metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1195-m1196

Poly[[tetra­aqua­bis­­(μ3-pyridine-2,6-di­carboxyl­ato)(μ2-pyridine-2,6-di­carboxyl­ato)dilanthanum(III)] dihydrate]

aDepartment of General Education Center, Yuanpei University, HsinChu 30015, Taiwan, and bDepartment of Biotechnology, Yuanpei University, No. 306 Yuanpei St, HsinChu 30015 Taiwan
*Correspondence e-mail: fmshen@mail.ypu.edu.tw

(Received 11 July 2011; accepted 1 August 2011; online 6 August 2011)

There are two independent LaIII cations in the polymeric title compound, {[La2(C7H3NO4)3(H2O)4]·2H2O}n. One is nine-coordinated in an LaN2O7 tricapped trigonal–prismatic geometry formed by three pyridine-2,6-dicarboxyl­ate anions and two water mol­ecules, while the other is ten-coordinated in an LaNO9 bicapped square-anti­prismatic geometry formed by four pyridine-2,6-dicarboxyl­ate anions and two water mol­ecules. The two LaIII cations are separated by a non-bonding distance of 5.026 (3) Å. The pyridine-2,6-dicarboxyl­ate anions bridge the LaIII cations, forming a three-dimensional polymeric complex. The crystal structure contains extensive classical O—H⋯O hydrogen bonds and weak inter­molecular C—H⋯O hydrogen bonds. The crystal structure is further consolidated by ππ stacking between pyridine rings, the shortest centroid–centroid distance between parallel pyridine rings being 3.700 (5) Å.

Related literature

For applications of lanthanide metal carboxyl­ate systems in supra­molecular chemistry and functional materials, see: Yang et al. (2011[Yang, L.-R., Song, S., Shao, C.-Y., Zhang, W., Zhang, H.-M., Bu, Z.-W. & Ren, T.-G. (2011). Synth. Met. In the press. ]); Chantal et al. (2008[Chantal, B. C., Jeannette, D. G., Auguste, F., Joel, J. & Jean, C. T. (2008). Inorg. Chim. Acta, 361, 2909-2917.]). For similar structures, see: Brouca et al. (2002[Brouca, C. C., Fernandes, A., Jaud, J. & Costes, J. P. (2002). Inorg. Chim. Acta, 332, 54-60.]); Ghosh & Bharadwaj (2004[Ghosh, S. K. & Bharadwaj, P. K. (2004). Inorg. Chem. 43, 2293-2298.]).

[Scheme 1]

Experimental

Crystal data
  • [La2(C7H3NO4)3(H2O)4]·2H2O

  • Mr = 881.23

  • Triclinic, [P \overline 1]

  • a = 10.4910 (2) Å

  • b = 10.9197 (2) Å

  • c = 13.0850 (3) Å

  • α = 77.915 (1)°

  • β = 76.702 (1)°

  • γ = 86.049 (1)°

  • V = 1426.14 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.04 mm−1

  • T = 293 K

  • 0.17 × 0.13 × 0.11 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.592, Tmax = 0.699

  • 10097 measured reflections

  • 4496 independent reflections

  • 4014 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.126

  • S = 1.03

  • 4496 reflections

  • 398 parameters

  • H-atom parameters constrained

  • Δρmax = 3.36 e Å−3

  • Δρmin = −1.06 e Å−3

Table 1
Selected bond lengths (Å)

La1—N1 2.644 (5)
La1—N2i 2.728 (6)
La1—O1 2.502 (5)
La1—O3 2.614 (5)
La1—O8i 2.575 (5)
La1—O11i 2.578 (5)
La1—O11ii 2.600 (5)
La1—O13 2.593 (5)
La1—O14 2.525 (5)
La2—N3iii 2.688 (6)
La2—O3 2.674 (5)
La2—O4 2.605 (5)
La2—O5 2.865 (6)
La2—O6 2.591 (5)
La2—O6iii 2.615 (5)
La2—O7 2.524 (5)
La2—O10iii 2.539 (5)
La2—O15 2.574 (5)
La2—O16 2.575 (6)
Symmetry codes: (i) -x+1, -y, -z; (ii) x, y, z+1; (iii) -x+1, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13A⋯O5 0.85 2.04 2.766 (8) 143
O13—H13B⋯O1iv 0.85 1.91 2.721 (7) 160
O14—H14A⋯O5 0.97 2.23 3.062 (8) 143
O14—H14B⋯O9v 0.83 2.44 3.225 (10) 160
O14—H14B⋯O10v 0.83 2.22 2.712 (8) 119
O15—H15A⋯O7iii 0.85 2.14 2.948 (8) 160
O15—H15B⋯O12ii 0.85 2.16 2.849 (7) 138
O16—H16A⋯O8 0.85 2.12 2.760 (8) 132
O16—H16B⋯O17iii 0.85 2.05 2.843 (15) 155
O17—H17A⋯O9vi 0.82 2.13 2.816 (17) 141
O17—H17B⋯O9vii 0.82 2.39 2.758 (15) 108
O18—H18A⋯O2viii 0.82 2.31 2.75 (2) 114
O18—H18B⋯O18ix 0.88 2.46 2.89 (3) 110
C11—H11⋯O2x 0.93 2.45 3.320 (11) 155
C12—H12⋯O18xi 0.93 2.51 3.36 (2) 152
Symmetry codes: (ii) x, y, z+1; (iii) -x+1, -y+1, -z; (iv) -x+1, -y, -z+1; (v) x, y-1, z; (vi) -x+1, -y+2, -z; (vii) x-1, y, z; (viii) -x, -y, -z+1; (ix) -x, -y+1, -z+1; (x) x, y+1, z-1; (xi) x, y, z-1.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Pyridine-2,6-dicarboxylic acid (pydH2) and its deprotonated anion behave as multifunctional ligands to act as bridging ligands in metal complexes with five coordination sites involving the oxygen atoms of the carboxylate groups and the nitrogen atom of the pyridine ring. In recent years, the chemistry of lanthanide metal carboxylate systems is of great interest because of their extensive usage in supramolecular chemistry and functional materials (Brouca et al. 2002; Ghosh et al. 2004; Yang et al. 2011; Chantal et al. 2008). Here, we report a new LaIII complex with pyridine-2,6-dicarboxylic acid, [[La2(pyd)3(H2O)4].2H2O]n, from hydrothermal reaction.

The structure of the title compound is shown as Fig 1. There are two independent LaIII ions where La(1) is nine coordinated with N2O7 donors sets to form tricapped trigonal prism geometries, where La(2) is ten coordinated with NO9 donor sets to from bicapped square antiprisms geometries. The selected bond lengths (Å) of title compound are listed in Table 2. The LaIII—O and LaIII—N distances are similar to those found in other LaIII complex (Brouca, et al.2002; Ghosh, et al. 2004). The bond distances and bond angles in the ligand moiety are within normal ranges.

The structure consists of two types of ligand-binding modes contributing to link the LaO5N2(H2O)2 and LaO7N(H2O)2 polyhedral chains to three-dimensional network. This network can be described in terms of a 20-membered ring related to each other by the intermediate C8 carboxylate group. It results in a La1—La1 distance equal to 4.440 (1) Å. A projection of one 20-membered ring along x axis is shown in Fig. 2. Rings built from eight lanthanum atoms can be seen. In these rings, long La—La distances are found:La1—La2 = 6.190 (3) Å through C8 carboxylate group of pda1, La1—La2 =5.026 (3) Å through C7 carboxylate group of pda2. The La2—La2 distance through theµ-O6 atom is apart from the others with the shortest value of 4.514 (2) Å.

In the title crystal structure stabilized via O—H···O and weak C—H···O hydrogen bonds (Fig.3) (full details and symmetry codes are given in Table 3). The ππ stacking interaction is also observed, the centroid···centroid distance between the parallel aryl ring being 3.969 (4)Å and 3.700 (5) Å [Cg2vi···Cg2(N2/C9—C13), Cg3vii···Cg3(N3/C16—C20)] (symmetry code: (vi)1-X, 1-Y, 1-Z,(vii) 2-X, 1-Y, –Z). C1—O2···Cg1viii((N1/C2—C6) is 3.892 (6) Å((viii) –X, –Y, 1-Z).

Related literature top

For applications of lanthanide metal carboxylate systems in supramolecular chemistry and functional materials, see: Yang et al. (2011); Chantal et al. (2008). For similar structures, see: Brouca et al. (2002); Ghosh & Bharadwaj (2004).

Experimental top

LaCl3.6H2O (0.0899 g, 0.25 mmol), pydridine-2,6-dicarboxylic acid (0.0418 g, 0.25 mmol) and 1,2-bis(4-pyridyl)ethane were mixed in 10 ml of deionized water. After stirring for 30 min, the mixture was placed in a 23 ml Teflon-lined reactor, heated at 453 K for 72 h, then cooled slowly to room temperature. The colorless transparent single crystals of the title compound were obtained in 35.10% yield (based on La).

Refinement top

Water H atoms were placed in chemical sensible positions and Uiso(H)= 1.5Ueq(O). Other H atoms were positioned geometrically with C—H = 0.93 Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C). The precise of the structure is low.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. H atoms have been omitted for clarity [symmetry code:(i) x, y, z + 1; (ii) -x + 1, -y, -z; (iii) -x + 1, -y + 1, -z].
[Figure 2] Fig. 2. Perspective view of carboxylate-bridged-metal rings of La8C2O10.
[Figure 3] Fig. 3. The molecular packing for the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
Poly[[tetraaquabis(µ3-pyridine-2,6-dicarboxylato)(µ2-pyridine- 2,6-dicarboxylato)dilanthanum(III)] dihydrate] top
Crystal data top
[La2(C7H3NO4)3(H2O)4]·2H2OZ = 2
Mr = 881.23F(000) = 852
Triclinic, P1Dx = 2.052 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4910 (2) ÅCell parameters from 11712 reflections
b = 10.9197 (2) Åθ = 2.0–25.4°
c = 13.0850 (3) ŵ = 3.04 mm1
α = 77.915 (1)°T = 293 K
β = 76.702 (1)°Prism, colorless
γ = 86.049 (1)°0.17 × 0.13 × 0.11 mm
V = 1426.14 (5) Å3
Data collection top
Nonius KappaCCD
diffractometer
4496 independent reflections
Radiation source: fine-focus sealed tube4014 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 9 pixels mm-1θmax = 24.2°, θmin = 2.8°
ω/2θ scansh = 1211
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1212
Tmin = 0.592, Tmax = 0.699l = 1415
10097 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0734P)2 + 6.7391P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4496 reflectionsΔρmax = 3.36 e Å3
398 parametersΔρmin = 1.06 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=KFc[1+0.001Fc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0024 (7)
Crystal data top
[La2(C7H3NO4)3(H2O)4]·2H2Oγ = 86.049 (1)°
Mr = 881.23V = 1426.14 (5) Å3
Triclinic, P1Z = 2
a = 10.4910 (2) ÅMo Kα radiation
b = 10.9197 (2) ŵ = 3.04 mm1
c = 13.0850 (3) ÅT = 293 K
α = 77.915 (1)°0.17 × 0.13 × 0.11 mm
β = 76.702 (1)°
Data collection top
Nonius KappaCCD
diffractometer
4496 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
4014 reflections with I > 2σ(I)
Tmin = 0.592, Tmax = 0.699Rint = 0.059
10097 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.03Δρmax = 3.36 e Å3
4496 reflectionsΔρmin = 1.06 e Å3
398 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.44785 (3)0.02327 (3)0.35019 (3)0.0209 (2)
La20.41829 (4)0.30745 (3)0.02503 (3)0.0252 (2)
O10.3054 (5)0.1677 (5)0.5004 (4)0.0337 (17)
O20.1185 (5)0.2630 (5)0.5862 (5)0.0492 (19)
O30.3593 (4)0.1173 (4)0.1926 (4)0.0272 (16)
O40.1922 (5)0.2287 (5)0.1428 (4)0.0399 (17)
O50.6510 (6)0.2726 (5)0.1081 (5)0.0463 (19)
O60.6152 (5)0.4494 (4)0.0013 (4)0.0328 (17)
O70.5246 (5)0.3575 (5)0.1722 (4)0.0356 (17)
O80.5833 (5)0.1871 (4)0.2427 (4)0.0319 (17)
O90.9032 (7)0.8529 (6)0.0852 (8)0.081 (3)
O100.7051 (5)0.8128 (5)0.0666 (4)0.0393 (17)
O110.3996 (4)0.0804 (4)0.4828 (4)0.0262 (14)
O120.3094 (5)0.2114 (5)0.6006 (4)0.0374 (17)
O130.5983 (5)0.1647 (5)0.3240 (4)0.0423 (17)
O140.6366 (5)0.0113 (5)0.1893 (4)0.0446 (17)
O150.3833 (7)0.3857 (5)0.2021 (4)0.051 (2)
O160.5634 (7)0.1192 (5)0.0243 (5)0.053 (2)
N10.1958 (5)0.0293 (5)0.3519 (4)0.0275 (17)
N20.4329 (5)0.2539 (5)0.3812 (4)0.0236 (17)
N30.7679 (6)0.5744 (5)0.0726 (5)0.0294 (17)
C10.1846 (7)0.1889 (7)0.5121 (6)0.032 (2)
C20.1188 (7)0.1139 (6)0.4260 (6)0.031 (2)
C30.0104 (8)0.1294 (8)0.4229 (7)0.049 (3)
C40.0596 (8)0.0556 (10)0.3409 (8)0.061 (3)
C50.0167 (8)0.0337 (9)0.2682 (7)0.048 (3)
C60.1450 (7)0.0440 (7)0.2754 (6)0.029 (2)
C70.2362 (7)0.1378 (6)0.1992 (5)0.028 (2)
C80.5249 (7)0.2914 (7)0.2401 (6)0.031 (2)
C90.4483 (7)0.3385 (7)0.3250 (6)0.029 (2)
C100.3945 (8)0.4592 (7)0.3418 (6)0.041 (3)
C110.3248 (10)0.4928 (8)0.4212 (8)0.057 (3)
C120.3085 (9)0.4063 (7)0.4800 (7)0.045 (3)
C130.3647 (7)0.2886 (7)0.4586 (6)0.029 (2)
C140.3545 (6)0.1889 (6)0.5189 (5)0.0235 (19)
C150.6790 (7)0.3836 (6)0.0665 (5)0.031 (2)
C160.7822 (7)0.4492 (7)0.0935 (6)0.034 (2)
C170.8816 (8)0.3878 (8)0.1402 (7)0.047 (3)
C180.9714 (9)0.4597 (9)0.1617 (9)0.057 (3)
C190.9565 (8)0.5869 (8)0.1416 (8)0.049 (3)
C200.8519 (8)0.6423 (7)0.0988 (6)0.037 (2)
C210.8212 (8)0.7801 (8)0.0811 (7)0.043 (3)
O170.1654 (11)0.9097 (12)0.0235 (15)0.203 (8)
O180.0497 (18)0.4499 (17)0.4043 (14)0.262 (11)
H30.062400.188100.474800.0590*
H40.144500.066600.335000.0730*
H50.016900.086800.214800.0570*
H100.405200.515800.300400.0490*
H110.289000.573300.435000.0680*
H120.260600.427000.533100.0530*
H13A0.607500.226500.271400.0510*
H13B0.634400.182900.370700.0510*
H14A0.672500.070700.181200.0670*
H14B0.700900.058800.178200.0670*
H15A0.389400.464300.195400.0620*
H15B0.326200.359900.259000.0620*
H16A0.555500.095100.080100.0640*
H16B0.643700.134400.031600.0640*
H170.887200.300800.156400.0560*
H181.041500.421800.189600.0690*
H191.016000.636300.156500.0590*
H17A0.159100.986200.016200.3010*
H17B0.122800.888700.014900.3010*
H18A0.000000.444900.365000.3970*
H18B0.015200.407700.468800.3970*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.0260 (3)0.0196 (2)0.0178 (3)0.0006 (2)0.0064 (2)0.0041 (2)
La20.0369 (3)0.0184 (3)0.0199 (3)0.0007 (2)0.0063 (2)0.0032 (2)
O10.033 (3)0.031 (3)0.037 (3)0.008 (2)0.018 (2)0.007 (2)
O20.040 (3)0.046 (3)0.047 (4)0.008 (3)0.002 (3)0.017 (3)
O30.027 (2)0.028 (3)0.026 (3)0.001 (2)0.0075 (19)0.003 (2)
O40.037 (3)0.037 (3)0.037 (3)0.010 (2)0.008 (2)0.008 (2)
O50.074 (4)0.021 (3)0.044 (3)0.005 (3)0.021 (3)0.003 (2)
O60.046 (3)0.024 (3)0.031 (3)0.001 (2)0.017 (2)0.002 (2)
O70.051 (3)0.033 (3)0.028 (3)0.004 (2)0.012 (2)0.013 (2)
O80.046 (3)0.028 (3)0.028 (3)0.006 (2)0.018 (2)0.011 (2)
O90.060 (4)0.046 (4)0.148 (8)0.008 (3)0.043 (5)0.022 (4)
O100.044 (3)0.030 (3)0.049 (3)0.001 (2)0.012 (3)0.017 (2)
O110.029 (2)0.029 (3)0.022 (2)0.001 (2)0.005 (2)0.009 (2)
O120.046 (3)0.040 (3)0.030 (3)0.003 (2)0.020 (2)0.004 (2)
O130.058 (3)0.047 (3)0.024 (3)0.025 (3)0.012 (2)0.001 (2)
O140.049 (3)0.041 (3)0.037 (3)0.001 (3)0.008 (3)0.012 (3)
O150.097 (5)0.028 (3)0.026 (3)0.013 (3)0.002 (3)0.007 (2)
O160.087 (5)0.043 (3)0.040 (3)0.023 (3)0.030 (3)0.021 (3)
N10.029 (3)0.026 (3)0.026 (3)0.001 (2)0.004 (2)0.004 (2)
N20.030 (3)0.021 (3)0.021 (3)0.001 (2)0.007 (2)0.006 (2)
N30.038 (3)0.024 (3)0.027 (3)0.005 (3)0.009 (3)0.007 (3)
C10.044 (4)0.023 (4)0.024 (4)0.004 (3)0.004 (3)0.001 (3)
C20.026 (3)0.027 (4)0.035 (4)0.001 (3)0.003 (3)0.000 (3)
C30.035 (4)0.046 (5)0.057 (6)0.005 (4)0.012 (4)0.013 (4)
C40.022 (4)0.073 (6)0.078 (7)0.013 (4)0.020 (4)0.022 (5)
C50.035 (4)0.054 (5)0.048 (5)0.006 (4)0.015 (4)0.010 (4)
C60.029 (4)0.025 (4)0.032 (4)0.006 (3)0.009 (3)0.001 (3)
C70.035 (4)0.025 (4)0.024 (4)0.004 (3)0.011 (3)0.002 (3)
C80.041 (4)0.028 (4)0.025 (4)0.010 (3)0.003 (3)0.011 (3)
C90.032 (4)0.028 (4)0.027 (4)0.001 (3)0.001 (3)0.010 (3)
C100.061 (5)0.025 (4)0.037 (4)0.007 (4)0.012 (4)0.010 (3)
C110.092 (7)0.025 (4)0.060 (6)0.025 (4)0.033 (5)0.016 (4)
C120.060 (5)0.034 (4)0.043 (5)0.016 (4)0.024 (4)0.005 (4)
C130.032 (4)0.030 (4)0.025 (4)0.004 (3)0.007 (3)0.008 (3)
C140.023 (3)0.026 (4)0.021 (3)0.002 (3)0.006 (3)0.003 (3)
C150.045 (4)0.024 (4)0.021 (4)0.001 (3)0.003 (3)0.006 (3)
C160.036 (4)0.034 (4)0.032 (4)0.005 (3)0.006 (3)0.008 (3)
C170.057 (5)0.030 (4)0.055 (5)0.011 (4)0.024 (4)0.004 (4)
C180.051 (5)0.047 (5)0.083 (7)0.014 (4)0.038 (5)0.014 (5)
C190.044 (5)0.047 (5)0.064 (6)0.001 (4)0.022 (4)0.016 (4)
C200.041 (4)0.039 (4)0.035 (4)0.003 (3)0.011 (3)0.012 (4)
C210.041 (4)0.039 (4)0.053 (5)0.009 (4)0.010 (4)0.014 (4)
O170.079 (7)0.110 (9)0.37 (2)0.004 (6)0.030 (10)0.030 (12)
O180.26 (2)0.29 (2)0.244 (18)0.205 (18)0.175 (17)0.126 (17)
Geometric parameters (Å, º) top
La1—N12.644 (5)O16—H16B0.8500
La1—N2i2.728 (6)O17—H17A0.8200
La1—O12.502 (5)O17—H17B0.8200
La1—O32.614 (5)O18—H18A0.8200
La1—O8i2.575 (5)O18—H18B0.8800
La1—O11i2.578 (5)N1—C21.347 (9)
La1—O11ii2.600 (5)N1—C61.333 (9)
La1—O132.593 (5)N2—C131.348 (9)
La1—O142.525 (5)N2—C91.334 (9)
La2—N3iii2.688 (6)N3—C161.342 (10)
La2—O32.674 (5)N3—C201.334 (10)
La2—O42.605 (5)C1—C21.520 (11)
La2—O52.865 (6)C2—C31.388 (12)
La2—O62.591 (5)C3—C41.379 (13)
La2—O6iii2.615 (5)C4—C51.366 (14)
La2—O72.524 (5)C5—C61.385 (12)
La2—O10iii2.539 (5)C6—C71.492 (10)
La2—O152.574 (5)C8—C91.503 (11)
La2—O162.575 (6)C9—C101.392 (11)
O1—C11.273 (9)C10—C111.379 (13)
O2—C11.231 (10)C11—C121.379 (13)
O3—C71.282 (9)C12—C131.378 (11)
O4—C71.237 (9)C13—C141.495 (10)
O5—C151.245 (9)C15—C161.483 (11)
O6—C151.277 (9)C16—C171.391 (12)
O7—C81.256 (9)C17—C181.378 (13)
O8—C81.259 (9)C18—C191.363 (14)
O9—C211.228 (11)C19—C201.390 (12)
O10—C211.290 (10)C20—C211.498 (12)
O11—C141.281 (8)C3—H30.9300
O12—C141.239 (8)C4—H40.9300
O13—H13B0.8500C5—H50.9300
O13—H13A0.8500C10—H100.9300
O14—H14A0.9700C11—H110.9300
O14—H14B0.8300C12—H120.9300
O15—H15B0.8500C17—H170.9300
O15—H15A0.8500C18—H180.9300
O16—H16A0.8500C19—H190.9300
O1—La1—O3122.79 (16)La1i—O8—C8127.8 (5)
O1—La1—O13138.55 (16)La2iii—O10—C21122.7 (5)
O1—La1—O14144.85 (18)La1iv—O11—C14102.4 (4)
O1—La1—N161.51 (17)La1i—O11—C14128.0 (4)
O1—La1—O11ii72.38 (16)La1iv—O11—La1i118.03 (17)
O1—La1—O8i82.61 (17)H13A—O13—H13B108.00
O1—La1—O11i79.37 (16)La1—O13—H13A125.00
O1—La1—N2i70.50 (17)La1—O13—H13B126.00
O3—La1—O1383.61 (15)H14A—O14—H14B105.00
O3—La1—O1475.24 (16)La1—O14—H14A104.00
O3—La1—N161.30 (15)La1—O14—H14B130.00
O3—La1—O11ii111.02 (14)H15A—O15—H15B108.00
O3—La1—O8i78.74 (15)La2—O15—H15A115.00
O3—La1—O11i155.18 (14)La2—O15—H15B126.00
O3—La1—N2i134.90 (15)H16A—O16—H16B108.00
O13—La1—O1466.84 (17)La2—O16—H16A117.00
O13—La1—N1130.64 (17)La2—O16—H16B110.00
O11ii—La1—O1368.07 (15)H17A—O17—H17B108.00
O8i—La1—O13137.30 (16)H18A—O18—H18B108.00
O11i—La1—O1371.66 (15)La1—N1—C6121.0 (4)
O13—La1—N2i115.33 (17)C2—N1—C6118.9 (6)
O14—La1—N1126.86 (16)La1—N1—C2120.0 (4)
O11ii—La1—O14133.32 (16)La1i—N2—C13121.0 (4)
O8i—La1—O1471.15 (17)La1i—N2—C9120.7 (4)
O11i—La1—O1492.63 (16)C9—N2—C13118.1 (6)
O14—La1—N2i76.04 (16)La2iii—N3—C20119.1 (5)
O11ii—La1—N192.06 (15)C16—N3—C20118.4 (7)
O8i—La1—N171.66 (17)La2iii—N3—C16122.5 (5)
O11i—La1—N1138.66 (15)O2—C1—C2118.6 (7)
N1—La1—N2i114.03 (17)O1—C1—O2125.8 (7)
O8i—La1—O11ii154.60 (15)O1—C1—C2115.7 (6)
O11ii—La1—O11i61.97 (14)N1—C2—C1114.6 (6)
O11ii—La1—N2i114.01 (15)N1—C2—C3121.8 (7)
O8i—La1—O11i118.28 (15)C1—C2—C3123.5 (7)
O8i—La1—N2i59.34 (16)C2—C3—C4118.3 (8)
O11i—La1—N2i58.97 (15)C3—C4—C5119.9 (8)
O3—La2—O449.45 (15)C4—C5—C6118.9 (8)
O3—La2—O576.72 (15)C5—C6—C7122.8 (7)
O3—La2—O6121.38 (15)N1—C6—C5122.1 (7)
O3—La2—O7142.63 (16)N1—C6—C7115.1 (6)
O3—La2—O1569.42 (16)O3—C7—O4122.5 (6)
O3—La2—O1673.31 (17)O4—C7—C6120.0 (7)
O3—La2—O6iii134.20 (15)O3—C7—C6117.5 (6)
O3—La2—O10iii85.13 (15)O8—C8—C9116.5 (7)
O3—La2—N3iii121.02 (16)O7—C8—O8125.4 (7)
O4—La2—O5121.66 (17)O7—C8—C9118.1 (7)
O4—La2—O6146.54 (16)N2—C9—C10122.6 (7)
O4—La2—O7136.93 (17)N2—C9—C8114.5 (6)
O4—La2—O1572.17 (19)C8—C9—C10122.9 (7)
O4—La2—O16109.57 (19)C9—C10—C11118.4 (7)
O4—La2—O6iii101.96 (17)C10—C11—C12119.6 (8)
O4—La2—O10iii66.56 (16)C11—C12—C13118.7 (8)
O4—La2—N3iii72.45 (18)C12—C13—C14122.8 (7)
O5—La2—O647.20 (16)N2—C13—C14114.6 (6)
O5—La2—O798.49 (18)N2—C13—C12122.7 (7)
O5—La2—O1568.8 (2)O11—C14—C13115.7 (6)
O5—La2—O1665.89 (19)O11—C14—O12122.5 (6)
O5—La2—O6iii101.06 (16)O12—C14—C13121.8 (6)
O5—La2—O10iii137.38 (17)O5—C15—O6121.2 (7)
O5—La2—N3iii159.07 (17)O5—C15—C16122.6 (7)
O6—La2—O772.46 (17)O6—C15—C16116.1 (6)
O6—La2—O1574.76 (19)C15—C16—C17123.7 (7)
O6—La2—O1693.97 (19)N3—C16—C17122.7 (7)
O6—La2—O6iii59.73 (16)N3—C16—C15113.5 (6)
O6—La2—O10iii145.86 (16)C16—C17—C18118.1 (8)
O6—La2—N3iii112.19 (17)C17—C18—C19119.4 (9)
O7—La2—O15143.95 (18)C18—C19—C20119.7 (8)
O7—La2—O1671.09 (19)C19—C20—C21123.9 (8)
O6iii—La2—O783.17 (17)N3—C20—C21114.5 (7)
O7—La2—O10iii73.54 (17)N3—C20—C19121.7 (7)
O7—La2—N3iii74.28 (18)O9—C21—C20119.5 (8)
O15—La2—O16126.2 (2)O9—C21—O10124.6 (8)
O6iii—La2—O1567.46 (16)O10—C21—C20115.8 (7)
O10iii—La2—O15138.7 (2)C2—C3—H3121.00
O15—La2—N3iii105.3 (2)C4—C3—H3121.00
O6iii—La2—O16148.18 (19)C3—C4—H4120.00
O10iii—La2—O1672.1 (2)C5—C4—H4120.00
O16—La2—N3iii127.1 (2)C4—C5—H5121.00
O6iii—La2—O10iii118.78 (17)C6—C5—H5120.00
O6iii—La2—N3iii59.01 (17)C11—C10—H10121.00
O10iii—La2—N3iii60.36 (17)C9—C10—H10121.00
La1—O1—C1127.8 (5)C10—C11—H11120.00
La1—O3—La2143.82 (18)C12—C11—H11120.00
La1—O3—C7121.3 (4)C11—C12—H12121.00
La2—O3—C791.7 (4)C13—C12—H12121.00
La2—O4—C796.0 (4)C18—C17—H17121.00
La2—O5—C1589.2 (5)C16—C17—H17121.00
La2—O6—C15101.4 (4)C17—C18—H18120.00
La2—O6—La2iii120.3 (2)C19—C18—H18120.00
La2iii—O6—C15124.5 (4)C20—C19—H19120.00
La2—O7—C8126.9 (5)C18—C19—H19120.00
O3—La1—O1—C12.6 (7)N3iii—La2—O7—C887.9 (6)
O13—La1—O1—C1124.6 (6)O3—La2—O6iii—La2iii105.9 (2)
O14—La1—O1—C1110.3 (6)O3—La2—O6iii—C15iii121.3 (5)
N1—La1—O1—C14.2 (6)O4—La2—O6iii—La2iii149.7 (2)
O11ii—La1—O1—C1106.7 (6)O4—La2—O6iii—C15iii77.5 (5)
O8i—La1—O1—C168.9 (6)O5—La2—O6iii—La2iii23.7 (2)
O11i—La1—O1—C1170.4 (6)O5—La2—O6iii—C15iii156.5 (5)
N2i—La1—O1—C1128.9 (6)O6—La2—O6iii—La2iii0.02 (17)
O1—La1—O3—La2168.6 (3)O6—La2—O6iii—C15iii132.8 (6)
O1—La1—O3—C715.8 (5)O7—La2—O6iii—La2iii73.7 (2)
O13—La1—O3—La223.0 (3)O7—La2—O6iii—C15iii59.1 (5)
O13—La1—O3—C7129.8 (5)O15—La2—O6iii—La2iii85.0 (3)
O14—La1—O3—La244.7 (3)O15—La2—O6iii—C15iii142.2 (6)
O14—La1—O3—C7162.6 (5)O16—La2—O6iii—La2iii38.0 (5)
N1—La1—O3—La2167.0 (4)O16—La2—O6iii—C15iii94.8 (6)
N1—La1—O3—C714.2 (4)O3—La2—O10iii—C21iii104.9 (6)
O11ii—La1—O3—La286.5 (3)O4—La2—O10iii—C21iii57.3 (6)
O11ii—La1—O3—C766.2 (5)O5—La2—O10iii—C21iii169.2 (5)
O8i—La1—O3—La2117.9 (3)O6—La2—O10iii—C21iii111.4 (6)
O8i—La1—O3—C789.3 (5)O7—La2—O10iii—C21iii106.1 (6)
O11i—La1—O3—La218.2 (6)O15—La2—O10iii—C21iii54.0 (7)
O11i—La1—O3—C7134.6 (5)O16—La2—O10iii—C21iii178.9 (6)
N2i—La1—O3—La296.7 (3)O3—La2—N3iii—C16iii130.4 (5)
N2i—La1—O3—C7110.5 (5)O3—La2—N3iii—C20iii47.7 (6)
O1—La1—N1—C26.0 (5)O4—La2—N3iii—C16iii120.7 (6)
O1—La1—N1—C6179.1 (6)O4—La2—N3iii—C20iii57.4 (5)
O3—La1—N1—C2172.4 (5)O5—La2—N3iii—C16iii14.9 (9)
O3—La1—N1—C62.5 (5)O5—La2—N3iii—C20iii167.0 (5)
O13—La1—N1—C2137.2 (5)O6—La2—N3iii—C16iii24.0 (6)
O13—La1—N1—C648.0 (6)O6—La2—N3iii—C20iii157.9 (5)
O14—La1—N1—C2133.1 (5)O7—La2—N3iii—C16iii87.1 (6)
O14—La1—N1—C641.8 (6)O7—La2—N3iii—C20iii94.9 (6)
O11ii—La1—N1—C274.7 (5)O15—La2—N3iii—C16iii55.5 (6)
O11ii—La1—N1—C6110.5 (5)O15—La2—N3iii—C20iii122.6 (5)
O8i—La1—N1—C285.5 (5)O16—La2—N3iii—C16iii137.7 (5)
O8i—La1—N1—C689.4 (5)O16—La2—N3iii—C20iii44.3 (6)
O11i—La1—N1—C226.8 (6)La1—O1—C1—O2178.3 (6)
O11i—La1—N1—C6158.3 (5)La1—O1—C1—C22.2 (9)
N2i—La1—N1—C242.9 (5)La1—O3—C7—O4158.7 (5)
N2i—La1—N1—C6132.0 (5)La1—O3—C7—C623.8 (8)
O1—La1—O11ii—C14ii126.6 (4)La2—O3—C7—O45.6 (7)
O3—La1—O11ii—C14ii7.4 (4)La2—O3—C7—C6171.9 (5)
O13—La1—O11ii—C14ii66.1 (4)La2—O4—C7—O35.8 (7)
O14—La1—O11ii—C14ii81.8 (4)La2—O4—C7—C6171.6 (5)
N1—La1—O11ii—C14ii67.4 (4)La2—O5—C15—O69.7 (7)
O1—La1—O8i—C8i79.6 (6)La2—O5—C15—C16166.9 (6)
O3—La1—O8i—C8i154.8 (6)La2—O6—C15—O511.0 (7)
O13—La1—O8i—C8i87.3 (6)La2—O6—C15—C16165.8 (5)
O14—La1—O8i—C8i76.7 (6)La2iii—O6—C15—O5150.7 (5)
N1—La1—O8i—C8i141.9 (6)La2iii—O6—C15—C1626.1 (8)
O1—La1—O11i—C14i61.0 (5)La2—O7—C8—O867.8 (10)
O3—La1—O11i—C14i144.0 (5)La2—O7—C8—C9111.4 (7)
O13—La1—O11i—C14i149.1 (5)La1i—O8—C8—O7165.7 (5)
O14—La1—O11i—C14i84.5 (5)La1i—O8—C8—C913.5 (9)
N1—La1—O11i—C14i79.5 (6)La2iii—O10—C21—O9150.6 (8)
O1—La1—N2i—C9i93.4 (5)La2iii—O10—C21—C2032.3 (9)
O1—La1—N2i—C13i81.9 (5)La1iv—O11—C14—O1220.2 (7)
O3—La1—N2i—C9i23.9 (6)La1iv—O11—C14—C13157.4 (5)
O3—La1—N2i—C13i160.9 (5)La1i—O11—C14—O12161.8 (5)
O13—La1—N2i—C9i131.2 (5)La1i—O11—C14—C1315.8 (8)
O13—La1—N2i—C13i53.5 (5)La1—N1—C2—C17.4 (8)
O14—La1—N2i—C9i75.7 (5)La1—N1—C2—C3173.0 (6)
O14—La1—N2i—C13i109.1 (5)C6—N1—C2—C1177.6 (6)
N1—La1—N2i—C9i48.8 (5)C6—N1—C2—C32.0 (10)
N1—La1—N2i—C13i126.5 (5)La1—N1—C6—C5173.3 (6)
O4—La2—O3—La1154.0 (4)La1—N1—C6—C77.1 (8)
O4—La2—O3—C73.0 (4)C2—N1—C6—C51.7 (11)
O5—La2—O3—La11.7 (3)C2—N1—C6—C7178.0 (6)
O5—La2—O3—C7158.7 (4)C13—N2—C9—C8179.7 (6)
O6—La2—O3—La114.2 (4)C13—N2—C9—C101.4 (11)
O6—La2—O3—C7142.8 (4)La1i—N2—C9—C84.9 (8)
O7—La2—O3—La188.4 (4)La1i—N2—C9—C10176.8 (6)
O7—La2—O3—C7114.7 (4)C9—N2—C13—C121.4 (11)
O15—La2—O3—La170.3 (3)C9—N2—C13—C14178.9 (6)
O15—La2—O3—C786.7 (4)La1i—N2—C13—C12176.8 (6)
O16—La2—O3—La170.2 (3)La1i—N2—C13—C143.5 (8)
O16—La2—O3—C7132.8 (4)C20—N3—C16—C15176.8 (6)
O6iii—La2—O3—La190.9 (4)C20—N3—C16—C170.7 (11)
O6iii—La2—O3—C766.1 (4)La2iii—N3—C16—C155.1 (8)
O10iii—La2—O3—La1142.9 (3)La2iii—N3—C16—C17177.4 (6)
O10iii—La2—O3—C760.1 (4)C16—N3—C20—C193.4 (11)
N3iii—La2—O3—La1166.2 (3)C16—N3—C20—C21175.0 (7)
N3iii—La2—O3—C79.2 (4)La2iii—N3—C20—C19174.8 (6)
O3—La2—O4—C73.1 (4)La2iii—N3—C20—C216.9 (9)
O5—La2—O4—C731.1 (5)O1—C1—C2—N13.7 (9)
O6—La2—O4—C790.1 (5)O1—C1—C2—C3176.6 (7)
O7—La2—O4—C7125.0 (4)O2—C1—C2—N1175.9 (7)
O15—La2—O4—C780.9 (4)O2—C1—C2—C33.8 (11)
O16—La2—O4—C742.1 (4)N1—C2—C3—C40.2 (12)
O6iii—La2—O4—C7142.2 (4)C1—C2—C3—C4179.8 (8)
O10iii—La2—O4—C7101.4 (4)C2—C3—C4—C52.8 (14)
N3iii—La2—O4—C7166.0 (4)C3—C4—C5—C63.2 (15)
O3—La2—O5—C15155.8 (4)C4—C5—C6—N11.0 (13)
O4—La2—O5—C15134.3 (4)C4—C5—C6—C7179.5 (8)
O6—La2—O5—C155.6 (4)N1—C6—C7—O320.1 (9)
O7—La2—O5—C1562.0 (4)N1—C6—C7—O4162.4 (6)
O15—La2—O5—C1583.0 (4)C5—C6—C7—O3160.3 (7)
O16—La2—O5—C15126.8 (5)C5—C6—C7—O417.3 (11)
O6iii—La2—O5—C1522.7 (4)O7—C8—C9—N2168.0 (7)
O10iii—La2—O5—C15136.9 (4)O7—C8—C9—C1010.2 (11)
N3iii—La2—O5—C155.9 (8)O8—C8—C9—N211.2 (10)
O3—La2—O6—C1515.8 (4)O8—C8—C9—C10170.6 (7)
O3—La2—O6—La2iii126.1 (2)N2—C9—C10—C111.3 (12)
O4—La2—O6—C1578.5 (5)C8—C9—C10—C11179.4 (8)
O4—La2—O6—La2iii63.4 (4)C9—C10—C11—C121.1 (14)
O5—La2—O6—C155.5 (4)C10—C11—C12—C131.1 (14)
O5—La2—O6—La2iii147.5 (3)C11—C12—C13—N21.3 (13)
O7—La2—O6—C15125.8 (4)C11—C12—C13—C14179.0 (8)
O7—La2—O6—La2iii92.3 (2)N2—C13—C14—O116.8 (9)
O15—La2—O6—C1569.4 (4)N2—C13—C14—O12170.8 (6)
O15—La2—O6—La2iii72.5 (2)C12—C13—C14—O11172.9 (7)
O16—La2—O6—C1557.1 (4)C12—C13—C14—O129.5 (11)
O16—La2—O6—La2iii161.0 (2)O5—C15—C16—N3157.5 (7)
O6iii—La2—O6—C15141.9 (4)O5—C15—C16—C1719.9 (12)
O6iii—La2—O6—La2iii0.02 (18)O6—C15—C16—N319.3 (9)
O10iii—La2—O6—C15120.5 (4)O6—C15—C16—C17163.3 (7)
O10iii—La2—O6—La2iii97.6 (3)N3—C16—C17—C182.6 (13)
N3iii—La2—O6—C15170.0 (4)C15—C16—C17—C18179.8 (8)
N3iii—La2—O6—La2iii28.1 (3)C16—C17—C18—C193.1 (14)
O3—La2—O7—C833.0 (7)C17—C18—C19—C200.6 (15)
O4—La2—O7—C847.3 (7)C18—C19—C20—N32.7 (14)
O5—La2—O7—C8112.3 (6)C18—C19—C20—C21175.5 (9)
O6—La2—O7—C8152.1 (6)N3—C20—C21—O9167.8 (9)
O15—La2—O7—C8177.6 (6)N3—C20—C21—O1015.0 (10)
O16—La2—O7—C851.5 (6)C19—C20—C21—O913.9 (14)
O6iii—La2—O7—C8147.5 (6)C19—C20—C21—O10163.3 (8)
O10iii—La2—O7—C824.8 (6)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x+1, y+1, z; (iv) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O50.852.042.766 (8)143
O13—H13B···O1v0.851.912.721 (7)160
O14—H14A···O50.972.233.062 (8)143
O14—H14B···O9vi0.832.443.225 (10)160
O14—H14B···O10vi0.832.222.712 (8)119
O15—H15A···O7iii0.852.142.948 (8)160
O15—H15B···O12ii0.852.162.849 (7)138
O16—H16A···O80.852.122.760 (8)132
O16—H16B···O17iii0.852.052.843 (15)155
O17—H17A···O9vii0.822.132.816 (17)141
O17—H17B···O9viii0.822.392.758 (15)108
O18—H18A···O2ix0.822.312.75 (2)114
O18—H18B···O18x0.882.462.89 (3)110
C11—H11···O2xi0.932.453.320 (11)155
C12—H12···O18iv0.932.513.36 (2)152
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y+1, z; (iv) x, y, z1; (v) x+1, y, z+1; (vi) x, y1, z; (vii) x+1, y+2, z; (viii) x1, y, z; (ix) x, y, z+1; (x) x, y+1, z+1; (xi) x, y+1, z1.

Experimental details

Crystal data
Chemical formula[La2(C7H3NO4)3(H2O)4]·2H2O
Mr881.23
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.4910 (2), 10.9197 (2), 13.0850 (3)
α, β, γ (°)77.915 (1), 76.702 (1), 86.049 (1)
V3)1426.14 (5)
Z2
Radiation typeMo Kα
µ (mm1)3.04
Crystal size (mm)0.17 × 0.13 × 0.11
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.592, 0.699
No. of measured, independent and
observed [I > 2σ(I)] reflections
10097, 4496, 4014
Rint0.059
(sin θ/λ)max1)0.576
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.126, 1.03
No. of reflections4496
No. of parameters398
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.36, 1.06

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected bond lengths (Å) top
La1—N12.644 (5)La2—O32.674 (5)
La1—N2i2.728 (6)La2—O42.605 (5)
La1—O12.502 (5)La2—O52.865 (6)
La1—O32.614 (5)La2—O62.591 (5)
La1—O8i2.575 (5)La2—O6iii2.615 (5)
La1—O11i2.578 (5)La2—O72.524 (5)
La1—O11ii2.600 (5)La2—O10iii2.539 (5)
La1—O132.593 (5)La2—O152.574 (5)
La1—O142.525 (5)La2—O162.575 (6)
La2—N3iii2.688 (6)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O50.852.042.766 (8)143
O13—H13B···O1iv0.851.912.721 (7)160
O14—H14A···O50.972.233.062 (8)143
O14—H14B···O9v0.832.443.225 (10)160
O14—H14B···O10v0.832.222.712 (8)119
O15—H15A···O7iii0.852.142.948 (8)160
O15—H15B···O12ii0.852.162.849 (7)138
O16—H16A···O80.852.122.760 (8)132
O16—H16B···O17iii0.852.052.843 (15)155
O17—H17A···O9vi0.822.132.816 (17)141
O17—H17B···O9vii0.822.392.758 (15)108
O18—H18A···O2viii0.822.312.75 (2)114
O18—H18B···O18ix0.882.462.89 (3)110
C11—H11···O2x0.932.453.320 (11)155
C12—H12···O18xi0.932.513.36 (2)152
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y+1, z; (iv) x+1, y, z+1; (v) x, y1, z; (vi) x+1, y+2, z; (vii) x1, y, z; (viii) x, y, z+1; (ix) x, y+1, z+1; (x) x, y+1, z1; (xi) x, y, z1.
 

Acknowledgements

This work was supported financially by Yuanpei University, Taiwan.

References

First citationBrouca, C. C., Fernandes, A., Jaud, J. & Costes, J. P. (2002). Inorg. Chim. Acta, 332, 54–60.  Google Scholar
First citationChantal, B. C., Jeannette, D. G., Auguste, F., Joel, J. & Jean, C. T. (2008). Inorg. Chim. Acta, 361, 2909–2917.  Google Scholar
First citationGhosh, S. K. & Bharadwaj, P. K. (2004). Inorg. Chem. 43, 2293–2298.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L.-R., Song, S., Shao, C.-Y., Zhang, W., Zhang, H.-M., Bu, Z.-W. & Ren, T.-G. (2011). Synth. Met. In the press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1195-m1196
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds