organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Methyl­nicotinic acid

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 13 July 2011; accepted 6 August 2011; online 17 August 2011)

All non-H atoms of the title compound, C7H7NO2, are nearly coplaner, the r.m.s. deviation being 0.0087 Å. In the crystal, the partially overlapped arrangement and the face-to-face distance of 3.466 (17) Å between parallel pyridine rings of neighboring mol­ecules indicates the existence of ππ stacking. Inter­molecular O—H⋯N hydrogen bonding and weak C—H⋯O hydrogen bonding are present in the crystal structure.

Related literature

The title compound is an inter­mediate of the drug etoricoxib (systematic name: 5-chloro-6′-methyl-3-[4-(methyl­sulfon­yl)phen­yl]- 2,3′-bipyridine). For the structure of etoricoxibium picrate, see: Jasinski et al. (2011[Jasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Ramesha, A. R. (2011). Acta Cryst. E67, o107-o108.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7NO2

  • Mr = 137.14

  • Monoclinic, P 21

  • a = 3.8788 (8) Å

  • b = 13.634 (3) Å

  • c = 6.1094 (12) Å

  • β = 90.51 (3)°

  • V = 323.07 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • 3358 measured reflections

  • 763 independent reflections

  • 634 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.126

  • S = 1.05

  • 763 reflections

  • 92 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 1.87 2.664 (4) 163
C4—H4A⋯O2ii 0.93 2.54 3.350 (4) 146
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+2]; (ii) x+1, y, z-1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is the drug intermediate of etoricoxib (a non- steroidal anti-inflammatory drug for the treatment of arthritis and osteoarthritis) (Jasinski et al., 2011). As part of our interest in the intermediate, we report here the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. All the non-H atoms are almost located in one plane as the atoms O1 and O2 are shifted 0.0377 and 0.0236 Å out of the pyridine ring plane, respectively.

The crystal structure is stabilized by intermolecular O—H···N and C—H···O hydrogen bonds (Table 1). π···π stacking is present between pyridine rings of the neighboring molecules.

Related literature top

The title compound is an intermediate of the drug etoricoxib (systematic name: 5-chloro-6'-methyl-3-[4-(methylsulfonyl)phenyl]- 2,3'-bipyridine). For the structure of etoricoxibium picrate, see: Jasinski et al. (2011).

Experimental top

6-Methyl-nicotinic acid was purchased commercially. Crystals suitable for X-ray diffraction were obtained by slow evaporation of a methanol solution.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H (CH3) = 0.96 Å or C—H (CH) = 0.93 Å and O—H = 0.82 Å with Uiso(H) =1.5 Ueq(C,O) for methyl and carboxyl H atoms and Uiso(H) = 1.2Ueq(C) for the others. Friedel pairs were merged as no significant anomalous scatterings.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing diagram.
6-Methylnicotinic acid top
Crystal data top
C7H7NO2F(000) = 144
Mr = 137.14Dx = 1.410 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 764 reflections
a = 3.8788 (8) Åθ = 3.3–27.5°
b = 13.634 (3) ŵ = 0.11 mm1
c = 6.1094 (12) ÅT = 293 K
β = 90.51 (3)°Prism, colorless
V = 323.07 (12) Å30.20 × 0.20 × 0.20 mm
Z = 2
Data collection top
Rigaku SCXmini
diffractometer
634 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
Detector resolution: 13.6612 pixels mm-1h = 54
CCD_Profile_fitting scansk = 1717
3358 measured reflectionsl = 77
763 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0712P)2 + 0.0005P]
where P = (Fo2 + 2Fc2)/3
763 reflections(Δ/σ)max < 0.001
92 parametersΔρmax = 0.25 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C7H7NO2V = 323.07 (12) Å3
Mr = 137.14Z = 2
Monoclinic, P21Mo Kα radiation
a = 3.8788 (8) ŵ = 0.11 mm1
b = 13.634 (3) ÅT = 293 K
c = 6.1094 (12) Å0.20 × 0.20 × 0.20 mm
β = 90.51 (3)°
Data collection top
Rigaku SCXmini
diffractometer
634 reflections with I > 2σ(I)
3358 measured reflectionsRint = 0.059
763 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.126H-atom parameters constrained
S = 1.05Δρmax = 0.25 e Å3
763 reflectionsΔρmin = 0.16 e Å3
92 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0195 (8)0.40438 (18)0.9514 (4)0.0631 (8)
H10.05730.36291.03490.095*
O20.1535 (7)0.50696 (18)1.2089 (4)0.0675 (8)
C10.0216 (7)0.4918 (2)1.0367 (5)0.0440 (7)
C20.4505 (10)0.8121 (3)0.5202 (7)0.0574 (9)
H2A0.56400.85780.61620.086*
H2B0.25460.84310.45260.086*
H2C0.60800.79110.40920.086*
C30.2600 (8)0.5539 (3)0.6920 (6)0.0465 (8)
H3A0.28230.49020.63940.056*
C40.3724 (8)0.6311 (3)0.5713 (5)0.0482 (8)
H4A0.47530.62020.43660.058*
C50.3345 (9)0.7257 (3)0.6479 (5)0.0423 (7)
C60.0802 (8)0.6670 (2)0.9593 (5)0.0439 (8)
H6A0.02070.67961.09400.053*
N10.1857 (8)0.74310 (17)0.8408 (4)0.0453 (7)
C70.1119 (9)0.5709 (2)0.8942 (5)0.0395 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1000 (19)0.0295 (13)0.0602 (16)0.0059 (12)0.0191 (14)0.0014 (11)
O20.107 (2)0.0408 (16)0.0551 (13)0.0023 (14)0.0297 (14)0.0016 (11)
C10.0556 (18)0.0312 (16)0.0452 (16)0.0007 (15)0.0018 (14)0.0039 (14)
C20.063 (2)0.048 (2)0.0615 (19)0.0032 (17)0.0127 (17)0.0114 (17)
C30.054 (2)0.0369 (18)0.0483 (15)0.0028 (14)0.0021 (14)0.0069 (14)
C40.0549 (17)0.047 (2)0.0432 (16)0.0036 (15)0.0089 (13)0.0069 (15)
C50.0446 (16)0.0364 (17)0.0460 (16)0.0002 (14)0.0013 (13)0.0022 (14)
C60.0542 (19)0.0347 (18)0.0431 (16)0.0006 (14)0.0076 (15)0.0002 (13)
N10.0578 (16)0.0310 (16)0.0472 (14)0.0019 (12)0.0085 (13)0.0009 (10)
C70.0437 (16)0.0338 (17)0.0409 (15)0.0005 (11)0.0005 (13)0.0026 (11)
Geometric parameters (Å, º) top
O1—C11.311 (4)C3—C71.387 (4)
O1—H10.8200C3—H3A0.9300
O2—C11.192 (3)C4—C51.380 (5)
C1—C71.482 (4)C4—H4A0.9300
C2—C51.485 (5)C5—N11.337 (4)
C2—H2A0.9600C6—N11.332 (4)
C2—H2B0.9600C6—C71.375 (5)
C2—H2C0.9600C6—H6A0.9300
C3—C41.359 (5)
C1—O1—H1109.5C3—C4—C5120.3 (3)
O2—C1—O1124.3 (3)C3—C4—H4A119.9
O2—C1—C7123.2 (3)C5—C4—H4A119.9
O1—C1—C7112.6 (2)N1—C5—C4120.8 (3)
C5—C2—H2A109.5N1—C5—C2117.2 (3)
C5—C2—H2B109.5C4—C5—C2121.9 (3)
H2A—C2—H2B109.5N1—C6—C7123.8 (3)
C5—C2—H2C109.5N1—C6—H6A118.1
H2A—C2—H2C109.5C7—C6—H6A118.1
H2B—C2—H2C109.5C6—N1—C5118.6 (3)
C4—C3—C7119.4 (3)C6—C7—C3117.1 (3)
C4—C3—H3A120.3C6—C7—C1119.4 (3)
C7—C3—H3A120.3C3—C7—C1123.5 (3)
C7—C3—C4—C51.0 (4)N1—C6—C7—C1178.6 (3)
C3—C4—C5—N10.3 (5)C4—C3—C7—C61.4 (4)
C3—C4—C5—C2179.4 (4)C4—C3—C7—C1179.3 (3)
C7—C6—N1—C50.7 (5)O2—C1—C7—C61.0 (5)
C4—C5—N1—C61.2 (5)O1—C1—C7—C6178.6 (3)
C2—C5—N1—C6179.7 (4)O2—C1—C7—C3178.8 (3)
N1—C6—C7—C30.6 (5)O1—C1—C7—C30.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.872.664 (4)163
C4—H4A···O2ii0.932.543.350 (4)146
Symmetry codes: (i) x, y1/2, z+2; (ii) x+1, y, z1.

Experimental details

Crystal data
Chemical formulaC7H7NO2
Mr137.14
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)3.8788 (8), 13.634 (3), 6.1094 (12)
β (°) 90.51 (3)
V3)323.07 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3358, 763, 634
Rint0.059
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.126, 1.05
No. of reflections763
No. of parameters92
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.16

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.872.664 (4)163
C4—H4A···O2ii0.932.543.350 (4)146
Symmetry codes: (i) x, y1/2, z+2; (ii) x+1, y, z1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Ppoject 20671019)

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationJasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Ramesha, A. R. (2011). Acta Cryst. E67, o107–o108.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds