089 (2)0.0400 (16)0.0407 (17)0.0092 (15)0.0232 (16)0.0141 (13)
F30.051 (2)0.096 (3)0.078 (2)0.0250 (18)0.0195 (17)0.013 (2)
F40.088 (2)0.0541 (18)0.0510 (18)0.0172 (17)0.0385 (17)0.0112 (15)
F50.086 (2)0.0315 (15)0.0573 (19)0.0009 (15)0.0303 (17)0.0134 (13)
F60.0343 (16)0.067 (2)0.066 (2)0.0066 (14)0.0047 (14)0.0115 (16)
C10.031 (2)0.037 (3)0.025 (2)0.006 (2)0.0024 (19)0.0038 (19)
C20.035 (2)0.033 (2)0.030 (2)0.012 (2)0.004 (2)0.004 (2)
C30.023 (2)0.034 (2)0.030 (2)0.0027 (19)0.0072 (19)0.0004 (19)
C40.024 (2)0.032 (2)0.024 (2)0.0006 (18)0.0051 (18)0.0019 (17)
C50.023 (2)0.041 (2)0.032 (2)0.005 (2)0.0067 (18)0.005 (2)
C60.038 (3)0.043 (3)0.026 (2)0.005 (2)0.014 (2)0.006 (2)
C70.047 (3)0.035 (3)0.061 (4)0.005 (2)0.020 (3)0.009 (2)
C80.041 (3)0.048 (3)0.086 (4)0.026 (3)0.029 (3)0.036 (3)
C90.029 (5)0.037 (5)0.024 (5)0.012 (4)0.007 (4)0.003 (4)
C9'0.038 (5)0.037 (5)0.030 (5)0.000 (5)0.001 (4)0.000 (5)
N10.038 (2)0.0334 (19)0.0252 (19)0.0037 (18)0.0061 (16)0.0030 (16)
N20.0225 (18)0.0313 (19)0.0237 (18)0.0041 (15)0.0014 (15)0.0010 (15)
N30.0265 (18)0.0226 (17)0.0191 (17)0.0001 (15)0.0031 (14)0.0004 (14)
N40.037 (2)0.033 (2)0.0221 (19)0.0009 (17)0.0039 (16)0.0029 (15)
N50.033 (2)0.035 (2)0.035 (2)0.0049 (18)0.0080 (17)0.0095 (17)
N60.029 (2)0.079 (3)0.023 (2)0.017 (2)0.0078 (17)0.015 (2)
Geometric parameters (Å, º) top
Ge1—F61.754 (3)C6—N41.468 (5)
Ge1—F31.758 (3)C6—H6A0.9700
Ge1—F51.768 (2)C6—H6B0.9700
Ge1—F21.780 (2)C7—N51.471 (5)
Ge1—F41.786 (2)C7—C81.500 (7)
Ge1—F11.788 (2)C7—H7A0.9700
Cd1—N52.313 (3)C7—H7B0.9700
Cd1—N42.363 (3)C8—N61.451 (7)
Cd1—N1i2.372 (3)C8—H8A0.9700
Cd1—N32.406 (3)C8—H8B0.9700
Cd1—N62.443 (4)C9—C9'ii1.474 (10)
Cd1—N2i2.444 (3)C9—N61.566 (9)
C1—N11.465 (5)C9—H9A0.9700
C1—C21.513 (6)C9—H9B0.9700
C1—H1A0.9700C9'—C9ii1.474 (10)
C1—H1B0.9700C9'—N61.487 (9)
C2—N21.466 (5)C9'—H9'10.9700
C2—H2A0.9700C9'—H9'20.9700
C2—H2B0.9700N1—Cd1i2.372 (3)
C3—N21.485 (5)N1—H1C0.9000
C3—C41.526 (5)N1—H1D0.9000
C3—H3A0.9700N2—Cd1i2.444 (3)
C3—H3B0.9700N2—H2C0.9100
C4—N31.471 (5)N3—H3C0.9100
C4—H4A0.9700N4—H4C0.9000
C4—H4B0.9700N4—H4D0.9000
C5—N31.469 (5)N5—H5C0.9000
C5—C61.517 (6)N5—H5D0.9000
C5—H5A0.9700N6—H60.9335
C5—H5B0.9700
F6—Ge1—F3177.73 (16)H6A—C6—H6B108.1
F6—Ge1—F591.05 (14)N5—C7—C8110.1 (4)
F3—Ge1—F590.50 (16)N5—C7—H7A109.6
F6—Ge1—F289.96 (14)C8—C7—H7A109.6
F3—Ge1—F288.53 (15)N5—C7—H7B109.6
F5—Ge1—F2178.16 (13)C8—C7—H7B109.6
F6—Ge1—F489.01 (14)H7A—C7—H7B108.1
F3—Ge1—F489.32 (16)N6—C8—C7111.4 (4)
F5—Ge1—F490.70 (13)N6—C8—H8A109.3
F2—Ge1—F490.85 (13)C7—C8—H8A109.3
F6—Ge1—F190.45 (13)N6—C8—H8B109.3
F3—Ge1—F191.21 (15)C7—C8—H8B109.3
F5—Ge1—F190.02 (12)H8A—C8—H8B108.0
F2—Ge1—F188.44 (12)C9'ii—C9—N6112.5 (6)
F4—Ge1—F1179.11 (14)C9'ii—C9—H9A109.1
N5—Cd1—N4100.20 (12)N6—C9—H9A109.1
N5—Cd1—N1i171.01 (12)C9'ii—C9—H9B109.1
N4—Cd1—N1i87.93 (12)N6—C9—H9B109.1
N5—Cd1—N391.29 (12)H9A—C9—H9B107.8
N4—Cd1—N375.51 (11)C9ii—C9'—N6104.0 (6)
N1i—Cd1—N394.47 (11)C9ii—C9'—H9'1111.0
N5—Cd1—N676.19 (13)N6—C9'—H9'1111.0
N4—Cd1—N692.37 (12)C9ii—C9'—H9'2111.0
N1i—Cd1—N699.84 (13)N6—C9'—H9'2111.0
N3—Cd1—N6160.93 (13)H9'1—C9'—H9'2109.0
N5—Cd1—N2i97.66 (11)C1—N1—Cd1i108.8 (2)
N4—Cd1—N2i161.89 (11)C1—N1—H1C109.9
N1i—Cd1—N2i74.05 (11)Cd1i—N1—H1C109.9
N3—Cd1—N2i107.14 (10)C1—N1—H1D109.9
N6—Cd1—N2i88.99 (12)Cd1i—N1—H1D109.9
N1—C1—C2110.2 (3)H1C—N1—H1D108.3
N1—C1—H1A109.6C2—N2—C3112.3 (3)
C2—C1—H1A109.6C2—N2—Cd1i108.0 (2)
N1—C1—H1B109.6C3—N2—Cd1i122.3 (2)
C2—C1—H1B109.6C2—N2—H2C104.1
H1A—C1—H1B108.1C3—N2—H2C104.1
N2—C2—C1110.5 (3)Cd1i—N2—H2C104.1
N2—C2—H2A109.5C5—N3—C4110.8 (3)
C1—C2—H2A109.5C5—N3—Cd1108.2 (2)
N2—C2—H2B109.5C4—N3—Cd1116.0 (2)
C1—C2—H2B109.5C5—N3—H3C107.1
H2A—C2—H2B108.1C4—N3—H3C107.1
N2—C3—C4111.7 (3)Cd1—N3—H3C107.1
N2—C3—H3A109.3C6—N4—Cd1106.8 (2)
C4—C3—H3A109.3C6—N4—H4C110.4
N2—C3—H3B109.3Cd1—N4—H4C110.4
C4—C3—H3B109.3C6—N4—H4D110.4
H3A—C3—H3B107.9Cd1—N4—H4D110.4
N3—C4—C3114.3 (3)H4C—N4—H4D108.6
N3—C4—H4A108.7C7—N5—Cd1109.0 (3)
C3—C4—H4A108.7C7—N5—H5C109.9
N3—C4—H4B108.7Cd1—N5—H5C109.9
C3—C4—H4B108.7C7—N5—H5D109.9
H4A—C4—H4B107.6Cd1—N5—H5D109.9
N3—C5—C6112.4 (3)H5C—N5—H5D108.3
N3—C5—H5A109.1C8—N6—C9'95.0 (5)
C6—C5—H5A109.1C8—N6—C9128.2 (5)
N3—C5—H5B109.1C8—N6—Cd1102.2 (3)
C6—C5—H5B109.1C9'—N6—Cd1124.4 (4)
H5A—C5—H5B107.9C9—N6—Cd1106.9 (4)
N4—C6—C5110.3 (3)C8—N6—H6100.3
N4—C6—H6A109.6C9'—N6—H6119.8
C5—C6—H6A109.6C9—N6—H6109.5
N4—C6—H6B109.6Cd1—N6—H6108.5
C5—C6—H6B109.6
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···F4iii0.902.183.083 (4)176
N2—H2C···F6iv0.912.253.076 (4)150
N3—H3C···F1i0.912.173.026 (4)155
N4—H4C···F2v0.902.263.130 (4)162
N5—H5C···F10.902.112.998 (4)170
N5—H5D···F5vi0.902.143.013 (4)165
N6—H6···F6vii0.932.233.134 (5)164
Symmetry codes: (i) x+1/2, y+3/2, z+1; (iii) x+1/2, y1/2, z+1/2; (iv) x1/2, y1/2, z; (v) x, y+2, z+1/2; (vi) x+1/2, y+5/2, z+1; (vii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cd2(C6H18N4)3][GeF6]
Mr1036.71
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)16.5034 (3), 9.1072 (3), 22.1920 (4)
β (°) 100.354 (5)
V3)3281.14 (14)
Z4
Radiation typeMo Kα
µ (mm1)3.20
Crystal size (mm)0.10 × 0.06 × 0.05
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.741, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
11087, 3385, 2642
Rint0.045
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.076, 1.00
No. of reflections3385
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.55

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—N52.313 (3)Cd1—N32.406 (3)
Cd1—N42.363 (3)Cd1—N62.443 (4)
Cd1—N1i2.372 (3)Cd1—N2i2.444 (3)
Symmetry code: (i) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···F4ii0.902.183.083 (4)176.4
N2—H2C···F6iii0.912.253.076 (4)150.0
N3—H3C···F1i0.912.173.026 (4)155.4
N4—H4C···F2iv0.902.263.130 (4)161.5
N5—H5C···F10.902.112.998 (4)169.7
N5—H5D···F5v0.902.143.013 (4)164.7
N6—H6···F6vi0.932.233.134 (5)164.3
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x1/2, y1/2, z; (iv) x, y+2, z+1/2; (v) x+1/2, y+5/2, z+1; (vi) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20901043), the Young Scientist Foundation of Shandong Province (No. BS2009CL041) and the Qingdao University Research Fund (No. 063–06300522).

References

First citationBartoszak-Adamska, E., Bregier-Jarzekowska, R. & Lomozik, L. (2002). Polyhedron, 21, 739–744.  Google Scholar
First citationBose, D., Rahaman, S. H., Ghosh, R., Mostafa, G., Ribas, J., Hung, C. H. & Ghosh, B. K. (2006). Polyhedron, 25, 645–653.  Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrauer, D. J., Burger, H. & Eujen, R. (1980). Angew. Chem. Int. Ed. Engl. 19, 836–837.  CSD CrossRef Web of Science Google Scholar
First citationBrauer, D. J., Wilke, J. & Eujen, R. (1986). J. Organomet. Chem. 316, 261–269.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268–3292.  Web of Science CrossRef CAS Google Scholar
First citationHoard, J. L. & Vincent, W. B. (1939). J. Am. Chem. Soc. 61, 2849–2852.  CrossRef CAS Google Scholar
First citationLiang, J., Li, Y. F., Yu, J. H., Chen, P., Fang, Q. R., Sun, F. X. & Xu, R. R. (2006). Angew. Chem. Int. Ed. 45, 2546–2548.  Web of Science CSD CrossRef CAS Google Scholar
First citationLukevics, E., Belyakov, S., Arsenyan, P. & Popelis, J. (1997). J. Organomet. Chem. 549, 163–165.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, G. B., Fischer, A., Nieuwendaal, R., Ramaswamy, K. & Hayes, S. E. (2005). Inorg. Chim. Acta, 358, 3165–3173.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J., Wang, Y. X., Wang, Z. M. & Lin, J. H. (2009). J. Am. Chem. Soc. 125, 1138–1139.  Google Scholar
First citationWang, G.-M., Sun, Y.-Q. & Yang, G.-Y. (2004). Acta Cryst. E60, m705–m707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, H.-X., Yang, G.-Y. & Sun, Y.-Q. (2003). Acta Cryst. E59, m185–m187.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, N. F., Bu, X. H. & Feng, P. Y. (2003). J. Am. Chem. Soc. 131, 6080–6081.  Google Scholar
First citationZou, X. D., Conradsson, T., Klingsteddt, M., Dadachov, M. S. & O'Keeffe, M. (2005). Nature (London), 437, 716–719.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1278-m1279
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds