organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2535-o2536

3-[2-(2,6-Di­chloro­anilino)benz­yl]-4-[(4-meth­­oxy­benzyl­­idene)amino]-1H-1,2,4-triazole-5(4H)-thione

aDepartment of Physics, Sri D Devaraja Urs Govt. First Grade College, Hunsur 571 105, Mysore District, Karnataka, India, bDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, cDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India, dDepartment of Pharmacy, JSS College of Pharmacy, Mysore 570015, Karnataka, India, and eDepartment of P.G. Studies in Physics, L V D College, Raichur 584 103, Karnataka, India.
*Correspondence e-mail: vinduvahinim@yahoo.in

(Received 22 August 2011; accepted 24 August 2011; online 31 August 2011)

In the title compound, C23H19Cl2N5OS, the triazole ring makes dihedral angles of 24.81 (18), 69.94 (19) and 35.68 (18)° with the dichloro­phenyl, benzene and meth­oxy­phenyl rings, respectively. An intra­molecular N—H⋯N hydrogen bond occurs. In the crystal, inversion dimers linked by pairs of N—H⋯S hydrogen bonds occur. In addition, there are weak C—H⋯π inter­actions involving the dichloro­phenyl and triazole rings.

Related literature

For general background to Schiff bases, see: Dhar & Taploo (1982[Dhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501-506.]). For the biological and pharmaceutical activity of related compounds, see: Kiran et al. (2006[Kiran, S., Manjeet, S. B. & Parikshit, T. (2006). Eur. J. Med. Chem. 41, 147-153.]); Shi et al. (2007[Shi, L., Ge, H.-M., Tan, S.-H., Li, H.-Q., Song, Y.-C., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem. 42, 558-564.]); Dharmarajan et al. (2006[Dharmarajan, S., Perumal, Y., Naga, S. M. & Vivek, S. (2006). Bioorg. Med. Chem. Lett. 16, 2127-2129.]); Hearn & Cynamon (2004[Hearn, J. M. & Cynamon, M. H. (2004). J. Antimicrob. Chemother. 53, 185-191.]); Dimova et al. (2001[Dimova, V., Ragenovic, K. C., Kakurinov, V., Molnar, D. G. & Buzarovaska, A. (2001). Molecules, 6, 815-824.]). For a related structure, see: Yang et al. (2005[Yang, X.-Y., Shang, Y.-Q., Yu, G.-P., Zhang, P.-Y., Li, W.-H. & Hou, B.-R. (2005). Acta Cryst. E61, o3371-o3372.]).

[Scheme 1]

Experimental

Crystal data
  • C23H19Cl2N5OS

  • Mr = 484.39

  • Triclinic, [P \overline 1]

  • a = 7.9438 (4) Å

  • b = 10.9163 (7) Å

  • c = 14.0384 (8) Å

  • α = 75.332 (5)°

  • β = 75.807 (5)°

  • γ = 88.410 (5)°

  • V = 1140.98 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 293 K

  • 0.22 × 0.15 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.790, Tmax = 1.000

  • 7560 measured reflections

  • 4009 independent reflections

  • 2735 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.159

  • S = 1.06

  • 4009 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the triazole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯N6 0.86 2.35 3.047 (4) 139
N8—H8⋯S3i 0.86 2.40 3.246 (3) 170
C11—H11⋯Cg1ii 0.93 2.79 3.465 (4) 125
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x+1, y, z-1.

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff bases are condensation products of primary amines with carbonyl compounds. The presence of the lone pair of electrons in the sp2 hybridized orbital of the nitrogen atom of the azomethine group is of considerable chemical and biological importance. Schiff bases are some of the most widely used organic compounds. They are used as pigments and dyes, catalysts, intermediates in organic synthesis, and polymer stabilisers (Dhar & Taploo, 1982). They have also been shown to exhibit a broad range of biological properties, including antimalarial, antibacterial, antifungal, antiviral and antitubercular activities (Kiran et al., 2006; Shi et al., 2007; Dharmarajan et al., 2006; Hearn & Cynamon, 2004). Imine or azomethine groups are present in various natural, natural-derived and non-natural compounds. The imine group present in such compounds has been shown to be critical to their biological activities (Dimova et al., 2001).

The asymmetric unit of 5-[2-[(2,6-dichlorophenyl)amino]benzyl]-4- (4-methoxybenzylideneamino)-2H-1,2,4-triazole-3(4H)-thione, C23H19Cl2N5OS, contains one molecule (Fig. 1). The triazole ring makes dihedral angles of 24.81 (18)°, 69.94 (19)° and 35.68 (18)° with the dichlorophenyl, benzene and methoxyphenyl rings (C10–C15), (C16–C21) and (C26–C31), respectively. The bond distances and angles are in good agreement with those in a related crystal structure (Yang et al., 2005). In the crystal, the structure is stabilized by intramolecular N5—H5···N6 and intermolecular N8—H8···S3 hydrogen bonds (Table 1). In addition, there are weak C—H···π interactions involving the dichlorophenyl and triazole rings. In the crystal structure, molecules are stacked along the b axis (Fig. 2).

Related literature top

For general background to Schiff bases, see: Dhar & Taploo (1982). For the biological and pharmaceutical activity of related compounds, see: Kiran et al. (2006); Shi et al. (2007); Dharmarajan et al. (2006); Hearn & Cynamon (2004); Dimova et al. (2001). For a related structure, see: Yang et al. (2005).

Experimental top

An equimolar mixture of thiocarbohydrazide (TCH) and diclofeac was mixed and heated gently on an oil bath until the evolution of H2S ceased. The reaction mixture was then cooled to room temperature and poured into ice cold water and stirred well. The resulting product was filtered, dried and recrystallized to obtain 3-[2-[(2,6-dichlorophenyl) amino] benzyl]-4-amino-5-mercapto(4H)-1,2,4-triazole.

To a solution of 3-[2-[(2,6-dichlorophenyl) amino] benzyl]-4-amino-5-mercapto(4H)- 1,2,4-triazole (10 mmol) in glacial acetic acid (15 ml) was added 10 mmol of anisaldehyde. The reaction mixture was then refluxed for 4 h. The precipitated solid obtained after the elimination of glacial acetic acid was washed with cold water and filtered. The solid obtained was then recrystallized using methanol (yield-86%). M.p. 507–509 K.

Refinement top

All H atoms were placed at calculated positions and refined using a riding model. N—H = 0.86 Å, C—H = 0.97 Å for methylene, C—H = 0.93 Å for aromatic and C—H = 0.96 Å for methyl. Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C, N) for all other H atoms.

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2010); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title molecule with the displacement ellipsoids drawn at the 50% probability level. The H atoms are shown as spheres of arbitrary radii. The dashed line indicates the intramolecular hydrogen bond.
[Figure 2] Fig. 2. The crystal structure viewed down the b axis.
3-[2-(2,6-Dichloroanilino)benzyl]-4-[(4-methoxybenzylidene)amino]- 1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C23H19Cl2N5OSZ = 2
Mr = 484.39F(000) = 500
Triclinic, P1Dx = 1.410 Mg m3
Hall symbol: -P 1Melting point: 509 K
a = 7.9438 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9163 (7) ÅCell parameters from 4009 reflections
c = 14.0384 (8) Åθ = 2.7–25.0°
α = 75.332 (5)°µ = 0.40 mm1
β = 75.807 (5)°T = 293 K
γ = 88.410 (5)°Prism, colourless
V = 1140.98 (11) Å30.22 × 0.15 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
4009 independent reflections
Radiation source: fine-focus sealed tube2735 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 15.9821 pixels mm-1θmax = 25.0°, θmin = 2.7°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
k = 1212
Tmin = 0.790, Tmax = 1.000l = 1616
7560 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0714P)2 + 0.2386P]
where P = (Fo2 + 2Fc2)/3
4009 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C23H19Cl2N5OSγ = 88.410 (5)°
Mr = 484.39V = 1140.98 (11) Å3
Triclinic, P1Z = 2
a = 7.9438 (4) ÅMo Kα radiation
b = 10.9163 (7) ŵ = 0.40 mm1
c = 14.0384 (8) ÅT = 293 K
α = 75.332 (5)°0.22 × 0.15 × 0.12 mm
β = 75.807 (5)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
4009 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
2735 reflections with I > 2σ(I)
Tmin = 0.790, Tmax = 1.000Rint = 0.025
7560 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.06Δρmax = 0.37 e Å3
4009 reflectionsΔρmin = 0.44 e Å3
289 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05–01–2010 CrysAlis171. NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Elemental analysis for C23H19Cl2N5OS (484): Calculated C 57.03, H 3.95, N 14.46; Found C 56.65, H 3.87, N 14.39. IR (ν cm-1, KBr): 3331 (NH), 2931 (C—H aliphatic), 1604 (CN imine linkage), 1257 (CS), 1153 (C—O of methoxy group). 1H NMR (DMSO):δ (p.p.m.) = 3.80 (s, 3H, 4- OCH3), 4.23 (s, 2H, Ar—CH2), 6.19 (s, 1H, Ar—NH), 7.27–6.97 (m, 5H, Ar—H), 7.35 (d, 2H, Ar—H), 7.48 (d, 2H, Ar—H), 7.64 (d, 2H, Ar—H), 9.85 (s, 1H, CH), 13.46 (s, 1H, NH). 13 C NMR:δ (p.p.m.) = 28.05 (Ar—CH2), 121–134 (aromatic carbons), 149.52 (C5-of 1,2,4-triazole), 161.65 (C of imine linkage), 163.17 (C3-of 1,2,4-triazole).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.18788 (15)0.88750 (10)0.85215 (8)0.0827 (4)
Cl20.24757 (15)0.78540 (10)1.10115 (8)0.0812 (4)
S30.22012 (14)0.90073 (10)0.41182 (7)0.0742 (3)
O41.0724 (3)0.4658 (2)0.3076 (2)0.0755 (7)
N50.1553 (4)0.8259 (2)0.89938 (19)0.0510 (7)
H50.18320.89400.85130.061*
N60.2131 (4)0.9612 (3)0.6750 (2)0.0594 (8)
N70.3781 (3)0.8614 (2)0.57024 (18)0.0495 (7)
N80.1506 (4)0.9675 (3)0.5909 (2)0.0597 (8)
H80.05721.00540.58210.072*
N90.5297 (4)0.8041 (3)0.53284 (19)0.0546 (7)
C100.2520 (6)0.8508 (3)1.1467 (3)0.0814 (14)
H100.34290.85621.20150.098*
C110.0915 (6)0.8223 (3)1.1616 (3)0.0696 (11)
H110.07260.80841.22620.083*
C120.0435 (5)0.8140 (3)1.0804 (3)0.0561 (9)
C130.0187 (4)0.8306 (3)0.9827 (2)0.0461 (8)
C140.1480 (5)0.8606 (3)0.9718 (3)0.0543 (9)
C150.2817 (5)0.8718 (3)1.0521 (3)0.0702 (11)
H150.39130.89341.04220.084*
C160.2500 (4)0.7173 (3)0.8888 (2)0.0464 (8)
C170.2012 (5)0.6003 (3)0.9570 (3)0.0574 (9)
H170.10390.59251.01110.069*
C180.2970 (6)0.4949 (3)0.9447 (3)0.0718 (11)
H180.26480.41710.99160.086*
C190.4378 (6)0.5039 (4)0.8646 (4)0.0759 (12)
H190.50030.43260.85600.091*
C200.4865 (5)0.6194 (4)0.7968 (3)0.0650 (10)
H200.58250.62500.74230.078*
C210.3969 (4)0.7281 (3)0.8072 (2)0.0494 (8)
C220.4599 (4)0.8547 (3)0.7349 (2)0.0547 (8)
H22A0.45750.91720.77350.066*
H22B0.57930.84880.69850.066*
C230.3522 (5)0.8972 (3)0.6606 (2)0.0521 (8)
C240.2465 (5)0.9101 (3)0.5241 (2)0.0544 (9)
C250.5168 (5)0.7271 (3)0.4798 (2)0.0581 (9)
H250.40860.71280.46940.070*
C260.6628 (5)0.6615 (3)0.4353 (2)0.0518 (8)
C270.8297 (5)0.6764 (3)0.4456 (2)0.0558 (9)
H270.85130.73160.48230.067*
C280.9630 (5)0.6107 (3)0.4021 (2)0.0573 (9)
H281.07450.62200.40910.069*
C290.9330 (5)0.5268 (3)0.3474 (2)0.0541 (8)
C300.7691 (5)0.5119 (3)0.3362 (3)0.0592 (9)
H300.74790.45640.29960.071*
C310.6365 (5)0.5787 (3)0.3789 (3)0.0640 (10)
H310.52590.56870.37000.077*
C321.0423 (6)0.3783 (5)0.2520 (4)0.1100 (17)
H32A1.14970.34090.22720.165*
H32B0.99730.42240.19560.165*
H32C0.95990.31300.29590.165*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0819 (8)0.0906 (7)0.1017 (8)0.0203 (6)0.0537 (6)0.0428 (6)
Cl20.0908 (8)0.0765 (7)0.0882 (7)0.0164 (6)0.0510 (6)0.0159 (5)
S30.0749 (7)0.0830 (7)0.0687 (6)0.0060 (6)0.0279 (5)0.0169 (5)
O40.0627 (17)0.0854 (18)0.0940 (18)0.0095 (14)0.0230 (14)0.0482 (15)
N50.0553 (18)0.0385 (14)0.0511 (15)0.0053 (12)0.0086 (13)0.0019 (12)
N60.061 (2)0.0668 (18)0.0522 (16)0.0066 (16)0.0165 (14)0.0156 (14)
N70.0478 (17)0.0534 (16)0.0455 (14)0.0031 (13)0.0115 (13)0.0089 (12)
N80.0598 (19)0.0663 (18)0.0539 (16)0.0106 (15)0.0212 (15)0.0108 (14)
N90.0556 (19)0.0581 (17)0.0484 (15)0.0009 (14)0.0095 (13)0.0134 (13)
C100.088 (3)0.052 (2)0.075 (3)0.006 (2)0.022 (2)0.004 (2)
C110.100 (3)0.049 (2)0.049 (2)0.010 (2)0.009 (2)0.0045 (16)
C120.070 (2)0.0380 (17)0.057 (2)0.0060 (16)0.0170 (18)0.0043 (15)
C130.054 (2)0.0304 (15)0.0510 (18)0.0007 (14)0.0115 (16)0.0068 (14)
C140.057 (2)0.0383 (17)0.071 (2)0.0026 (15)0.0199 (19)0.0160 (16)
C150.052 (2)0.051 (2)0.098 (3)0.0028 (17)0.004 (2)0.015 (2)
C160.0443 (19)0.0424 (17)0.0592 (19)0.0039 (15)0.0234 (16)0.0147 (15)
C170.060 (2)0.0435 (19)0.068 (2)0.0002 (17)0.0195 (18)0.0086 (17)
C180.088 (3)0.045 (2)0.092 (3)0.011 (2)0.043 (3)0.017 (2)
C190.081 (3)0.063 (3)0.104 (3)0.035 (2)0.049 (3)0.036 (2)
C200.049 (2)0.083 (3)0.078 (2)0.022 (2)0.0300 (19)0.038 (2)
C210.0428 (19)0.059 (2)0.0560 (19)0.0041 (16)0.0241 (16)0.0199 (16)
C220.046 (2)0.071 (2)0.0493 (18)0.0040 (17)0.0130 (15)0.0165 (17)
C230.055 (2)0.0539 (19)0.0455 (18)0.0076 (17)0.0093 (16)0.0105 (15)
C240.056 (2)0.0509 (19)0.0497 (19)0.0072 (17)0.0087 (17)0.0047 (16)
C250.055 (2)0.057 (2)0.059 (2)0.0110 (17)0.0118 (17)0.0092 (18)
C260.055 (2)0.0504 (19)0.0457 (18)0.0058 (17)0.0056 (16)0.0093 (15)
C270.066 (2)0.055 (2)0.0490 (19)0.0101 (18)0.0196 (17)0.0111 (16)
C280.054 (2)0.062 (2)0.060 (2)0.0003 (18)0.0215 (17)0.0155 (17)
C290.059 (2)0.0513 (19)0.0526 (19)0.0038 (17)0.0164 (17)0.0110 (16)
C300.059 (2)0.058 (2)0.066 (2)0.0079 (18)0.0129 (18)0.0270 (17)
C310.054 (2)0.068 (2)0.074 (2)0.0113 (19)0.0163 (19)0.0233 (19)
C320.078 (3)0.134 (4)0.151 (4)0.009 (3)0.023 (3)0.102 (4)
Geometric parameters (Å, º) top
Cl1—C141.736 (3)C17—C181.385 (5)
Cl2—C121.722 (4)C17—H170.9300
S3—C241.668 (3)C18—C191.364 (5)
O4—C291.351 (4)C18—H180.9300
O4—C321.436 (5)C19—C201.372 (5)
N5—C131.398 (4)C19—H190.9300
N5—C161.406 (4)C20—C211.387 (4)
N5—H50.8600C20—H200.9300
N6—C231.291 (4)C21—C221.506 (5)
N6—N81.374 (4)C22—C231.485 (4)
N7—C241.387 (4)C22—H22A0.9700
N7—C231.387 (4)C22—H22B0.9700
N7—N91.390 (4)C25—C261.439 (5)
N8—C241.332 (4)C25—H250.9300
N8—H80.8600C26—C271.387 (5)
N9—C251.277 (4)C26—C311.394 (5)
C10—C111.358 (6)C27—C281.368 (5)
C10—C151.366 (6)C27—H270.9300
C10—H100.9300C28—C291.394 (5)
C11—C121.380 (5)C28—H280.9300
C11—H110.9300C29—C301.368 (5)
C12—C131.399 (4)C30—C311.368 (5)
C13—C141.392 (4)C30—H300.9300
C14—C151.374 (5)C31—H310.9300
C15—H150.9300C32—H32A0.9600
C16—C171.388 (4)C32—H32B0.9600
C16—C211.405 (4)C32—H32C0.9600
C29—O4—C32116.6 (3)C21—C20—H20119.0
C13—N5—C16124.4 (3)C20—C21—C16118.2 (3)
C13—N5—H5117.8C20—C21—C22120.7 (3)
C16—N5—H5117.8C16—C21—C22121.1 (3)
C23—N6—N8104.2 (3)C23—C22—C21112.3 (3)
C24—N7—C23108.2 (3)C23—C22—H22A109.2
C24—N7—N9130.0 (3)C21—C22—H22A109.2
C23—N7—N9121.0 (3)C23—C22—H22B109.2
C24—N8—N6114.6 (3)C21—C22—H22B109.2
C24—N8—H8122.7H22A—C22—H22B107.9
N6—N8—H8122.7N6—C23—N7110.6 (3)
C25—N9—N7116.4 (3)N6—C23—C22125.3 (3)
C11—C10—C15120.8 (4)N7—C23—C22123.8 (3)
C11—C10—H10119.6N8—C24—N7102.3 (3)
C15—C10—H10119.6N8—C24—S3129.5 (3)
C10—C11—C12119.7 (4)N7—C24—S3128.2 (3)
C10—C11—H11120.1N9—C25—C26122.7 (3)
C12—C11—H11120.1N9—C25—H25118.6
C11—C12—C13121.7 (4)C26—C25—H25118.6
C11—C12—Cl2118.4 (3)C27—C26—C31117.9 (3)
C13—C12—Cl2119.9 (3)C27—C26—C25123.3 (3)
C14—C13—N5121.6 (3)C31—C26—C25118.8 (3)
C14—C13—C12116.0 (3)C28—C27—C26120.6 (3)
N5—C13—C12122.3 (3)C28—C27—H27119.7
C15—C14—C13122.3 (3)C26—C27—H27119.7
C15—C14—Cl1118.8 (3)C27—C28—C29120.6 (3)
C13—C14—Cl1118.9 (3)C27—C28—H28119.7
C10—C15—C14119.4 (4)C29—C28—H28119.7
C10—C15—H15120.3O4—C29—C30124.3 (3)
C14—C15—H15120.3O4—C29—C28116.3 (3)
C17—C16—C21119.5 (3)C30—C29—C28119.4 (3)
C17—C16—N5121.5 (3)C31—C30—C29119.9 (3)
C21—C16—N5119.0 (3)C31—C30—H30120.0
C18—C17—C16120.2 (4)C29—C30—H30120.0
C18—C17—H17119.9C30—C31—C26121.7 (4)
C16—C17—H17119.9C30—C31—H31119.2
C19—C18—C17120.7 (4)C26—C31—H31119.2
C19—C18—H18119.7O4—C32—H32A109.5
C17—C18—H18119.7O4—C32—H32B109.5
C18—C19—C20119.3 (3)H32A—C32—H32B109.5
C18—C19—H19120.3O4—C32—H32C109.5
C20—C19—H19120.3H32A—C32—H32C109.5
C19—C20—C21122.1 (4)H32B—C32—H32C109.5
C19—C20—H20119.0
C23—N6—N8—C240.3 (4)C20—C21—C22—C23105.1 (4)
C24—N7—N9—C2540.8 (4)C16—C21—C22—C2377.1 (4)
C23—N7—N9—C25150.3 (3)N8—N6—C23—N70.8 (4)
C15—C10—C11—C120.2 (6)N8—N6—C23—C22174.4 (3)
C10—C11—C12—C131.9 (5)C24—N7—C23—N61.5 (4)
C10—C11—C12—Cl2176.8 (3)N9—N7—C23—N6172.7 (3)
C16—N5—C13—C14119.6 (3)C24—N7—C23—C22175.3 (3)
C16—N5—C13—C1264.8 (4)N9—N7—C23—C2213.6 (5)
C11—C12—C13—C142.4 (5)C21—C22—C23—N687.7 (4)
Cl2—C12—C13—C14176.3 (2)C21—C22—C23—N785.1 (4)
C11—C12—C13—N5178.2 (3)N6—N8—C24—N71.2 (4)
Cl2—C12—C13—N50.5 (4)N6—N8—C24—S3177.5 (3)
N5—C13—C14—C15176.7 (3)C23—N7—C24—N81.6 (3)
C12—C13—C14—C150.9 (5)N9—N7—C24—N8171.6 (3)
N5—C13—C14—Cl12.2 (4)C23—N7—C24—S3177.1 (2)
C12—C13—C14—Cl1178.1 (2)N9—N7—C24—S37.1 (5)
C11—C10—C15—C141.6 (6)N7—N9—C25—C26179.4 (3)
C13—C14—C15—C101.1 (5)N9—C25—C26—C270.4 (5)
Cl1—C14—C15—C10180.0 (3)N9—C25—C26—C31179.7 (3)
C13—N5—C16—C177.4 (5)C31—C26—C27—C280.6 (5)
C13—N5—C16—C21172.8 (3)C25—C26—C27—C28179.5 (3)
C21—C16—C17—C180.2 (5)C26—C27—C28—C290.5 (5)
N5—C16—C17—C18180.0 (3)C32—O4—C29—C301.3 (5)
C16—C17—C18—C191.4 (6)C32—O4—C29—C28179.4 (4)
C17—C18—C19—C201.2 (6)C27—C28—C29—O4179.7 (3)
C18—C19—C20—C210.2 (6)C27—C28—C29—C300.9 (5)
C19—C20—C21—C161.4 (5)O4—C29—C30—C31179.5 (3)
C19—C20—C21—C22176.4 (3)C28—C29—C30—C310.3 (5)
C17—C16—C21—C201.2 (4)C29—C30—C31—C260.8 (5)
N5—C16—C21—C20178.6 (3)C27—C26—C31—C301.2 (5)
C17—C16—C21—C22176.6 (3)C25—C26—C31—C30178.9 (3)
N5—C16—C21—C223.6 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the triazole ring.
D—H···AD—HH···AD···AD—H···A
N5—H5···N60.862.353.047 (4)139
N8—H8···S3i0.862.403.246 (3)170
C11—H11···Cg1ii0.932.793.465 (4)125
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y, z1.

Experimental details

Crystal data
Chemical formulaC23H19Cl2N5OS
Mr484.39
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.9438 (4), 10.9163 (7), 14.0384 (8)
α, β, γ (°)75.332 (5), 75.807 (5), 88.410 (5)
V3)1140.98 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.22 × 0.15 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
Tmin, Tmax0.790, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7560, 4009, 2735
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.159, 1.06
No. of reflections4009
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.44

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2010), CrysAlis PRO RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the triazole ring.
D—H···AD—HH···AD···AD—H···A
N5—H5···N60.862.353.047 (4)139
N8—H8···S3i0.862.403.246 (3)170
C11—H11···Cg1ii0.932.793.465 (4)125
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y, z1.
 

Acknowledgements

The authors thank Dr Binoy Krishna Saha, Department of Chemistry, Pondicherry University, for help with the data collection.

References

First citationDhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501–506.  CAS Google Scholar
First citationDharmarajan, S., Perumal, Y., Naga, S. M. & Vivek, S. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.  Google Scholar
First citationDimova, V., Ragenovic, K. C., Kakurinov, V., Molnar, D. G. & Buzarovaska, A. (2001). Molecules, 6, 815–824.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHearn, J. M. & Cynamon, M. H. (2004). J. Antimicrob. Chemother. 53, 185–191.  Google Scholar
First citationKiran, S., Manjeet, S. B. & Parikshit, T. (2006). Eur. J. Med. Chem. 41, 147–153.  Web of Science CrossRef PubMed Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, L., Ge, H.-M., Tan, S.-H., Li, H.-Q., Song, Y.-C., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem. 42, 558–564.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWatkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationYang, X.-Y., Shang, Y.-Q., Yu, G.-P., Zhang, P.-Y., Li, W.-H. & Hou, B.-R. (2005). Acta Cryst. E61, o3371–o3372.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2535-o2536
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds