organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(3,4-Dimeth­­oxy­phen­yl)-3-[4-(methyl­sulfan­yl)phen­yl]prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Mangalore University, Karnataka, India
*Correspondence e-mail: hkfun@usm.my

(Received 11 August 2011; accepted 16 August 2011; online 27 August 2011)

In the title compound, C18H18O3S, the C=C double bond exists in an E configuration and the dihedral angle between the two benzene rings is 11.74 (8)°. In the crystal, mol­ecules are linked into a three-dimensional network by C—H⋯O hydrogen bonds. The crystal structure is also stabilized by weak C—H⋯π inter­actions.

Related literature

For the biological activity of chalcone derivatives, see: Rajendra Prasad et al. (2008[Rajendra Prasad, Y., Praveen Kumar, P. & Ravi Kumar, P. (2008). E-J. Chem. 5, 144-148.]); Won et al. (2005)[Won, S.-J., Liu, C.-T., Tsao, L.-T., Weng, J.-R., Ko, H.-H., Wang, J.-P. & Lin, C.-N. (2005). Eur. J. Med. Chem. 40, 103-112.]; Sivakumar et al. (2007[Sivakumar, P. M., Geetha Babu, S. M. & Mukesh, D. (2007). Chem. Pharm. Bull. 55, 44-49.]); Churkin et al. (1982[Churkin, Yu. D., Panfilova, L. V. & Boreko, E. I. (1982). Pharm. Chem. J. 16, 103-105.]). For related structures, see: Narayana et al. (2007[Narayana, B., Mustafa, K., Sarojini, B. K., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o4422-o4423.]); Fun et al. (2011[Fun, H.-K., Yeap, C. S., Prasad, D. J., Nayak, S. P. & Laxmana, K. (2011). Acta Cryst. E67, o241.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18O3S

  • Mr = 314.38

  • Tetragonal, [P \overline 42_1 c ]

  • a = 19.0863 (7) Å

  • c = 8.9633 (4) Å

  • V = 3265.2 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.60 × 0.27 × 0.21 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.886, Tmax = 0.957

  • 65941 measured reflections

  • 4760 independent reflections

  • 3944 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.100

  • S = 1.03

  • 4760 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2109 Friedel pairs

  • Flack parameter: −0.01 (7)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16B⋯O1i 0.96 2.33 3.235 (2) 157
C17—H17A⋯O3ii 0.96 2.47 3.344 (2) 151
C4—H4ACg1iii 0.93 2.79 3.5776 (17) 143
Symmetry codes: (i) [y-{\script{1\over 2}}, x+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) y-1, -x+1, -z-1; (iii) -x-1, -y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones are condensation products of simple or substituted aromatic aldehydes with simple or substituted acetophenones in the presence of alkali. Chalcones constitute an important group of natural products and some of them possess a wide range of biological activities such as antimicrobial (Rajendra Prasad et al., 2008), anticancer (Won et al., 2005), antitubercular (Sivakumar et al., 2007) and antiviral (Churkin et al., 1982) properties. The crystal structures of (2E)-1-(2-thienyl)-3-(2,3,5-trichlorophenyl)prop-2-ene-1-one (Narayana et al., 2007) and (E)-3-(4-chlorophenyl)-1- (2,3,4-trichlorophenyl)prop-2-en-1-one (Fun et al., 2011) have been reported.

As shown in Fig. 1, the C8C9 double bond exists in an E configuration with an O1—C7—C8—C9 torsion angle of -1.3 (2)°. The dihedral angle between the two benzene (C1–C6 and C10–C15) rings is 11.74 (8)°. The torsion angles C18—S1—C13—C14, C17—O3—C3—C4 and C16—O2—C2—C1 are 4.19 (8), -5.0 (2) and 7.8 (2)°, respectively, showing that the methylthio and methoxy substituents are essentially coplanar with the attached benzene rings.

In the crystal structure (Fig. 2), the molecules are linked into a three-dimensional network by C16—H16B···O1 and C17—H17A···O3 hydrogen bonds. The crystal structure is also stabilized by a weak C—H···π interaction (Table 1), with a distance of 3.5776 (17) Å.

Related literature top

For the biological activity of chalcone derivatives, see: Rajendra Prasad et al. (2008); Won et al. (2005); Sivakumar et al. (2007); Churkin et al. (1982). For related structures, see: Narayana et al. (2007); Fun et al. (2011).

Experimental top

4-Methylthiobenzaldehyde (0.1mol) and 3,4-dimethoxyacetophenone (0.1mol) in the presence of NaOH in ethanol were stirred at room temperature for 2 h. The resulting product was filtered, washed, dried and recrystallised from ethanol.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93 and 0.96 Å. The Uiso values were constrained to be 1.5Ueq(carrier atom) for methyl H atoms and 1.2Ueq(carrier atom) for the remaining H atoms. A rotating group model was used for the methyl groups. 2109 Freidel pairs were used to determine the absolute structure.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing, viewed along the c-axis, showing the molecules linked into a three-dimensional network. Hydrogen atoms not involved in hydrogen bonding (dashed lines) are omitted for clarity.
(E)-1-(3,4-Dimethoxyphenyl)-3-[4-(methylsulfanyl)phenyl]prop-2-en-1-one top
Crystal data top
C18H18O3SDx = 1.279 Mg m3
Mr = 314.38Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421cCell parameters from 9341 reflections
Hall symbol: P -4 2nθ = 2.4–26.5°
a = 19.0863 (7) ŵ = 0.21 mm1
c = 8.9633 (4) ÅT = 296 K
V = 3265.2 (2) Å3Block, colourless
Z = 80.60 × 0.27 × 0.21 mm
F(000) = 1328
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4760 independent reflections
Radiation source: fine-focus sealed tube3944 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 30.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2626
Tmin = 0.886, Tmax = 0.957k = 2626
65941 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.3471P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4760 reflectionsΔρmax = 0.13 e Å3
202 parametersΔρmin = 0.18 e Å3
0 restraintsAbsolute structure: Flack (1983), 2109 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (7)
Crystal data top
C18H18O3SZ = 8
Mr = 314.38Mo Kα radiation
Tetragonal, P421cµ = 0.21 mm1
a = 19.0863 (7) ÅT = 296 K
c = 8.9633 (4) Å0.60 × 0.27 × 0.21 mm
V = 3265.2 (2) Å3
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4760 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3944 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.957Rint = 0.028
65941 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.100Δρmax = 0.13 e Å3
S = 1.03Δρmin = 0.18 e Å3
4760 reflectionsAbsolute structure: Flack (1983), 2109 Friedel pairs
202 parametersAbsolute structure parameter: 0.01 (7)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.04907 (3)0.61987 (3)0.96772 (6)0.08374 (17)
O10.20901 (6)0.80886 (8)0.25811 (15)0.0801 (4)
O20.18232 (6)0.88384 (6)0.28422 (13)0.0638 (3)
O30.04997 (6)0.89660 (7)0.32673 (13)0.0682 (3)
C10.16475 (7)0.84377 (7)0.02843 (18)0.0498 (3)
H1A0.21260.83920.01200.060*
C20.14116 (7)0.86658 (7)0.16444 (16)0.0496 (3)
C30.06866 (8)0.87441 (8)0.18887 (17)0.0533 (3)
C40.02241 (8)0.85920 (9)0.07543 (19)0.0613 (4)
H4A0.02550.86490.09060.074*
C50.04682 (8)0.83541 (8)0.06130 (17)0.0558 (3)
H5A0.01510.82490.13680.067*
C60.11757 (7)0.82725 (7)0.08653 (16)0.0482 (3)
C70.14607 (8)0.80464 (8)0.23353 (18)0.0535 (3)
C80.09822 (8)0.77645 (8)0.34700 (17)0.0554 (3)
H8A0.05050.77470.32630.067*
C90.12086 (8)0.75347 (8)0.47766 (17)0.0550 (3)
H9A0.16870.75780.49510.066*
C100.07975 (8)0.72221 (8)0.59750 (16)0.0513 (3)
C110.00713 (9)0.71448 (11)0.59020 (18)0.0697 (5)
H11A0.01660.73010.50580.084*
C120.03014 (9)0.68459 (12)0.7040 (2)0.0727 (5)
H12A0.07860.68070.69630.087*
C130.00383 (9)0.65988 (9)0.83166 (17)0.0570 (3)
C140.07588 (8)0.66729 (8)0.84138 (17)0.0574 (3)
H14A0.09960.65130.92540.069*
C150.11254 (8)0.69847 (8)0.72617 (17)0.0551 (3)
H15A0.16080.70370.73520.066*
C160.25489 (9)0.86904 (11)0.2721 (3)0.0832 (6)
H16A0.27700.87610.36710.125*
H16B0.26120.82130.24130.125*
H16C0.27560.89970.19960.125*
C170.02357 (10)0.89919 (13)0.3594 (2)0.0833 (6)
H17A0.03020.90870.46360.125*
H17B0.04510.93560.30150.125*
H17C0.04470.85500.33480.125*
C180.01027 (13)0.59980 (14)1.1152 (2)0.0967 (7)
H18A0.01490.57881.19640.145*
H18B0.03240.64211.14900.145*
H18C0.04530.56771.07970.145*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0711 (3)0.1198 (4)0.0603 (2)0.0176 (3)0.0045 (2)0.0147 (3)
O10.0511 (6)0.1106 (10)0.0786 (8)0.0013 (6)0.0057 (6)0.0289 (8)
O20.0579 (6)0.0706 (7)0.0629 (6)0.0057 (5)0.0190 (5)0.0133 (6)
O30.0606 (6)0.0881 (8)0.0560 (6)0.0054 (6)0.0033 (5)0.0256 (6)
C10.0445 (6)0.0461 (7)0.0588 (7)0.0023 (5)0.0042 (6)0.0027 (6)
C20.0507 (7)0.0441 (6)0.0540 (7)0.0009 (5)0.0118 (6)0.0046 (6)
C30.0545 (7)0.0541 (7)0.0512 (7)0.0038 (6)0.0042 (6)0.0101 (6)
C40.0445 (7)0.0786 (10)0.0608 (9)0.0041 (7)0.0025 (6)0.0185 (8)
C50.0479 (7)0.0671 (9)0.0523 (8)0.0016 (6)0.0072 (6)0.0145 (7)
C60.0486 (7)0.0442 (6)0.0519 (7)0.0023 (5)0.0040 (6)0.0042 (5)
C70.0513 (7)0.0519 (7)0.0573 (8)0.0048 (6)0.0002 (6)0.0067 (6)
C80.0526 (7)0.0619 (8)0.0518 (8)0.0014 (6)0.0029 (6)0.0063 (6)
C90.0527 (7)0.0604 (8)0.0519 (7)0.0007 (6)0.0046 (6)0.0019 (6)
C100.0525 (7)0.0559 (8)0.0456 (7)0.0004 (6)0.0051 (6)0.0001 (6)
C110.0569 (9)0.1012 (13)0.0509 (8)0.0060 (9)0.0156 (7)0.0129 (9)
C120.0497 (8)0.1083 (14)0.0602 (10)0.0101 (9)0.0099 (7)0.0117 (10)
C130.0588 (8)0.0664 (9)0.0456 (7)0.0050 (7)0.0008 (6)0.0015 (6)
C140.0574 (8)0.0661 (9)0.0486 (7)0.0021 (7)0.0092 (6)0.0064 (7)
C150.0486 (7)0.0635 (8)0.0532 (7)0.0004 (6)0.0072 (6)0.0053 (6)
C160.0605 (9)0.0824 (12)0.1066 (15)0.0140 (9)0.0337 (10)0.0321 (12)
C170.0682 (11)0.1129 (16)0.0687 (11)0.0062 (10)0.0067 (9)0.0341 (11)
C180.0957 (16)0.1238 (19)0.0706 (12)0.0081 (14)0.0019 (11)0.0352 (13)
Geometric parameters (Å, º) top
S1—C131.7579 (16)C9—H9A0.9300
S1—C181.783 (2)C10—C151.388 (2)
O1—C71.2239 (19)C10—C111.396 (2)
O2—C21.3705 (16)C11—C121.368 (2)
O2—C161.418 (2)C11—H11A0.9300
O3—C31.3541 (18)C12—C131.397 (2)
O3—C171.435 (2)C12—H12A0.9300
C1—C21.371 (2)C13—C141.385 (2)
C1—C61.4042 (19)C14—C151.382 (2)
C1—H1A0.9300C14—H14A0.9300
C2—C31.409 (2)C15—H15A0.9300
C3—C41.378 (2)C16—H16A0.9600
C4—C51.387 (2)C16—H16B0.9600
C4—H4A0.9300C16—H16C0.9600
C5—C61.378 (2)C17—H17A0.9600
C5—H5A0.9300C17—H17B0.9600
C6—C71.489 (2)C17—H17C0.9600
C7—C81.469 (2)C18—H18A0.9600
C8—C91.323 (2)C18—H18B0.9600
C8—H8A0.9300C18—H18C0.9600
C9—C101.458 (2)
C13—S1—C18104.06 (9)C12—C11—C10121.70 (15)
C2—O2—C16116.87 (13)C12—C11—H11A119.1
C3—O3—C17117.05 (13)C10—C11—H11A119.1
C2—C1—C6120.90 (13)C11—C12—C13120.67 (15)
C2—C1—H1A119.6C11—C12—H12A119.7
C6—C1—H1A119.6C13—C12—H12A119.7
O2—C2—C1125.80 (13)C14—C13—C12118.54 (15)
O2—C2—C3114.56 (13)C14—C13—S1124.81 (12)
C1—C2—C3119.63 (12)C12—C13—S1116.64 (12)
O3—C3—C4124.80 (13)C15—C14—C13119.97 (14)
O3—C3—C2115.71 (13)C15—C14—H14A120.0
C4—C3—C2119.49 (13)C13—C14—H14A120.0
C3—C4—C5120.39 (14)C14—C15—C10122.21 (14)
C3—C4—H4A119.8C14—C15—H15A118.9
C5—C4—H4A119.8C10—C15—H15A118.9
C6—C5—C4120.73 (14)O2—C16—H16A109.5
C6—C5—H5A119.6O2—C16—H16B109.5
C4—C5—H5A119.6H16A—C16—H16B109.5
C5—C6—C1118.85 (13)O2—C16—H16C109.5
C5—C6—C7122.40 (13)H16A—C16—H16C109.5
C1—C6—C7118.69 (12)H16B—C16—H16C109.5
O1—C7—C8120.64 (15)O3—C17—H17A109.5
O1—C7—C6119.91 (14)O3—C17—H17B109.5
C8—C7—C6119.44 (13)H17A—C17—H17B109.5
C9—C8—C7122.08 (14)O3—C17—H17C109.5
C9—C8—H8A119.0H17A—C17—H17C109.5
C7—C8—H8A119.0H17B—C17—H17C109.5
C8—C9—C10127.74 (14)S1—C18—H18A109.5
C8—C9—H9A116.1S1—C18—H18B109.5
C10—C9—H9A116.1H18A—C18—H18B109.5
C15—C10—C11116.89 (14)S1—C18—H18C109.5
C15—C10—C9120.21 (13)H18A—C18—H18C109.5
C11—C10—C9122.91 (14)H18B—C18—H18C109.5
C16—O2—C2—C17.8 (2)C5—C6—C7—C812.6 (2)
C16—O2—C2—C3172.66 (15)C1—C6—C7—C8170.27 (13)
C6—C1—C2—O2179.74 (13)O1—C7—C8—C91.3 (3)
C6—C1—C2—C30.8 (2)C6—C7—C8—C9177.77 (14)
C17—O3—C3—C44.9 (2)C7—C8—C9—C10177.71 (15)
C17—O3—C3—C2174.67 (17)C8—C9—C10—C15177.66 (16)
O2—C2—C3—O31.0 (2)C8—C9—C10—C112.3 (3)
C1—C2—C3—O3179.45 (14)C15—C10—C11—C120.3 (3)
O2—C2—C3—C4179.36 (15)C9—C10—C11—C12179.63 (18)
C1—C2—C3—C40.2 (2)C10—C11—C12—C130.8 (3)
O3—C3—C4—C5178.71 (16)C11—C12—C13—C141.0 (3)
C2—C3—C4—C50.9 (3)C11—C12—C13—S1177.93 (16)
C3—C4—C5—C60.6 (3)C18—S1—C13—C144.20 (19)
C4—C5—C6—C10.3 (2)C18—S1—C13—C12176.97 (16)
C4—C5—C6—C7177.46 (15)C12—C13—C14—C150.1 (2)
C2—C1—C6—C51.0 (2)S1—C13—C14—C15178.71 (13)
C2—C1—C6—C7178.28 (13)C13—C14—C15—C101.0 (2)
C5—C6—C7—O1168.32 (16)C11—C10—C15—C141.2 (2)
C1—C6—C7—O18.8 (2)C9—C10—C15—C14178.74 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C16—H16B···O1i0.962.333.235 (2)157
C17—H17A···O3ii0.962.473.344 (2)151
C4—H4A···Cg1iii0.932.793.5776 (17)143
Symmetry codes: (i) y1/2, x+1/2, z1/2; (ii) y1, x+1, z1; (iii) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H18O3S
Mr314.38
Crystal system, space groupTetragonal, P421c
Temperature (K)296
a, c (Å)19.0863 (7), 8.9633 (4)
V3)3265.2 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.60 × 0.27 × 0.21
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.886, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
65941, 4760, 3944
Rint0.028
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.100, 1.03
No. of reflections4760
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.18
Absolute structureFlack (1983), 2109 Friedel pairs
Absolute structure parameter0.01 (7)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C16—H16B···O1i0.962.333.235 (2)157
C17—H17A···O3ii0.962.473.344 (2)151
C4—H4A···Cg1iii0.932.793.5776 (17)143
Symmetry codes: (i) y1/2, x+1/2, z1/2; (ii) y1, x+1, z1; (iii) x1, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and SIJA thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grants (Nos.1001/PFIZIK/811160 and 1001/PFIZIK/ 811151).

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChurkin, Yu. D., Panfilova, L. V. & Boreko, E. I. (1982). Pharm. Chem. J. 16, 103–105.  CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Yeap, C. S., Prasad, D. J., Nayak, S. P. & Laxmana, K. (2011). Acta Cryst. E67, o241.  CrossRef IUCr Journals Google Scholar
First citationNarayana, B., Mustafa, K., Sarojini, B. K., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o4422–o4423.  CrossRef IUCr Journals Google Scholar
First citationRajendra Prasad, Y., Praveen Kumar, P. & Ravi Kumar, P. (2008). E-J. Chem. 5, 144–148.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivakumar, P. M., Geetha Babu, S. M. & Mukesh, D. (2007). Chem. Pharm. Bull. 55, 44–49.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWon, S.-J., Liu, C.-T., Tsao, L.-T., Weng, J.-R., Ko, H.-H., Wang, J.-P. & Lin, C.-N. (2005). Eur. J. Med. Chem. 40, 103–112.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds