organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2S)-3-(1H-Indol-3-yl)-2-(4-methyl­benzene­sulfonamido)­propionic acid monohydrate

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, and bDepartment of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, Scotland
*Correspondence e-mail: mnachemist@hotmail.com, iukhan.gcu@gmail.com

(Received 4 August 2011; accepted 8 August 2011; online 11 August 2011)

In the title compound, C18H18N2O4S·H2O, the indole and toluene ring systems are oriented at a dihedral angle of 84.51 (9)°. In the crystal, the components are linked by N—H⋯O, O—H⋯O, C—H⋯O and N—H⋯π inter­actions. These include a short link from the α-C atom of the amino acid fragment.

Related literature

For details of the synthesis, see: Deng & Mani (2006[Deng, X. & Mani, N. S. (2006). Green Chem. 8, 835-838.]). For background to sulfonamides in biology, see: Parka et al. (2009[Parka, K., Gopalsamya, A., Aplascaa, A., Ellingboea, J. W., Xub, W., Zhangc, Y. & Levina, J. I. (2009). Bioorg. Med. Chem. 17, 3857-3865.]); Wang et al. (2007[Wang, J. G., Xiao, Y. J., Li, Y. H., Ma, Y. & Li, Z. M. (2007). Bioorg. Med. Chem. 15, 374-380.]). For related structures, see: Li et al. (2008[Li, W. M., Wang, J. G., Gau, W. C., Li, Z. M. & Song, H. B. (2008). Chin. J. Struct. Chem. 27, 691-696.]); Khan et al. (2011[Khan, M. H., Khan, I. U., Arshad, M. N., Rafique, H. M. & Harrison, W. T. A. (2011). Crystals, 1, 69-77.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18N2O4S·H2O

  • Mr = 376.42

  • Monoclinic, P 21

  • a = 8.4531 (10) Å

  • b = 5.2521 (5) Å

  • c = 20.867 (2) Å

  • β = 98.056 (4)°

  • V = 917.30 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.28 × 0.11 × 0.09 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.944, Tmax = 0.982

  • 10939 measured reflections

  • 4475 independent reflections

  • 2135 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.107

  • S = 0.94

  • 4475 reflections

  • 243 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1951 Friedel pairs

  • Flack parameter: −0.05 (10)

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.88 (4) 2.37 (4) 3.208 (4) 160 (3)
N2—H2NCg3ii 0.79 (4) 2.85 (4) 3.480 (4) 139 (4)
O3—H3O⋯O5iii 0.82 1.81 2.629 (4) 177
C7—H7⋯O4iv 0.98 2.37 3.205 (4) 143
C18—H18C⋯O1v 0.96 2.59 3.456 (5) 151
O5—H1W⋯O2i 0.89 2.05 2.935 (4) 174
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iii) x-1, y, z; (iv) x, y-1, z; (v) [-x+1, y-{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997)[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.] and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Tryptophan-based sulfonamides have been reported as non-hydroxamate TNF-α converting enzyme (TACE) inhibitors (Parka et al., 2009), and in another study (Wang et al., 2007) some are reported as acetohydroxy acid synthase (AHAS) inhibitors. The previously reported crystal structures of two active compounds, namely (S)-methyl 2-(4-R-phenylsulfonamido)-3- (1H-indol-3-yl)propanoate [R = H and Cl] (Li et al., 2008) are closely related to the title compound.

In the crystal structure, a water molecule crystallized as a solvent of crystallization along with the sulfonamide (Fig. 1). The indole system (C10—C17/N2) and aromatic ring (C1—C6) are inclined to each other at a dihedral angle of 84.51 (9)°. The plane of the carboxylic acid group is twisted at dihedral angles of 71.46 (13)° and 63.62 (9)° with respect to the aromatic ring and indole unit, respectively.

The configuration of the stereogenic carbon atom, C7, is S, which is consistent with that of the equivalent atom in the starting material.

In the crystal structure, the components are linked by a variety of interactions (Table 1). The carboxylic acid makes an O—H···O hydrogen bond to the water molecule, and the water molecule is involved in the same type of hydrogen bond to the sulfonyl group, to generate alternating [110] chains of the two species. The amino-acid N—H group forms an intermolecular link to the sulfonyl group. The indole N—H group forms an N—H···π bond to the six-membered ring of the indole system of an adjacent molecule. Two C—H···O interactions are also present; a strong link from the α-carbon atom, C7, as also seen in related structures (Khan et al., 2011) and a weaker link from the methyl group.

Related literature top

For details of the synthesis, see: Deng & Mani (2006). For background to sulfonamides in biology, see: Parka et al. (2009); Wang et al. (2007). For related structures, see: Li et al. (2008); Khan et al. (2011).

Experimental top

The title compound was prepared following the literature method (Deng & Mani, 2006) and recrystalized from methanol by slow evaporation to yield colourless needles.

Refinement top

The C-bound H-atoms were positioned with idealized geometry with C—H = 0.93 Å for aromatic, C—H = 0.96 Å for methyl, C—H = 0.97 Å for methylene, C—H = 0.98 Å for methine, and were refined using a riding model with Uiso(H) = 1.2 Ueq(C) but Uiso(H) = 1.5 Ueq(C) for methyl.

The hydroxyl H-atom of the carboxylic acid group was also positioned with idealized geometry, O—H = 0.82 Å, and refined as riding with Uiso(H) = 1.5 Ueq(O).

The H atoms of the water molecule were located in a difference map with O—H = 0.893–0.900Å, and refined as riding with Uiso(H) = Ueq(O).

The H atoms attached to N were located in a difference map and refined freeely.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Partial packing diagram, showing [110] chains of alternating organic and water molecules linked by O—H···O hydrogen bonds shown as dashed lines. Symmetry code: (i) x+1, y–1, z.
(2S)-3-(1H-Indol-3-yl)-2-(4-methylbenzenesulfonamido)propionic acid monohydrate top
Crystal data top
C18H18N2O4S·H2OF(000) = 396
Mr = 376.42Dx = 1.363 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1381 reflections
a = 8.4531 (10) Åθ = 2.4–19.2°
b = 5.2521 (5) ŵ = 0.21 mm1
c = 20.867 (2) ÅT = 296 K
β = 98.056 (4)°Needle, colorless
V = 917.30 (17) Å30.28 × 0.11 × 0.09 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4475 independent reflections
Radiation source: fine-focus sealed tube2135 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1110
Tmin = 0.944, Tmax = 0.982k = 67
10939 measured reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.034P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
4475 reflectionsΔρmax = 0.20 e Å3
243 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), 1951 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (10)
Crystal data top
C18H18N2O4S·H2OV = 917.30 (17) Å3
Mr = 376.42Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.4531 (10) ŵ = 0.21 mm1
b = 5.2521 (5) ÅT = 296 K
c = 20.867 (2) Å0.28 × 0.11 × 0.09 mm
β = 98.056 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4475 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2135 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.982Rint = 0.064
10939 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107Δρmax = 0.20 e Å3
S = 0.94Δρmin = 0.25 e Å3
4475 reflectionsAbsolute structure: Flack (1983), 1951 Friedel pairs
243 parametersAbsolute structure parameter: 0.05 (10)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3845 (4)0.3366 (8)0.10176 (15)0.0401 (8)
C20.2730 (4)0.1527 (8)0.08284 (18)0.0527 (10)
H20.25280.02430.11130.063*
C30.1902 (5)0.1612 (9)0.0202 (2)0.0679 (12)
H30.11500.03580.00690.081*
C40.2171 (5)0.3511 (11)0.02263 (17)0.0619 (11)
C50.3258 (5)0.5359 (10)0.0017 (2)0.0675 (12)
H50.34350.66760.02960.081*
C60.4098 (4)0.5318 (8)0.05980 (19)0.0561 (10)
H60.48320.65970.07310.067*
C70.2547 (4)0.3994 (6)0.24734 (14)0.0352 (8)
H70.21400.25920.21870.042*
C80.1348 (5)0.6132 (8)0.23914 (16)0.0452 (10)
C90.2837 (4)0.2991 (7)0.31717 (14)0.0450 (9)
H9A0.18230.24710.32980.054*
H9B0.35160.14980.31870.054*
C100.3599 (5)0.4909 (7)0.36487 (16)0.0454 (9)
C110.2860 (5)0.6835 (8)0.39356 (18)0.0585 (11)
H110.17690.71690.38680.070*
C120.5453 (6)0.7203 (8)0.43133 (18)0.0552 (11)
C130.5242 (5)0.5127 (7)0.38869 (15)0.0451 (9)
C140.6611 (5)0.3742 (8)0.37809 (17)0.0539 (10)
H140.65220.23700.34970.065*
C150.8074 (6)0.4441 (8)0.4102 (2)0.0704 (13)
H150.89770.35170.40370.084*
C160.8233 (6)0.6528 (10)0.4526 (2)0.0782 (14)
H160.92390.69740.47360.094*
C170.6930 (6)0.7908 (9)0.46353 (18)0.0725 (14)
H170.70310.92850.49180.087*
C180.1307 (5)0.3506 (12)0.09171 (16)0.0977 (16)
H18A0.08960.51780.10270.147*
H18B0.04390.23110.09520.147*
H18C0.20390.30260.12080.147*
S10.49606 (10)0.32979 (18)0.17916 (4)0.0446 (2)
N10.4035 (3)0.4923 (6)0.22720 (13)0.0402 (7)
H1N0.413 (4)0.659 (7)0.2271 (15)0.048*
N20.3962 (5)0.8178 (7)0.43322 (15)0.0681 (11)
H2N0.375 (5)0.941 (8)0.452 (2)0.082*
O10.6432 (3)0.4579 (5)0.17601 (12)0.0647 (8)
O20.4980 (3)0.0709 (4)0.20122 (12)0.0553 (7)
O30.0007 (3)0.5429 (6)0.25925 (15)0.0744 (8)
H3O0.05660.66860.26230.112*
O40.1563 (3)0.8175 (5)0.21751 (12)0.0623 (7)
O50.8218 (3)0.9515 (6)0.26435 (15)0.1120 (13)
H1W0.72600.98760.24250.134*
H2W0.83930.97470.30750.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0351 (19)0.042 (2)0.0446 (19)0.002 (2)0.0098 (15)0.000 (2)
C20.048 (3)0.061 (3)0.048 (2)0.004 (2)0.004 (2)0.000 (2)
C30.051 (3)0.087 (4)0.063 (3)0.008 (3)0.000 (2)0.018 (3)
C40.058 (3)0.090 (3)0.039 (2)0.032 (3)0.009 (2)0.003 (3)
C50.075 (3)0.075 (3)0.054 (3)0.010 (3)0.018 (3)0.015 (3)
C60.054 (3)0.057 (3)0.057 (3)0.004 (2)0.006 (2)0.007 (2)
C70.036 (2)0.030 (2)0.0386 (19)0.0023 (15)0.0010 (15)0.0027 (14)
C80.044 (3)0.043 (2)0.045 (2)0.0024 (19)0.0057 (19)0.005 (2)
C90.052 (2)0.036 (2)0.047 (2)0.0024 (19)0.0053 (17)0.0048 (19)
C100.063 (3)0.036 (2)0.037 (2)0.0040 (19)0.009 (2)0.0035 (18)
C110.075 (3)0.054 (3)0.044 (2)0.011 (2)0.000 (2)0.010 (2)
C120.083 (3)0.045 (2)0.036 (2)0.002 (2)0.001 (2)0.0037 (18)
C130.071 (3)0.035 (2)0.0279 (19)0.006 (2)0.0029 (19)0.0029 (17)
C140.064 (3)0.048 (3)0.048 (2)0.004 (2)0.003 (2)0.005 (2)
C150.070 (3)0.077 (3)0.064 (3)0.001 (2)0.007 (2)0.001 (2)
C160.095 (4)0.081 (4)0.053 (3)0.030 (3)0.008 (3)0.002 (3)
C170.121 (4)0.053 (3)0.041 (2)0.021 (3)0.003 (3)0.004 (2)
C180.091 (3)0.161 (5)0.040 (2)0.040 (4)0.006 (2)0.013 (3)
S10.0341 (5)0.0464 (6)0.0523 (5)0.0018 (5)0.0027 (4)0.0029 (6)
N10.0448 (19)0.0351 (17)0.0408 (17)0.0059 (14)0.0063 (14)0.0042 (15)
N20.115 (3)0.045 (2)0.044 (2)0.018 (3)0.008 (2)0.006 (2)
O10.0332 (16)0.084 (2)0.0765 (19)0.0112 (14)0.0066 (14)0.0007 (16)
O20.0540 (18)0.0403 (16)0.0704 (17)0.0153 (13)0.0050 (14)0.0139 (14)
O30.0496 (19)0.077 (2)0.100 (2)0.0180 (15)0.0216 (17)0.0269 (19)
O40.0631 (17)0.0382 (15)0.0824 (17)0.0088 (18)0.0015 (13)0.0116 (18)
O50.081 (2)0.143 (3)0.104 (2)0.065 (2)0.0165 (19)0.035 (2)
Geometric parameters (Å, º) top
C1—C21.369 (5)C11—H110.9300
C1—C61.384 (5)C12—N21.366 (5)
C1—S11.753 (3)C12—C171.383 (6)
C2—C31.395 (5)C12—C131.403 (5)
C2—H20.9300C13—C141.411 (5)
C3—C41.379 (6)C14—C151.372 (5)
C3—H30.9300C14—H140.9300
C4—C51.366 (6)C15—C161.404 (6)
C4—C181.522 (5)C15—H150.9300
C5—C61.377 (5)C16—C171.365 (6)
C5—H50.9300C16—H160.9300
C6—H60.9300C17—H170.9300
C7—N11.465 (4)C18—H18A0.9600
C7—C81.506 (5)C18—H18B0.9600
C7—C91.536 (4)C18—H18C0.9600
C7—H70.9800S1—O11.423 (2)
C8—O41.188 (4)S1—O21.435 (2)
C8—O31.327 (4)S1—N11.601 (3)
C9—C101.497 (5)N1—H1N0.88 (4)
C9—H9A0.9700N2—H2N0.79 (4)
C9—H9B0.9700O3—H3O0.8200
C10—C111.370 (5)O5—H1W0.8926
C10—C131.412 (5)O5—H2W0.9002
C11—N21.354 (5)
C2—C1—C6120.1 (3)N2—C12—C17131.2 (4)
C2—C1—S1120.7 (3)N2—C12—C13105.9 (4)
C6—C1—S1119.2 (3)C17—C12—C13122.8 (4)
C1—C2—C3118.9 (4)C12—C13—C14117.8 (4)
C1—C2—H2120.6C12—C13—C10108.5 (4)
C3—C2—H2120.6C14—C13—C10133.7 (3)
C4—C3—C2121.6 (4)C15—C14—C13119.3 (4)
C4—C3—H3119.2C15—C14—H14120.3
C2—C3—H3119.2C13—C14—H14120.3
C5—C4—C3118.1 (4)C14—C15—C16121.1 (4)
C5—C4—C18121.1 (5)C14—C15—H15119.4
C3—C4—C18120.8 (5)C16—C15—H15119.4
C4—C5—C6121.5 (4)C17—C16—C15120.8 (5)
C4—C5—H5119.2C17—C16—H16119.6
C6—C5—H5119.2C15—C16—H16119.6
C5—C6—C1119.7 (4)C16—C17—C12118.2 (5)
C5—C6—H6120.1C16—C17—H17120.9
C1—C6—H6120.1C12—C17—H17120.9
N1—C7—C8108.1 (3)C4—C18—H18A109.5
N1—C7—C9110.9 (3)C4—C18—H18B109.5
C8—C7—C9112.2 (3)H18A—C18—H18B109.5
N1—C7—H7108.5C4—C18—H18C109.5
C8—C7—H7108.5H18A—C18—H18C109.5
C9—C7—H7108.5H18B—C18—H18C109.5
O4—C8—O3123.8 (4)O1—S1—O2119.49 (16)
O4—C8—C7125.5 (4)O1—S1—N1106.46 (16)
O3—C8—C7110.7 (3)O2—S1—N1106.77 (15)
C10—C9—C7113.4 (3)O1—S1—C1107.97 (16)
C10—C9—H9A108.9O2—S1—C1107.19 (18)
C7—C9—H9A108.9N1—S1—C1108.60 (15)
C10—C9—H9B108.9C7—N1—S1121.1 (2)
C7—C9—H9B108.9C7—N1—H1N114 (2)
H9A—C9—H9B107.7S1—N1—H1N119 (2)
C11—C10—C13105.8 (3)C11—N2—C12110.2 (4)
C11—C10—C9127.4 (4)C11—N2—H2N123 (3)
C13—C10—C9126.8 (3)C12—N2—H2N126 (3)
N2—C11—C10109.6 (4)C8—O3—H3O109.5
N2—C11—H11125.2H1W—O5—H2W119.5
C10—C11—H11125.2
C6—C1—C2—C32.2 (5)C9—C10—C13—C12178.8 (3)
S1—C1—C2—C3178.1 (3)C11—C10—C13—C14180.0 (4)
C1—C2—C3—C40.6 (6)C9—C10—C13—C141.0 (6)
C2—C3—C4—C51.2 (6)C12—C13—C14—C151.0 (5)
C2—C3—C4—C18177.4 (4)C10—C13—C14—C15179.2 (4)
C3—C4—C5—C61.5 (6)C13—C14—C15—C160.8 (6)
C18—C4—C5—C6177.1 (4)C14—C15—C16—C170.5 (6)
C4—C5—C6—C10.0 (6)C15—C16—C17—C120.4 (6)
C2—C1—C6—C52.0 (5)N2—C12—C17—C16178.8 (4)
S1—C1—C6—C5178.4 (3)C13—C12—C17—C160.6 (6)
N1—C7—C8—O42.9 (5)C2—C1—S1—O1153.8 (3)
C9—C7—C8—O4125.5 (4)C6—C1—S1—O126.6 (3)
N1—C7—C8—O3177.4 (3)C2—C1—S1—O223.8 (3)
C9—C7—C8—O354.8 (4)C6—C1—S1—O2156.5 (3)
N1—C7—C9—C1055.8 (4)C2—C1—S1—N191.2 (3)
C8—C7—C9—C1065.2 (4)C6—C1—S1—N188.5 (3)
C7—C9—C10—C1182.0 (4)C8—C7—N1—S1132.1 (3)
C7—C9—C10—C1396.8 (4)C9—C7—N1—S1104.5 (3)
C13—C10—C11—N20.3 (4)O1—S1—N1—C7173.1 (3)
C9—C10—C11—N2179.3 (3)O2—S1—N1—C744.4 (3)
N2—C12—C13—C14179.5 (3)C1—S1—N1—C770.8 (3)
C17—C12—C13—C140.9 (5)C10—C11—N2—C120.7 (4)
N2—C12—C13—C100.6 (4)C17—C12—N2—C11179.3 (4)
C17—C12—C13—C10179.2 (4)C13—C12—N2—C110.8 (4)
C11—C10—C13—C120.2 (4)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.88 (4)2.37 (4)3.208 (4)160 (3)
N2—H2N···Cg3ii0.79 (4)2.85 (4)3.480 (4)139 (4)
O3—H3O···O5iii0.821.812.629 (4)177
C7—H7···O4iv0.982.373.205 (4)143
C18—H18C···O1v0.962.593.456 (5)151
O5—H1W···O2i0.892.052.935 (4)174
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1; (iii) x1, y, z; (iv) x, y1, z; (v) x+1, y1/2, z.

Experimental details

Crystal data
Chemical formulaC18H18N2O4S·H2O
Mr376.42
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)8.4531 (10), 5.2521 (5), 20.867 (2)
β (°) 98.056 (4)
V3)917.30 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.28 × 0.11 × 0.09
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.944, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
10939, 4475, 2135
Rint0.064
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.107, 0.94
No. of reflections4475
No. of parameters243
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.25
Absolute structureFlack (1983), 1951 Friedel pairs
Absolute structure parameter0.05 (10)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.88 (4)2.37 (4)3.208 (4)160 (3)
N2—H2N···Cg3ii0.79 (4)2.85 (4)3.480 (4)139 (4)
O3—H3O···O5iii0.821.812.629 (4)177
C7—H7···O4iv0.982.373.205 (4)143
C18—H18C···O1v0.962.593.456 (5)151
O5—H1W···O2i0.892.052.935 (4)174
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1; (iii) x1, y, z; (iv) x, y1, z; (v) x+1, y1/2, z.
 

Acknowledgements

The authors acknowledge the Higher Education Commission of Pakistan for providing a grant to strengthen the Materials Chemistry Laboratory at GC University, Lahore, Pakistan.

References

First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, X. & Mani, N. S. (2006). Green Chem. 8, 835–838.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhan, M. H., Khan, I. U., Arshad, M. N., Rafique, H. M. & Harrison, W. T. A. (2011). Crystals, 1, 69–77.  CrossRef CAS Google Scholar
First citationLi, W. M., Wang, J. G., Gau, W. C., Li, Z. M. & Song, H. B. (2008). Chin. J. Struct. Chem. 27, 691–696.  Google Scholar
First citationParka, K., Gopalsamya, A., Aplascaa, A., Ellingboea, J. W., Xub, W., Zhangc, Y. & Levina, J. I. (2009). Bioorg. Med. Chem. 17, 3857–3865.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J. G., Xiao, Y. J., Li, Y. H., Ma, Y. & Li, Z. M. (2007). Bioorg. Med. Chem. 15, 374–380.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds