organic compounds
1-Isobutyl-4-methoxy-1H-imidazo[4,5-c]quinoline
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Mangalore University, Karnataka, India, and cSequent Scientific Limited, Baikampady, New Mangalore, India
*Correspondence e-mail: hkfun@usm.my
In the title compound, C15H17N3O, the 1H-imidazo[4,5-c]quinoline ring system is approximately planar, with a maximum deviation of 0.036 (1) Å. The C—N—C—C torsion angles formed between this ring system and the isobutyl unit are −99.77 (16) and 79.71 (17)°. In the crystal, intermolecular C—H⋯O hydrogen bonds link the molecules into chains along the c axis.
Related literature
For background to quinolines and their microbial activity, see: Crozat & Beutler (2004); Stringfellow & Glasgow (1972); Miller et al. (1999); Hemmi et al. (2002). For related structures, see: Loh et al. (2011a,b).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811031801/wn2444sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811031801/wn2444Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811031801/wn2444Isup3.cml
To a solution of 4-chloro-1-(2-methylpropyl)-1H-imidazo[4,5-c] quinoline (0.1 mol) in methanol (30 ml) was added a solution of sodium methoxide (0.01 mol) in methanol (10 ml) and the mixture was stirred for 1 h. The reaction mixture was heated under reflux for 12 h, concentrated and poured into crushed ice. The resultant solid was filtered, dried and recrystallized using a mixture of DMF and water (1:1). M. p. = 493–495 K.
All H atoms were positioned geometrically and refined using a riding model; C—H = 0.93 to 0.98 Å; Uiso(H) = xUeq(C), where x = 1.5 for methyl H and 1.2 for all other H atoms. A rotating group model was applied to the methyl groups.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C15H17N3O | F(000) = 544 |
Mr = 255.32 | Dx = 1.240 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3364 reflections |
a = 7.4196 (8) Å | θ = 2.9–28.4° |
b = 18.910 (2) Å | µ = 0.08 mm−1 |
c = 10.4112 (14) Å | T = 297 K |
β = 110.568 (2)° | Plate, colourless |
V = 1367.6 (3) Å3 | 0.40 × 0.31 × 0.13 mm |
Z = 4 |
Bruker SMART APEXII DUO CCD area-detector diffractometer | 3463 independent reflections |
Radiation source: fine-focus sealed tube | 2386 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
ϕ and ω scans | θmax = 28.6°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −7→9 |
Tmin = 0.969, Tmax = 0.989 | k = −25→25 |
12741 measured reflections | l = −13→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0619P)2 + 0.131P] where P = (Fo2 + 2Fc2)/3 |
3463 reflections | (Δ/σ)max < 0.001 |
175 parameters | Δρmax = 0.12 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C15H17N3O | V = 1367.6 (3) Å3 |
Mr = 255.32 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.4196 (8) Å | µ = 0.08 mm−1 |
b = 18.910 (2) Å | T = 297 K |
c = 10.4112 (14) Å | 0.40 × 0.31 × 0.13 mm |
β = 110.568 (2)° |
Bruker SMART APEXII DUO CCD area-detector diffractometer | 3463 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2386 reflections with I > 2σ(I) |
Tmin = 0.969, Tmax = 0.989 | Rint = 0.023 |
12741 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.12 e Å−3 |
3463 reflections | Δρmin = −0.18 e Å−3 |
175 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.48715 (15) | 0.63510 (5) | 0.85500 (9) | 0.0586 (3) | |
N1 | 0.37002 (15) | 0.53191 (5) | 0.73822 (10) | 0.0447 (3) | |
N2 | 0.44565 (18) | 0.70399 (5) | 0.59706 (12) | 0.0563 (3) | |
N3 | 0.33493 (16) | 0.64771 (5) | 0.39424 (11) | 0.0486 (3) | |
C1 | 0.29597 (16) | 0.49624 (6) | 0.61429 (12) | 0.0400 (3) | |
C2 | 0.24489 (19) | 0.42505 (6) | 0.61944 (13) | 0.0483 (3) | |
H2A | 0.2608 | 0.4045 | 0.7039 | 0.058* | |
C3 | 0.1725 (2) | 0.38552 (7) | 0.50312 (15) | 0.0549 (3) | |
H3A | 0.1400 | 0.3384 | 0.5089 | 0.066* | |
C4 | 0.1472 (2) | 0.41521 (7) | 0.37579 (14) | 0.0563 (4) | |
H4A | 0.0976 | 0.3879 | 0.2968 | 0.068* | |
C5 | 0.19492 (19) | 0.48452 (7) | 0.36623 (13) | 0.0491 (3) | |
H5A | 0.1776 | 0.5039 | 0.2806 | 0.059* | |
C6 | 0.26991 (16) | 0.52691 (6) | 0.48450 (12) | 0.0397 (3) | |
C7 | 0.32629 (17) | 0.59928 (6) | 0.49100 (12) | 0.0407 (3) | |
C8 | 0.39572 (18) | 0.63518 (6) | 0.61455 (13) | 0.0445 (3) | |
C9 | 0.41477 (18) | 0.59803 (6) | 0.73647 (12) | 0.0441 (3) | |
C10 | 0.4073 (2) | 0.70816 (7) | 0.46497 (16) | 0.0587 (4) | |
H10A | 0.4276 | 0.7491 | 0.4225 | 0.070* | |
C11 | 0.2801 (2) | 0.64045 (8) | 0.24607 (13) | 0.0545 (3) | |
H11A | 0.3224 | 0.5946 | 0.2258 | 0.065* | |
H11B | 0.3465 | 0.6763 | 0.2129 | 0.065* | |
C12 | 0.0645 (2) | 0.64739 (9) | 0.16888 (15) | 0.0639 (4) | |
H12A | −0.0010 | 0.6097 | 0.2001 | 0.077* | |
C13 | −0.0102 (3) | 0.71824 (10) | 0.1988 (2) | 0.0988 (7) | |
H13A | −0.1452 | 0.7221 | 0.1466 | 0.148* | |
H13B | 0.0578 | 0.7559 | 0.1737 | 0.148* | |
H13C | 0.0098 | 0.7214 | 0.2948 | 0.148* | |
C14 | 0.0257 (3) | 0.63667 (16) | 0.01661 (19) | 0.1156 (9) | |
H14A | −0.1083 | 0.6447 | −0.0342 | 0.173* | |
H14B | 0.0591 | 0.5892 | 0.0012 | 0.173* | |
H14C | 0.1018 | 0.6694 | −0.0132 | 0.173* | |
C15 | 0.5158 (3) | 0.59705 (9) | 0.97911 (15) | 0.0718 (5) | |
H15A | 0.5586 | 0.6290 | 1.0555 | 0.108* | |
H15B | 0.6111 | 0.5610 | 0.9900 | 0.108* | |
H15C | 0.3968 | 0.5756 | 0.9753 | 0.108* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0849 (7) | 0.0443 (5) | 0.0409 (5) | −0.0024 (4) | 0.0151 (5) | −0.0067 (4) |
N1 | 0.0532 (6) | 0.0404 (5) | 0.0403 (5) | −0.0004 (4) | 0.0162 (4) | −0.0010 (4) |
N2 | 0.0727 (8) | 0.0350 (6) | 0.0589 (7) | 0.0006 (5) | 0.0202 (6) | 0.0013 (5) |
N3 | 0.0575 (6) | 0.0416 (6) | 0.0460 (6) | 0.0052 (5) | 0.0174 (5) | 0.0094 (4) |
C1 | 0.0401 (6) | 0.0382 (6) | 0.0419 (6) | 0.0013 (4) | 0.0147 (5) | −0.0012 (5) |
C2 | 0.0547 (7) | 0.0422 (7) | 0.0496 (7) | −0.0038 (5) | 0.0205 (6) | 0.0020 (5) |
C3 | 0.0614 (8) | 0.0403 (7) | 0.0622 (9) | −0.0084 (6) | 0.0209 (6) | −0.0056 (6) |
C4 | 0.0642 (9) | 0.0483 (7) | 0.0514 (8) | −0.0045 (6) | 0.0140 (6) | −0.0134 (6) |
C5 | 0.0561 (7) | 0.0476 (7) | 0.0405 (6) | 0.0040 (6) | 0.0130 (5) | −0.0014 (5) |
C6 | 0.0392 (6) | 0.0380 (6) | 0.0407 (6) | 0.0046 (5) | 0.0126 (5) | 0.0005 (5) |
C7 | 0.0434 (6) | 0.0377 (6) | 0.0405 (6) | 0.0068 (5) | 0.0140 (5) | 0.0054 (5) |
C8 | 0.0517 (7) | 0.0339 (6) | 0.0465 (7) | 0.0051 (5) | 0.0154 (5) | 0.0002 (5) |
C9 | 0.0504 (7) | 0.0402 (6) | 0.0402 (6) | 0.0041 (5) | 0.0139 (5) | −0.0038 (5) |
C10 | 0.0725 (9) | 0.0381 (7) | 0.0644 (9) | 0.0021 (6) | 0.0229 (7) | 0.0091 (6) |
C11 | 0.0586 (8) | 0.0614 (8) | 0.0447 (7) | 0.0030 (6) | 0.0196 (6) | 0.0128 (6) |
C12 | 0.0580 (8) | 0.0774 (10) | 0.0539 (8) | 0.0034 (7) | 0.0167 (7) | 0.0247 (7) |
C13 | 0.0755 (12) | 0.0790 (12) | 0.1277 (18) | 0.0253 (9) | 0.0180 (11) | 0.0352 (12) |
C14 | 0.0779 (13) | 0.207 (3) | 0.0512 (10) | −0.0164 (14) | 0.0093 (9) | 0.0234 (13) |
C15 | 0.1055 (13) | 0.0641 (10) | 0.0429 (8) | −0.0088 (8) | 0.0223 (8) | −0.0056 (7) |
O1—C9 | 1.3553 (14) | C6—C7 | 1.4257 (16) |
O1—C15 | 1.4281 (17) | C7—C8 | 1.3839 (16) |
N1—C9 | 1.2955 (15) | C8—C9 | 1.4137 (17) |
N1—C1 | 1.3870 (15) | C10—H10A | 0.9300 |
N2—C10 | 1.3051 (19) | C11—C12 | 1.523 (2) |
N2—C8 | 1.3825 (15) | C11—H11A | 0.9700 |
N3—C10 | 1.3635 (17) | C11—H11B | 0.9700 |
N3—C7 | 1.3796 (15) | C12—C14 | 1.522 (2) |
N3—C11 | 1.4571 (17) | C12—C13 | 1.523 (3) |
C1—C2 | 1.4046 (17) | C12—H12A | 0.9800 |
C1—C6 | 1.4199 (16) | C13—H13A | 0.9600 |
C2—C3 | 1.3626 (18) | C13—H13B | 0.9600 |
C2—H2A | 0.9300 | C13—H13C | 0.9600 |
C3—C4 | 1.3902 (19) | C14—H14A | 0.9600 |
C3—H3A | 0.9300 | C14—H14B | 0.9600 |
C4—C5 | 1.3705 (18) | C14—H14C | 0.9600 |
C4—H4A | 0.9300 | C15—H15A | 0.9600 |
C5—C6 | 1.4095 (16) | C15—H15B | 0.9600 |
C5—H5A | 0.9300 | C15—H15C | 0.9600 |
C9—O1—C15 | 116.66 (10) | N2—C10—N3 | 114.66 (12) |
C9—N1—C1 | 118.43 (10) | N2—C10—H10A | 122.7 |
C10—N2—C8 | 103.07 (11) | N3—C10—H10A | 122.7 |
C10—N3—C7 | 105.82 (11) | N3—C11—C12 | 113.66 (11) |
C10—N3—C11 | 124.15 (11) | N3—C11—H11A | 108.8 |
C7—N3—C11 | 130.03 (11) | C12—C11—H11A | 108.8 |
N1—C1—C2 | 117.04 (11) | N3—C11—H11B | 108.8 |
N1—C1—C6 | 124.31 (11) | C12—C11—H11B | 108.8 |
C2—C1—C6 | 118.65 (11) | H11A—C11—H11B | 107.7 |
C3—C2—C1 | 121.28 (12) | C14—C12—C11 | 108.51 (14) |
C3—C2—H2A | 119.4 | C14—C12—C13 | 112.37 (17) |
C1—C2—H2A | 119.4 | C11—C12—C13 | 110.99 (14) |
C2—C3—C4 | 120.33 (12) | C14—C12—H12A | 108.3 |
C2—C3—H3A | 119.8 | C11—C12—H12A | 108.3 |
C4—C3—H3A | 119.8 | C13—C12—H12A | 108.3 |
C5—C4—C3 | 120.24 (12) | C12—C13—H13A | 109.5 |
C5—C4—H4A | 119.9 | C12—C13—H13B | 109.5 |
C3—C4—H4A | 119.9 | H13A—C13—H13B | 109.5 |
C4—C5—C6 | 120.88 (12) | C12—C13—H13C | 109.5 |
C4—C5—H5A | 119.6 | H13A—C13—H13C | 109.5 |
C6—C5—H5A | 119.6 | H13B—C13—H13C | 109.5 |
C5—C6—C1 | 118.63 (11) | C12—C14—H14A | 109.5 |
C5—C6—C7 | 127.34 (11) | C12—C14—H14B | 109.5 |
C1—C6—C7 | 114.03 (10) | H14A—C14—H14B | 109.5 |
N3—C7—C8 | 104.80 (10) | C12—C14—H14C | 109.5 |
N3—C7—C6 | 133.69 (11) | H14A—C14—H14C | 109.5 |
C8—C7—C6 | 121.49 (11) | H14B—C14—H14C | 109.5 |
N2—C8—C7 | 111.65 (11) | O1—C15—H15A | 109.5 |
N2—C8—C9 | 129.72 (11) | O1—C15—H15B | 109.5 |
C7—C8—C9 | 118.55 (11) | H15A—C15—H15B | 109.5 |
N1—C9—O1 | 120.52 (11) | O1—C15—H15C | 109.5 |
N1—C9—C8 | 123.15 (11) | H15A—C15—H15C | 109.5 |
O1—C9—C8 | 116.31 (11) | H15B—C15—H15C | 109.5 |
C9—N1—C1—C2 | −178.62 (11) | C10—N2—C8—C7 | −0.46 (15) |
C9—N1—C1—C6 | 1.65 (18) | C10—N2—C8—C9 | 176.13 (14) |
N1—C1—C2—C3 | −179.42 (12) | N3—C7—C8—N2 | 0.34 (14) |
C6—C1—C2—C3 | 0.32 (18) | C6—C7—C8—N2 | 178.58 (11) |
C1—C2—C3—C4 | −0.2 (2) | N3—C7—C8—C9 | −176.68 (11) |
C2—C3—C4—C5 | 0.1 (2) | C6—C7—C8—C9 | 1.57 (18) |
C3—C4—C5—C6 | −0.1 (2) | C1—N1—C9—O1 | 179.84 (11) |
C4—C5—C6—C1 | 0.29 (19) | C1—N1—C9—C8 | −1.44 (18) |
C4—C5—C6—C7 | 179.85 (12) | C15—O1—C9—N1 | 1.81 (19) |
N1—C1—C6—C5 | 179.35 (11) | C15—O1—C9—C8 | −177.00 (13) |
C2—C1—C6—C5 | −0.37 (17) | N2—C8—C9—N1 | −176.51 (13) |
N1—C1—C6—C7 | −0.27 (16) | C7—C8—C9—N1 | −0.11 (19) |
C2—C1—C6—C7 | −179.99 (11) | N2—C8—C9—O1 | 2.3 (2) |
C10—N3—C7—C8 | −0.08 (14) | C7—C8—C9—O1 | 178.66 (11) |
C11—N3—C7—C8 | −179.63 (12) | C8—N2—C10—N3 | 0.41 (16) |
C10—N3—C7—C6 | −178.01 (13) | C7—N3—C10—N2 | −0.22 (17) |
C11—N3—C7—C6 | 2.4 (2) | C11—N3—C10—N2 | 179.36 (12) |
C5—C6—C7—N3 | −3.3 (2) | C10—N3—C11—C12 | −99.77 (16) |
C1—C6—C7—N3 | 176.32 (12) | C7—N3—C11—C12 | 79.71 (17) |
C5—C6—C7—C8 | 179.09 (12) | N3—C11—C12—C14 | −178.33 (15) |
C1—C6—C7—C8 | −1.33 (16) | N3—C11—C12—C13 | 57.73 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10A···O1i | 0.93 | 2.39 | 3.3052 (16) | 169 |
Symmetry code: (i) x, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C15H17N3O |
Mr | 255.32 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 297 |
a, b, c (Å) | 7.4196 (8), 18.910 (2), 10.4112 (14) |
β (°) | 110.568 (2) |
V (Å3) | 1367.6 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.40 × 0.31 × 0.13 |
Data collection | |
Diffractometer | Bruker SMART APEXII DUO CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.969, 0.989 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12741, 3463, 2386 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.673 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.127, 1.04 |
No. of reflections | 3463 |
No. of parameters | 175 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.12, −0.18 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10A···O1i | 0.93 | 2.39 | 3.3052 (16) | 168.8 |
Symmetry code: (i) x, −y+3/2, z−1/2. |
Acknowledgements
HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL thanks the Malaysian Government and USM for the award of a Research Fellowship.
References
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Crozat, K. & Beutler, B. (2004). Proc. Natl Acad. Sci. USA, 101, 6835–6836. CrossRef CAS Google Scholar
Hemmi, H., Kaisho, T., Takeuchi, O., Sato, S., Sanjo, H., Hoshino, K., Horiuchi, T., Tomizawa, H., Takeda, K. & Akira, S. (2002). Nat. Immunol. 3, 196–200. CrossRef CAS Google Scholar
Loh, W.-S., Fun, H.-K., Kayarmar, R., Viveka, S. & Nagaraja, G. K. (2011a). Acta Cryst. E67, o405. Web of Science CSD CrossRef IUCr Journals Google Scholar
Loh, W.-S., Fun, H.-K., Kayarmar, R., Viveka, S. & Nagaraja, G. K. (2011b). Acta Cryst. E67, o406. Web of Science CSD CrossRef IUCr Journals Google Scholar
Miller, R. L., Gerster, J. F., Owens, M. L., Slade, H. B. & Tomai, M. A. (1999). Int. J. Immunopharmacol. 21, 1–14. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stringfellow, D. A. & Glasgow, L. A. (1972). Antimicrob. Agents Chemother. 2, 73–78. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The quinoline scaffold is prevalent in a variety of pharmacologically active synthetic and natural products. Long before endosomal TLR7 was discovered to serve as the primary sensor for short, single-stranded, GU-rich RNA sequences (ssRNA), mainly of viral origin (Crozat & Beutler, 2004), a number of small molecules were synthesized and evaluated in the 1970's and 1980's for antiviral activities owing to their pronounced type I interferon (IFN-R and -β) inducing properties (Stringfellow & Glasgow, 1972). Although the mechanisms of innate immune stimulation of several of these compounds (such as tilorone14 and bromopirone16) remain yet to be formally elucidated, the members of the 1H-imidazo[4,5-c]quinolines were found to be good type I IFN inducers in human cell-derived assays and FDA approval was obtained in 1997 for imiquimod for the treatment of basal cell carcinoma and actinic keratosis (Miller et al., 1999). It was not until 2002, however, that the mechanistic basis of IFN induction by the imidazoquinolines was found to be a consequence of TLR7 engagement and activation (Hemmi et al., 2002). We have earlier reported the crystal structures of 1-isobutyl-N,N-dimethyl-1H-imidazo[4,5-c]quinolin- 4-amine and 4-hydrazinyl-1-isobutyl-1H-imidazo[4,5-c]quinoline (Loh et al., 2011a,b). Following on from these, we have synthesized 1-isobutyl-4-methoxy-1H-imidazo[4,5-c]quinoline.
In the title compound (Fig. 1), the 1H-imidazo[4,5-c]quinoline ring system (C1–C7/N3/C10/N2/C8/C9/N1) is approximately planar with a maximum deviation of 0.036 (1) Å at atom C8. The torsion angle, C10—N3—C11—C12, formed between this ring system and the isobutyl unit is -99.77 (16)°; the torsion angle C7—N3—C11—C12 is 79.71 (17)°. Bond lengths and angles are within the normal ranges and are comparable to those in the related crystal structures (Loh et al., 2011a,b).
In the crystal packing (Fig. 2), the intermolecular C10—H10A···O1 hydrogen bonds (Table 1) link the molecules into chains along the c axis.