organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2381-o2382

4′-[5-(4-Fluoro­phen­yl)pyridin-3-yl]-1′-methyl­di­spiro­[indan-2,2′-pyrrolidine-3′,2′′-indan]-1,3,1′′-trione

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 12 August 2011; accepted 14 August 2011; online 27 August 2011)

In the title compound, C32H23FN2O3, the pyrrolidine ring adopts an envelope conformation. The monoketo- and diketo-substituted five-membered rings are in envelope and half-chair conformations, respectively. The mol­ecular structure is stabilized by an intra­molecular C—H⋯O hydrogen bond, which generates an S(6) ring motif. In the crystal, mol­ecules are linked via inter­molecular C—H⋯N and C—H⋯O hydrogen bonds into a three-dimensional network. The crystal structure is further consolidated by C—H⋯π inter­actions.

Related literature

For general background to and the biological activity of the title compound, see: Chande et al. (2005[Chande, M. S., Verma, R. S., Barve, P. A. & Khanwelkar, R. R. (2005). Eur. J. Med. Chem. 40, 1143-1148.]); Prasanna et al. (2010[Prasanna, P., Balamurugan, K., Perumal, S. & Yogeeswari, P. (2010). Eur. J. Med. Chem. 45, 5653-5661.]); Karthikeyan et al. (2010[Karthikeyan, S. V., Devi Bala, B., Alex Raja, V. P., Perumal, S., Yogeeswari, P. & Sriram, D. (2010). Bioorg. Med. Chem. Lett. 20, 350-353.]); Dye (2002[Dye, C. (2002). Program of the 4th World Congress on Tuberculosis, Washington DC, USA, June 3-5.]); Duncan & Barry (2004[Duncan, K. & Barry, C. E. (2004). Curr Opin Microbiol. 7, 460-465.]). For related structures, see: Kumar et al. (2010[Kumar, R. S., Osman, H., Ali, M. A., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o1540-o1541.]); Wei et al. (2011[Wei, A. C., Ali, M. A., Choon, T. S., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2383.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C32H23FN2O3

  • Mr = 502.52

  • Monoclinic, P 21 /c

  • a = 14.8997 (2) Å

  • b = 7.7993 (1) Å

  • c = 23.0188 (3) Å

  • β = 112.638 (1)°

  • V = 2468.86 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.36 × 0.17 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.996

  • 27325 measured reflections

  • 7184 independent reflections

  • 4664 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.135

  • S = 0.99

  • 7184 reflections

  • 344 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N2/C22–C26 pyridyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯N2i 0.95 2.56 3.476 (2) 163
C13—H13A⋯N1ii 0.95 2.45 3.387 (2) 168
C15—H15A⋯O2iii 0.95 2.44 3.381 (3) 169
C18—H18A⋯O2 0.99 2.40 3.077 (2) 125
C20—H20A⋯O3iv 0.99 2.55 3.318 (2) 135
C4—H4ACg1v 0.95 2.65 3.552 (2) 159
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Spiro compounds have drawn considerable attention due to their antiseptic, analgesic and broad-spectrum antimicrobial activities (Chande et al., 2005). Many of these compounds are found to have comparable or even better antimycobacterial activities than some of the first-line TB drugs currently available (Prasanna et al., 2010; Karthikeyan et al., 2010). Tuberculosis (TB) is a chronic illness caused by Mycobacterium tuberculosis and kills approximately 2 million people each year (Dye, 2002). Thus there is an urgent need to develop potent new antitubercular agents with new mechanisms of action and low toxicity profiles which are effective against drug-susceptible and drug-resistant strains of M. tuberculosis (Duncan & Barry, 2004).

The molecular structure is shown in Fig. 1. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those in related crystal structures (Kumar et al., 2010; Wei et al., 2011).

The pyrrolidine ring (N1/C1/C10/C19/C20) adopts an envelope conformation, puckering parameters (Cremer & Pople, 1975) Q = 0.4855 (18) Å and ϕ = 41.8 (2)°, with atom C1 at the flap. The five-membered carbocyclic ring, C1-C3/C8/C9 is twisted on C9—C1, with puckering parameters Q = 0.1846 (18) Å and ϕ = 170.4 (6)°, thereby adopting a half-chair conformation. The five-membered carbocyclic ring, C10-C12/C17/C18 adopts an envelope conformation, with puckering parameters Q = 0.1277 (18) Å and ϕ = 359.4 (8)°, and with atom C10 at the flap.

If the six-membered rings N2/C22–C26, C3–C8, C12–C17 and C27–32 are denoted by R4, R5, R6, R7 then the dihedral angles for R4^R5, R5^R6, R4^R6 and R4^R7 are 69.10 (8), 39.95 (8), 78.82 (9) and 33.46 (9)°, respectively.

The molecular structure is stabilized by an intramolecular C18–H18A···O2 hydrogen bond (Table 1), which generates an S(6) ring motif (Fig. 1, Bernstein et al., 1995). In the crystal structure, Fig. 2, molecules are linked via intermolecular C6—H6A···N2, C13—H13A···N1, C15—H15A···O2 and C20—H20A···O3 hydrogen bonds (Table 1) into a three-dimensional network. The crystal structure is further consolidated by C4—H4A···Cg1 (Table 1) interactions, where Cg1 is the centroid of the N2/C22-C26 pyridyl ring.

Related literature top

For general background to and the biological activity of the title compound, see: Chande et al. (2005); Prasanna et al. (2010); Karthikeyan et al. (2010); Dye (2002); Duncan & Barry (2004). For related structures, see: Kumar et al. (2010); Wei et al. (2011). For reference bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For ring conformations, see: Cremer & Pople (1975).

Experimental top

A mixture of (E)-2-(5-(4-flurophenyl) pyridin-3-yl) methylene)-2, 3-dihydro-1H-indene-1-one (0.001 mmol), ninhydrin (0.001 mmol) and sarcosine (0.002 mmol) (1:1:2) was dissolved in methanol (10 ml) and refluxed for 4 h. After completion of the reaction, as evident from TLC, the mixture was poured into water (50 ml). The precipitated solid was filtered, washed with water and recrystallised from a pet. ether - ethyl acetate mixture (1:1) to yield the title compound as yellow crystals.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.95-1.00 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
4'-[5-(4-Fluorophenyl)pyridin-3-yl]-1'-methyldispiro[indan-2,2'-pyrrolidine- 3',2''-indan]-1,3,1''-trione top
Crystal data top
C32H23FN2O3F(000) = 1048
Mr = 502.52Dx = 1.352 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5035 reflections
a = 14.8997 (2) Åθ = 2.8–28.1°
b = 7.7993 (1) ŵ = 0.09 mm1
c = 23.0188 (3) ÅT = 100 K
β = 112.638 (1)°Plate, yellow
V = 2468.86 (6) Å30.36 × 0.17 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7184 independent reflections
Radiation source: fine-focus sealed tube4664 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ϕ and ω scansθmax = 30.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1620
Tmin = 0.968, Tmax = 0.996k = 1010
27325 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0641P)2]
where P = (Fo2 + 2Fc2)/3
7184 reflections(Δ/σ)max = 0.001
344 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C32H23FN2O3V = 2468.86 (6) Å3
Mr = 502.52Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.8997 (2) ŵ = 0.09 mm1
b = 7.7993 (1) ÅT = 100 K
c = 23.0188 (3) Å0.36 × 0.17 × 0.05 mm
β = 112.638 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7184 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4664 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.996Rint = 0.057
27325 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 0.99Δρmax = 0.29 e Å3
7184 reflectionsΔρmin = 0.27 e Å3
344 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.02526 (8)0.88163 (14)0.42880 (5)0.0352 (3)
O10.53116 (8)0.12559 (15)0.85281 (6)0.0203 (3)
O20.22158 (9)0.20148 (15)0.85535 (6)0.0212 (3)
O30.38943 (8)0.17977 (14)0.76020 (6)0.0187 (3)
N10.35687 (10)0.35355 (16)0.80293 (6)0.0142 (3)
N20.30185 (11)0.07049 (18)0.54724 (7)0.0200 (3)
C10.35388 (12)0.17247 (19)0.81705 (7)0.0133 (3)
C20.45362 (12)0.08860 (19)0.85599 (8)0.0146 (3)
C30.43827 (12)0.03372 (19)0.90018 (7)0.0144 (3)
C40.50353 (13)0.1516 (2)0.93975 (8)0.0180 (4)
H4A0.56770.16260.94090.022*
C50.47110 (14)0.2526 (2)0.97738 (8)0.0206 (4)
H5A0.51420.33381.00500.025*
C60.37646 (14)0.2379 (2)0.97576 (8)0.0232 (4)
H6A0.35600.31031.00150.028*
C70.31210 (13)0.1179 (2)0.93668 (8)0.0202 (4)
H7A0.24810.10620.93570.024*
C80.34458 (12)0.0158 (2)0.89913 (7)0.0153 (3)
C90.29442 (12)0.1276 (2)0.85693 (8)0.0158 (3)
C100.30739 (11)0.09841 (19)0.74827 (8)0.0130 (3)
C110.31431 (12)0.09919 (19)0.74843 (7)0.0140 (3)
C120.21613 (12)0.1679 (2)0.73393 (8)0.0155 (3)
C130.18807 (12)0.3386 (2)0.73650 (8)0.0178 (4)
H13A0.23470.42850.74870.021*
C140.09024 (13)0.3714 (2)0.72068 (9)0.0224 (4)
H14A0.06920.48550.72250.027*
C150.02184 (13)0.2386 (2)0.70207 (9)0.0225 (4)
H15A0.04510.26430.69090.027*
C160.05016 (12)0.0699 (2)0.69970 (8)0.0191 (4)
H16A0.00330.01960.68670.023*
C170.14895 (12)0.0346 (2)0.71677 (7)0.0150 (3)
C180.19694 (11)0.1362 (2)0.71821 (8)0.0155 (3)
H18A0.17810.21980.74390.019*
H18B0.17850.18260.67510.019*
C190.37211 (12)0.19184 (19)0.71845 (8)0.0137 (3)
H19A0.43350.12430.72970.016*
C200.39874 (12)0.3643 (2)0.75442 (8)0.0156 (3)
H20A0.47020.37900.77410.019*
H20B0.37040.46180.72570.019*
C210.40153 (13)0.4657 (2)0.85715 (8)0.0187 (4)
H21A0.36380.46150.88380.028*
H21B0.40260.58360.84270.028*
H21C0.46820.42750.88140.028*
C220.32635 (12)0.2035 (2)0.64733 (8)0.0150 (3)
C230.33944 (12)0.0714 (2)0.61049 (8)0.0171 (3)
H23A0.37750.02430.63150.021*
C240.24663 (12)0.2045 (2)0.51798 (8)0.0185 (4)
H24A0.22000.20590.47330.022*
C250.22608 (12)0.3425 (2)0.54969 (8)0.0157 (3)
C260.26802 (12)0.3398 (2)0.61536 (8)0.0157 (3)
H26A0.25660.43230.63850.019*
C270.16180 (12)0.4862 (2)0.51584 (8)0.0170 (3)
C280.08191 (13)0.4584 (2)0.45942 (8)0.0207 (4)
H28A0.07040.34710.44120.025*
C290.01936 (13)0.5917 (2)0.42980 (9)0.0247 (4)
H29A0.03490.57310.39150.030*
C300.03784 (13)0.7509 (2)0.45716 (9)0.0246 (4)
C310.11572 (13)0.7859 (2)0.51189 (9)0.0239 (4)
H31A0.12650.89820.52920.029*
C320.17830 (13)0.6522 (2)0.54108 (8)0.0210 (4)
H32A0.23320.67350.57880.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0311 (7)0.0361 (6)0.0309 (7)0.0124 (5)0.0036 (5)0.0117 (5)
O10.0139 (6)0.0242 (6)0.0226 (7)0.0003 (5)0.0068 (5)0.0041 (5)
O20.0162 (6)0.0261 (6)0.0231 (7)0.0044 (5)0.0097 (5)0.0004 (5)
O30.0148 (6)0.0168 (6)0.0249 (7)0.0031 (5)0.0082 (5)0.0019 (5)
N10.0177 (7)0.0118 (6)0.0132 (7)0.0006 (5)0.0060 (6)0.0002 (5)
N20.0198 (8)0.0215 (7)0.0194 (8)0.0020 (6)0.0083 (6)0.0038 (6)
C10.0131 (8)0.0136 (7)0.0130 (8)0.0008 (6)0.0049 (6)0.0015 (6)
C20.0146 (8)0.0132 (7)0.0151 (8)0.0009 (6)0.0047 (6)0.0013 (6)
C30.0164 (8)0.0138 (7)0.0118 (7)0.0004 (6)0.0042 (6)0.0008 (6)
C40.0214 (9)0.0162 (8)0.0138 (8)0.0022 (7)0.0039 (7)0.0014 (6)
C50.0305 (10)0.0135 (8)0.0141 (8)0.0027 (7)0.0044 (7)0.0019 (6)
C60.0372 (11)0.0181 (8)0.0165 (9)0.0046 (8)0.0128 (8)0.0015 (7)
C70.0230 (10)0.0205 (8)0.0199 (9)0.0025 (7)0.0115 (7)0.0004 (7)
C80.0176 (8)0.0154 (7)0.0126 (8)0.0015 (6)0.0056 (6)0.0019 (6)
C90.0136 (8)0.0177 (8)0.0158 (8)0.0008 (6)0.0051 (7)0.0006 (6)
C100.0109 (8)0.0131 (7)0.0149 (8)0.0008 (6)0.0050 (6)0.0010 (6)
C110.0152 (8)0.0149 (7)0.0118 (8)0.0006 (6)0.0051 (6)0.0011 (6)
C120.0142 (8)0.0163 (8)0.0159 (8)0.0016 (6)0.0059 (7)0.0009 (6)
C130.0186 (9)0.0161 (8)0.0197 (9)0.0007 (7)0.0085 (7)0.0006 (7)
C140.0238 (10)0.0186 (8)0.0266 (10)0.0068 (7)0.0118 (8)0.0024 (7)
C150.0152 (9)0.0294 (9)0.0233 (9)0.0054 (7)0.0078 (7)0.0016 (7)
C160.0136 (8)0.0244 (9)0.0187 (8)0.0008 (7)0.0055 (7)0.0005 (7)
C170.0143 (8)0.0179 (8)0.0132 (8)0.0001 (6)0.0059 (6)0.0003 (6)
C180.0135 (8)0.0157 (8)0.0163 (8)0.0019 (6)0.0047 (6)0.0024 (6)
C190.0122 (8)0.0150 (7)0.0147 (8)0.0001 (6)0.0060 (6)0.0006 (6)
C200.0177 (9)0.0149 (7)0.0138 (8)0.0027 (6)0.0057 (7)0.0010 (6)
C210.0203 (9)0.0185 (8)0.0150 (8)0.0016 (7)0.0043 (7)0.0013 (6)
C220.0137 (8)0.0179 (8)0.0150 (8)0.0009 (6)0.0072 (7)0.0003 (6)
C230.0153 (9)0.0182 (8)0.0193 (9)0.0005 (7)0.0082 (7)0.0012 (7)
C240.0171 (9)0.0231 (8)0.0152 (8)0.0044 (7)0.0059 (7)0.0027 (7)
C250.0135 (8)0.0183 (8)0.0162 (8)0.0038 (6)0.0066 (7)0.0002 (6)
C260.0165 (8)0.0157 (8)0.0160 (8)0.0001 (6)0.0074 (7)0.0013 (6)
C270.0150 (8)0.0220 (8)0.0149 (8)0.0016 (7)0.0070 (7)0.0020 (7)
C280.0191 (9)0.0278 (9)0.0149 (8)0.0007 (7)0.0063 (7)0.0001 (7)
C290.0187 (9)0.0371 (10)0.0157 (9)0.0010 (8)0.0039 (7)0.0028 (8)
C300.0212 (10)0.0280 (9)0.0229 (10)0.0075 (8)0.0065 (8)0.0117 (8)
C310.0223 (10)0.0207 (9)0.0270 (10)0.0004 (7)0.0075 (8)0.0053 (7)
C320.0188 (9)0.0225 (9)0.0187 (9)0.0021 (7)0.0038 (7)0.0037 (7)
Geometric parameters (Å, º) top
F1—C301.3702 (19)C15—C161.390 (2)
O1—C21.2200 (19)C15—H15A0.9500
O2—C91.2170 (19)C16—C171.397 (2)
O3—C111.2196 (19)C16—H16A0.9500
N1—C11.4537 (19)C17—C181.506 (2)
N1—C211.458 (2)C18—H18A0.9900
N1—C201.476 (2)C18—H18B0.9900
N2—C241.341 (2)C19—C221.515 (2)
N2—C231.344 (2)C19—C201.549 (2)
C1—C91.541 (2)C19—H19A1.0000
C1—C21.554 (2)C20—H20A0.9900
C1—C101.574 (2)C20—H20B0.9900
C2—C31.475 (2)C21—H21A0.9800
C3—C41.393 (2)C21—H21B0.9800
C3—C81.394 (2)C21—H21C0.9800
C4—C51.388 (2)C22—C261.391 (2)
C4—H4A0.9500C22—C231.395 (2)
C5—C61.401 (3)C23—H23A0.9500
C5—H5A0.9500C24—C251.399 (2)
C6—C71.393 (2)C24—H24A0.9500
C6—H6A0.9500C25—C261.396 (2)
C7—C81.392 (2)C25—C271.485 (2)
C7—H7A0.9500C26—H26A0.9500
C8—C91.481 (2)C27—C281.400 (2)
C10—C111.545 (2)C27—C321.401 (2)
C10—C181.548 (2)C28—C291.388 (2)
C10—C191.562 (2)C28—H28A0.9500
C11—C121.471 (2)C29—C301.371 (3)
C12—C171.391 (2)C29—H29A0.9500
C12—C131.403 (2)C30—C311.372 (3)
C13—C141.384 (2)C31—C321.388 (2)
C13—H13A0.9500C31—H31A0.9500
C14—C151.399 (2)C32—H32A0.9500
C14—H14A0.9500
C1—N1—C21115.76 (13)C12—C17—C18111.79 (14)
C1—N1—C20106.41 (12)C16—C17—C18128.35 (15)
C21—N1—C20115.26 (13)C17—C18—C10104.82 (12)
C24—N2—C23117.35 (15)C17—C18—H18A110.8
N1—C1—C9115.33 (13)C10—C18—H18A110.8
N1—C1—C2115.67 (13)C17—C18—H18B110.8
C9—C1—C2101.66 (12)C10—C18—H18B110.8
N1—C1—C1099.85 (12)H18A—C18—H18B108.9
C9—C1—C10112.61 (13)C22—C19—C20116.22 (13)
C2—C1—C10112.26 (12)C22—C19—C10113.93 (13)
O1—C2—C3126.58 (15)C20—C19—C10104.16 (13)
O1—C2—C1125.69 (15)C22—C19—H19A107.4
C3—C2—C1107.60 (13)C20—C19—H19A107.4
C4—C3—C8121.34 (15)C10—C19—H19A107.4
C4—C3—C2128.58 (16)N1—C20—C19105.02 (12)
C8—C3—C2110.06 (14)N1—C20—H20A110.7
C5—C4—C3117.37 (17)C19—C20—H20A110.7
C5—C4—H4A121.3N1—C20—H20B110.7
C3—C4—H4A121.3C19—C20—H20B110.7
C4—C5—C6121.71 (16)H20A—C20—H20B108.8
C4—C5—H5A119.1N1—C21—H21A109.5
C6—C5—H5A119.1N1—C21—H21B109.5
C7—C6—C5120.53 (16)H21A—C21—H21B109.5
C7—C6—H6A119.7N1—C21—H21C109.5
C5—C6—H6A119.7H21A—C21—H21C109.5
C8—C7—C6117.91 (16)H21B—C21—H21C109.5
C8—C7—H7A121.0C26—C22—C23116.61 (15)
C6—C7—H7A121.0C26—C22—C19123.18 (14)
C7—C8—C3121.11 (15)C23—C22—C19120.18 (14)
C7—C8—C9129.14 (16)N2—C23—C22124.41 (16)
C3—C8—C9109.66 (14)N2—C23—H23A117.8
O2—C9—C8126.60 (15)C22—C23—H23A117.8
O2—C9—C1125.80 (15)N2—C24—C25123.58 (16)
C8—C9—C1107.55 (13)N2—C24—H24A118.2
C11—C10—C18104.44 (12)C25—C24—H24A118.2
C11—C10—C19114.49 (13)C26—C25—C24117.20 (15)
C18—C10—C19116.40 (13)C26—C25—C27120.58 (15)
C11—C10—C1111.14 (13)C24—C25—C27122.22 (15)
C18—C10—C1111.13 (13)C22—C26—C25120.82 (15)
C19—C10—C199.42 (12)C22—C26—H26A119.6
O3—C11—C12127.60 (15)C25—C26—H26A119.6
O3—C11—C10124.71 (15)C28—C27—C32118.59 (16)
C12—C11—C10107.67 (13)C28—C27—C25121.06 (15)
C17—C12—C13121.85 (15)C32—C27—C25120.32 (15)
C17—C12—C11109.63 (14)C29—C28—C27120.67 (17)
C13—C12—C11128.51 (15)C29—C28—H28A119.7
C14—C13—C12117.71 (16)C27—C28—H28A119.7
C14—C13—H13A121.1C30—C29—C28118.33 (17)
C12—C13—H13A121.1C30—C29—H29A120.8
C13—C14—C15120.88 (16)C28—C29—H29A120.8
C13—C14—H14A119.6F1—C30—C29118.38 (16)
C15—C14—H14A119.6F1—C30—C31118.15 (17)
C16—C15—C14121.10 (16)C29—C30—C31123.47 (17)
C16—C15—H15A119.5C30—C31—C32117.89 (17)
C14—C15—H15A119.5C30—C31—H31A121.1
C15—C16—C17118.59 (16)C32—C31—H31A121.1
C15—C16—H16A120.7C31—C32—C27121.03 (17)
C17—C16—H16A120.7C31—C32—H32A119.5
C12—C17—C16119.84 (15)C27—C32—H32A119.5
C21—N1—C1—C962.03 (19)C10—C11—C12—C13171.27 (16)
C20—N1—C1—C9168.47 (13)C17—C12—C13—C140.6 (3)
C21—N1—C1—C256.37 (19)C11—C12—C13—C14179.77 (16)
C20—N1—C1—C273.13 (16)C12—C13—C14—C150.8 (3)
C21—N1—C1—C10177.04 (13)C13—C14—C15—C160.8 (3)
C20—N1—C1—C1047.54 (15)C14—C15—C16—C170.4 (3)
N1—C1—C2—O134.0 (2)C13—C12—C17—C161.9 (3)
C9—C1—C2—O1159.71 (16)C11—C12—C17—C16178.80 (15)
C10—C1—C2—O179.72 (19)C13—C12—C17—C18179.42 (15)
N1—C1—C2—C3142.07 (13)C11—C12—C17—C180.13 (19)
C9—C1—C2—C316.34 (16)C15—C16—C17—C121.8 (2)
C10—C1—C2—C3104.23 (15)C15—C16—C17—C18179.80 (16)
O1—C2—C3—C411.5 (3)C12—C17—C18—C108.03 (18)
C1—C2—C3—C4172.51 (15)C16—C17—C18—C10173.44 (16)
O1—C2—C3—C8167.33 (16)C11—C10—C18—C1712.09 (16)
C1—C2—C3—C88.67 (18)C19—C10—C18—C17139.37 (14)
C8—C3—C4—C51.0 (2)C1—C10—C18—C17107.82 (14)
C2—C3—C4—C5179.71 (16)C11—C10—C19—C2282.84 (17)
C3—C4—C5—C60.3 (2)C18—C10—C19—C2239.30 (19)
C4—C5—C6—C71.2 (3)C1—C10—C19—C22158.66 (13)
C5—C6—C7—C80.8 (3)C11—C10—C19—C20149.54 (13)
C6—C7—C8—C30.5 (2)C18—C10—C19—C2088.32 (16)
C6—C7—C8—C9175.63 (16)C1—C10—C19—C2031.03 (14)
C4—C3—C8—C71.4 (2)C1—N1—C20—C1927.63 (16)
C2—C3—C8—C7179.65 (15)C21—N1—C20—C19157.41 (13)
C4—C3—C8—C9175.39 (14)C22—C19—C20—N1130.35 (14)
C2—C3—C8—C93.53 (18)C10—C19—C20—N14.16 (16)
C7—C8—C9—O213.4 (3)C20—C19—C22—C2631.0 (2)
C3—C8—C9—O2163.05 (16)C10—C19—C22—C2690.10 (18)
C7—C8—C9—C1169.08 (16)C20—C19—C22—C23150.83 (15)
C3—C8—C9—C114.43 (18)C10—C19—C22—C2388.05 (18)
N1—C1—C9—O233.2 (2)C24—N2—C23—C221.3 (2)
C2—C1—C9—O2159.15 (16)C26—C22—C23—N21.8 (2)
C10—C1—C9—O280.52 (19)C19—C22—C23—N2179.93 (15)
N1—C1—C9—C8144.31 (14)C23—N2—C24—C250.5 (2)
C2—C1—C9—C818.35 (16)N2—C24—C25—C261.6 (2)
C10—C1—C9—C8101.97 (15)N2—C24—C25—C27177.84 (15)
N1—C1—C10—C11168.49 (13)C23—C22—C26—C250.5 (2)
C9—C1—C10—C1168.64 (16)C19—C22—C26—C25178.74 (15)
C2—C1—C10—C1145.39 (17)C24—C25—C26—C221.0 (2)
N1—C1—C10—C1875.66 (15)C27—C25—C26—C22178.41 (15)
C9—C1—C10—C1847.21 (17)C26—C25—C27—C28145.25 (17)
C2—C1—C10—C18161.23 (13)C24—C25—C27—C2834.2 (2)
N1—C1—C10—C1947.52 (14)C26—C25—C27—C3232.6 (2)
C9—C1—C10—C19170.39 (12)C24—C25—C27—C32147.97 (17)
C2—C1—C10—C1975.59 (14)C32—C27—C28—C291.2 (3)
C18—C10—C11—O3169.18 (15)C25—C27—C28—C29176.67 (16)
C19—C10—C11—O340.7 (2)C27—C28—C29—C300.0 (3)
C1—C10—C11—O370.9 (2)C28—C29—C30—F1178.37 (16)
C18—C10—C11—C1212.43 (17)C28—C29—C30—C310.9 (3)
C19—C10—C11—C12140.87 (14)F1—C30—C31—C32178.73 (16)
C1—C10—C11—C12107.48 (15)C29—C30—C31—C320.6 (3)
O3—C11—C12—C17173.71 (16)C30—C31—C32—C270.7 (3)
C10—C11—C12—C177.96 (18)C28—C27—C32—C311.6 (3)
O3—C11—C12—C137.1 (3)C25—C27—C32—C31176.31 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N2/C22–C26 pyridyl ring.
D—H···AD—HH···AD···AD—H···A
C6—H6A···N2i0.952.563.476 (2)163
C13—H13A···N1ii0.952.453.387 (2)168
C15—H15A···O2iii0.952.443.381 (3)169
C18—H18A···O20.992.403.077 (2)125
C20—H20A···O3iv0.992.553.318 (2)135
C4—H4A···Cg1v0.952.653.552 (2)159
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y1, z; (iii) x, y1/2, z+3/2; (iv) x+1, y+1/2, z+3/2; (v) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC32H23FN2O3
Mr502.52
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.8997 (2), 7.7993 (1), 23.0188 (3)
β (°) 112.638 (1)
V3)2468.86 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.36 × 0.17 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.968, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
27325, 7184, 4664
Rint0.057
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.135, 0.99
No. of reflections7184
No. of parameters344
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N2/C22–C26 pyridyl ring.
D—H···AD—HH···AD···AD—H···A
C6—H6A···N2i0.952.563.476 (2)163
C13—H13A···N1ii0.952.453.387 (2)168
C15—H15A···O2iii0.952.443.381 (3)169
C18—H18A···O20.992.403.077 (2)125
C20—H20A···O3iv0.992.553.318 (2)135
C4—H4A···Cg1v0.952.653.552 (2)159
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y1, z; (iii) x, y1/2, z+3/2; (iv) x+1, y+1/2, z+3/2; (v) x+1, y1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for providing research facilities. HKF and CKQ also thank USM for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChande, M. S., Verma, R. S., Barve, P. A. & Khanwelkar, R. R. (2005). Eur. J. Med. Chem. 40, 1143–1148.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDuncan, K. & Barry, C. E. (2004). Curr Opin Microbiol. 7, 460–465.  CrossRef CAS Google Scholar
First citationDye, C. (2002). Program of the 4th World Congress on Tuberculosis, Washington DC, USA, June 3–5.  Google Scholar
First citationKarthikeyan, S. V., Devi Bala, B., Alex Raja, V. P., Perumal, S., Yogeeswari, P. & Sriram, D. (2010). Bioorg. Med. Chem. Lett. 20, 350–353.  CrossRef CAS Google Scholar
First citationKumar, R. S., Osman, H., Ali, M. A., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o1540–o1541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPrasanna, P., Balamurugan, K., Perumal, S. & Yogeeswari, P. (2010). Eur. J. Med. Chem. 45, 5653–5661.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, A. C., Ali, M. A., Choon, T. S., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2383.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2381-o2382
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds