organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzyl (E)-3-(2-methyl­benzyl­­idene)di­thio­carbazate

aCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, People's Republic of China
*Correspondence e-mail: shanshang@mail.hz.zj.cn

(Received 22 July 2011; accepted 15 August 2011; online 27 August 2011)

The title compound, C16H16N2S2, was obtained from the condensation reaction of benzyl dithio­carbazate and 2-methyl­benzaldehyde. The asymmetric unit contains two independent mol­ecules. In both mol­ecules, the methyl­phenyl ring and the dithio­carbazate fragment are located on opposite sides of the C=N bond, showing an E conformation. In each mol­ecule, the dithio­carbazate fragment is approximately planar, the r.m.s deviations being 0.018 and 0.025 Å. The mean plane of dithio­carbazate group is oriented at dihedral angles of 7.9 (3) and 68.24 (12)°, respectively, to the methyl­phenyl and phenyl rings in one mol­ecule, while the corresponding angles in the other mol­ecule are 10.9 (3) and 69.76 (16)°. Inter­molecular N—H⋯S hydrogen bonding occurs in the crystal structure to generate inversion dimers for both molecules.

Related literature

For potential applications of hydrazone and its derivatives in the biological field, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]); Hu et al. (2001[Hu, W., Sun, N. & Yang, Z. (2001). Chem. J. Chin. Univ. 22, 2014-2017.]). For related structures, see: Shan et al. (2006[Shan, S., Zhang, Y.-L. & Xu, D.-J. (2006). Acta Cryst. E62, o1567-o1569.], 2008a[Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008a). Acta Cryst. E64, o1014.],b[Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008b). Acta Cryst. E64, o1024.], 2011[Shan, S., Huang, Y.-L., Guo, H.-Q., Li, D.-F. & Sun, J. (2011). Acta Cryst. E67, o2498.]). For the synthesis, see: Hu et al. (2001[Hu, W., Sun, N. & Yang, Z. (2001). Chem. J. Chin. Univ. 22, 2014-2017.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2S2

  • Mr = 300.43

  • Monoclinic, P 21 /n

  • a = 21.976 (7) Å

  • b = 6.126 (3) Å

  • c = 23.099 (6) Å

  • β = 90.840 (4)°

  • V = 3109 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 294 K

  • 0.29 × 0.23 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.85, Tmax = 0.93

  • 11281 measured reflections

  • 5596 independent reflections

  • 2739 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.162

  • S = 1.02

  • 5596 reflections

  • 363 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯S1i 0.86 2.56 3.400 (4) 165
N4—H4N⋯S3ii 0.86 2.77 3.577 (4) 157
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Hydrazone and its derivatives have shown the potential application in the biological field (Okabe et al., 1993; Hu et al., 2001). As part of the ongoing investigation on anti-cancer compounds, the title compound has recently been prepared in our laboratory and its crystal structure is presented here.

The asymmetric unit of the title compound contains two independent molecules. In both molecules, the methylphenyl ring and dithiocarbazate fragment are located on the opposite sides of the CN bond, showing the E-configuration. This agrees with those found in the structures reported previously (Shan et al., 2006; Shan et al., 2008a,b). In each molecule, the dithiocarbazate fragment is approximately planar, the r.m.s deviation being 0.0177 and 0.0248 Å, respectively. The mean plane of dithiocarbazate is oriented with respect to the methylphenyl and phenyl rings at 7.9 (3) and 68.24 (12)° in the C1-containing molecule; while the corresponding angles are 10.9 (3) and 69.76 (16)° in the other molecule.

Intermolecular N—H···S hydrogen bonding occurs in the crystal structure (Table 1).

Related literature top

For potential applications of hydrazone and its derivatives in the biological field, see: Okabe et al. (1993); Hu et al. (2001). For related structures, see: Shan et al. (2006, 2008a,b). For the synthesis, see: Hu et al. (2001).

Experimental top

Benzyl dithiocarbazate was synthesized as described previously (Hu et al., 2001). Benzyl dithiocarbazate (0.4 g, 2 mmol) and 2-methylbenzaldehyde (0.24 g, 2 mmol) were dissolved in ethanol (20 ml), then acetic acid (0.2 ml) was added to the ethanol solution with stirring. The mixture solution was refluxed for 6 h. After cooling to room temperature, yellow microcrystals appeared. The microcrystals were separated from the solution and washed with cold water three times. Recrystallization was performed twice with absolute methanol to obtain single crystals of the title compound.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93–0.97 Å and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for the others.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 40% probability displacement (arbitrary spheres for H atoms).
Benzyl (E)-3-(2-methylbenzylidene)dithiocarbazate top
Crystal data top
C16H16N2S2F(000) = 1264
Mr = 300.43Dx = 1.284 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5596 reflections
a = 21.976 (7) Åθ = 3.3–25.2°
b = 6.126 (3) ŵ = 0.33 mm1
c = 23.099 (6) ÅT = 294 K
β = 90.840 (4)°Block, yellow
V = 3109 (2) Å30.29 × 0.23 × 0.18 mm
Z = 8
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5596 independent reflections
Radiation source: fine-focus sealed tube2739 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 10.0 pixels mm-1θmax = 25.2°, θmin = 3.4°
ω scansh = 2526
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 67
Tmin = 0.85, Tmax = 0.93l = 1827
11281 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0432P)2]
where P = (Fo2 + 2Fc2)/3
5596 reflections(Δ/σ)max = 0.001
363 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C16H16N2S2V = 3109 (2) Å3
Mr = 300.43Z = 8
Monoclinic, P21/nMo Kα radiation
a = 21.976 (7) ŵ = 0.33 mm1
b = 6.126 (3) ÅT = 294 K
c = 23.099 (6) Å0.29 × 0.23 × 0.18 mm
β = 90.840 (4)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5596 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2739 reflections with I > 2σ(I)
Tmin = 0.85, Tmax = 0.93Rint = 0.055
11281 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.02Δρmax = 0.26 e Å3
5596 reflectionsΔρmin = 0.19 e Å3
363 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.00768 (5)0.7325 (2)0.57333 (6)0.0829 (5)
S20.12246 (5)0.58916 (18)0.63604 (5)0.0611 (4)
S30.42020 (6)0.2494 (2)0.49716 (6)0.0866 (5)
S40.35943 (5)0.34105 (19)0.38154 (6)0.0652 (4)
N10.12405 (14)0.2604 (6)0.55431 (16)0.0584 (10)
N20.07408 (15)0.3932 (6)0.54827 (17)0.0663 (11)
H2N0.04740.36560.52170.080*
N30.44164 (15)0.6850 (6)0.37635 (17)0.0599 (10)
N40.44538 (15)0.5710 (6)0.42774 (18)0.0686 (11)
H4N0.47020.61450.45440.082*
C10.17913 (18)0.0439 (6)0.51748 (19)0.0538 (11)
C20.1794 (2)0.2255 (8)0.4810 (2)0.0660 (12)
C30.2286 (3)0.3619 (9)0.4846 (3)0.0940 (18)
H30.22940.48470.46100.113*
C40.2768 (3)0.3257 (9)0.5215 (3)0.0915 (18)
H40.30940.42230.52280.110*
C50.2763 (2)0.1464 (9)0.5561 (2)0.0819 (16)
H50.30910.11900.58100.098*
C60.22812 (18)0.0064 (7)0.5549 (2)0.0667 (13)
H60.22800.11480.57910.080*
C70.12811 (18)0.1054 (7)0.5170 (2)0.0583 (12)
H70.09760.08890.48900.070*
C80.1282 (2)0.2723 (8)0.4390 (2)0.0920 (18)
H8A0.13010.17260.40710.138*
H8B0.09000.25500.45820.138*
H8C0.13160.41930.42510.138*
C90.06632 (17)0.5648 (6)0.58315 (19)0.0535 (11)
C100.0965 (2)0.8266 (7)0.6743 (2)0.0695 (14)
H10A0.09800.95320.64920.083*
H10B0.05470.80560.68600.083*
C110.13608 (16)0.8637 (7)0.72670 (19)0.0491 (10)
C120.17184 (18)1.0460 (7)0.7309 (2)0.0603 (12)
H120.17291.14400.70020.072*
C130.2064 (2)1.0868 (8)0.7802 (3)0.0735 (15)
H130.23001.21260.78280.088*
C140.2058 (2)0.9446 (9)0.8243 (2)0.0819 (16)
H140.22940.97050.85740.098*
C150.1703 (2)0.7607 (9)0.8206 (2)0.0826 (15)
H150.16990.66130.85100.099*
C160.13541 (19)0.7239 (7)0.7718 (2)0.0659 (13)
H160.11090.60040.76980.079*
C170.48183 (18)0.9804 (7)0.3223 (2)0.0614 (13)
C180.51708 (19)1.1720 (8)0.3223 (3)0.0715 (14)
C190.5172 (2)1.2945 (8)0.2726 (3)0.0870 (18)
H190.53991.42270.27230.104*
C200.4858 (3)1.2379 (11)0.2236 (3)0.108 (2)
H200.48711.32640.19090.130*
C210.4525 (2)1.0512 (10)0.2228 (3)0.102 (2)
H210.43161.00900.18930.123*
C220.4500 (2)0.9238 (8)0.2725 (2)0.0798 (15)
H220.42630.79800.27230.096*
C230.4788 (2)0.8437 (7)0.3726 (2)0.0664 (14)
H230.50490.87230.40380.080*
C240.5559 (2)1.2373 (8)0.3736 (3)0.097 (2)
H24A0.58881.13520.37830.145*
H24B0.53171.23750.40780.145*
H24C0.57211.38080.36730.145*
C250.41069 (17)0.3917 (7)0.43703 (19)0.0565 (12)
C260.31883 (18)0.1063 (7)0.4079 (2)0.0691 (14)
H26A0.34640.01660.41190.083*
H26B0.30220.13800.44570.083*
C270.26839 (18)0.0506 (7)0.3661 (2)0.0606 (12)
C280.2196 (2)0.1840 (9)0.3593 (3)0.103 (2)
H280.21760.31120.38110.123*
C290.1729 (3)0.1357 (12)0.3207 (3)0.120 (3)
H290.14000.23010.31680.144*
C300.1750 (3)0.0472 (11)0.2887 (3)0.0939 (18)
H300.14340.08170.26310.113*
C310.2229 (3)0.1785 (8)0.2943 (2)0.0888 (17)
H310.22490.30450.27190.107*
C320.2703 (2)0.1306 (8)0.3329 (2)0.0776 (15)
H320.30350.22430.33590.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0705 (8)0.0936 (9)0.0833 (11)0.0323 (7)0.0394 (8)0.0285 (8)
S20.0568 (6)0.0694 (8)0.0564 (8)0.0151 (6)0.0207 (6)0.0124 (6)
S30.0834 (8)0.1052 (11)0.0703 (10)0.0175 (8)0.0289 (8)0.0303 (8)
S40.0670 (7)0.0727 (8)0.0554 (8)0.0018 (6)0.0150 (6)0.0100 (6)
N10.0523 (19)0.061 (2)0.061 (3)0.0101 (18)0.0145 (19)0.003 (2)
N20.060 (2)0.069 (2)0.070 (3)0.0154 (19)0.027 (2)0.017 (2)
N30.065 (2)0.058 (2)0.056 (3)0.0019 (19)0.0104 (19)0.015 (2)
N40.066 (2)0.076 (3)0.063 (3)0.003 (2)0.016 (2)0.007 (2)
C10.062 (2)0.050 (2)0.049 (3)0.013 (2)0.005 (2)0.001 (2)
C20.078 (3)0.075 (3)0.044 (3)0.010 (3)0.001 (2)0.007 (3)
C30.116 (4)0.086 (4)0.080 (5)0.032 (4)0.005 (4)0.026 (3)
C40.096 (4)0.093 (4)0.086 (5)0.034 (3)0.005 (4)0.013 (4)
C50.067 (3)0.098 (4)0.080 (4)0.016 (3)0.015 (3)0.001 (3)
C60.063 (3)0.071 (3)0.065 (4)0.012 (2)0.018 (2)0.011 (2)
C70.064 (3)0.059 (3)0.052 (3)0.002 (2)0.014 (2)0.006 (2)
C80.116 (4)0.096 (4)0.063 (4)0.005 (3)0.027 (3)0.026 (3)
C90.053 (2)0.059 (3)0.047 (3)0.009 (2)0.016 (2)0.005 (2)
C100.072 (3)0.075 (3)0.061 (3)0.019 (2)0.025 (3)0.021 (3)
C110.047 (2)0.053 (2)0.047 (3)0.002 (2)0.004 (2)0.001 (2)
C120.066 (3)0.055 (3)0.060 (3)0.004 (2)0.003 (2)0.007 (2)
C130.066 (3)0.065 (3)0.088 (4)0.008 (3)0.011 (3)0.016 (3)
C140.079 (3)0.094 (4)0.071 (4)0.003 (3)0.022 (3)0.020 (3)
C150.098 (4)0.087 (4)0.062 (4)0.002 (3)0.009 (3)0.016 (3)
C160.065 (3)0.070 (3)0.063 (3)0.017 (2)0.013 (3)0.003 (3)
C170.057 (2)0.058 (3)0.069 (4)0.009 (2)0.007 (2)0.009 (3)
C180.047 (2)0.065 (3)0.103 (5)0.000 (2)0.016 (3)0.005 (3)
C190.063 (3)0.070 (4)0.130 (6)0.013 (3)0.022 (3)0.020 (4)
C200.092 (4)0.117 (5)0.116 (6)0.018 (4)0.007 (4)0.042 (4)
C210.103 (4)0.124 (5)0.079 (5)0.027 (4)0.019 (4)0.028 (4)
C220.088 (3)0.078 (3)0.072 (4)0.016 (3)0.009 (3)0.014 (3)
C230.061 (3)0.063 (3)0.074 (4)0.002 (2)0.017 (3)0.001 (3)
C240.066 (3)0.084 (4)0.141 (6)0.013 (3)0.001 (4)0.021 (4)
C250.050 (2)0.062 (3)0.057 (3)0.010 (2)0.007 (2)0.008 (2)
C260.065 (3)0.072 (3)0.071 (4)0.003 (2)0.012 (3)0.016 (3)
C270.059 (2)0.061 (3)0.062 (3)0.006 (2)0.011 (2)0.003 (3)
C280.102 (4)0.112 (4)0.093 (5)0.044 (4)0.046 (4)0.045 (4)
C290.097 (4)0.151 (6)0.111 (6)0.044 (4)0.053 (4)0.036 (5)
C300.082 (4)0.123 (5)0.076 (5)0.013 (4)0.013 (3)0.007 (4)
C310.120 (4)0.069 (3)0.077 (4)0.016 (3)0.006 (4)0.024 (3)
C320.086 (3)0.061 (3)0.085 (4)0.008 (3)0.000 (3)0.000 (3)
Geometric parameters (Å, º) top
S1—C91.661 (4)C13—C141.341 (7)
S2—C91.730 (4)C13—H130.9300
S2—C101.800 (4)C14—C151.372 (6)
S3—C251.651 (4)C14—H140.9300
S4—C251.722 (4)C15—C161.372 (6)
S4—C261.803 (4)C15—H150.9300
N1—C71.287 (5)C16—H160.9300
N1—N21.372 (4)C17—C221.381 (6)
N2—C91.337 (5)C17—C181.406 (6)
N2—H2N0.8600C17—C231.436 (6)
N3—C231.273 (5)C18—C191.372 (7)
N3—N41.378 (5)C18—C241.503 (7)
N4—C251.356 (5)C19—C201.362 (7)
N4—H4N0.8600C19—H190.9300
C1—C61.390 (5)C20—C211.357 (7)
C1—C21.396 (6)C20—H200.9300
C1—C71.447 (5)C21—C221.391 (7)
C2—C31.370 (6)C21—H210.9300
C2—C81.502 (5)C22—H220.9300
C3—C41.366 (6)C23—H230.9300
C3—H30.9300C24—H24A0.9600
C4—C51.360 (7)C24—H24B0.9600
C4—H40.9300C24—H24C0.9600
C5—C61.362 (6)C26—C271.500 (5)
C5—H50.9300C26—H26A0.9700
C6—H60.9300C26—H26B0.9700
C7—H70.9300C27—C321.350 (6)
C8—H8A0.9600C27—C281.355 (6)
C8—H8B0.9600C28—C291.383 (6)
C8—H8C0.9600C28—H280.9300
C10—C111.497 (5)C29—C301.343 (7)
C10—H10A0.9700C29—H290.9300
C10—H10B0.9700C30—C311.330 (7)
C11—C161.350 (6)C30—H300.9300
C11—C121.368 (5)C31—C321.391 (6)
C12—C131.381 (6)C31—H310.9300
C12—H120.9300C32—H320.9300
C9—S2—C10100.88 (18)C14—C15—H15120.1
C25—S4—C26102.3 (2)C16—C15—H15120.1
C7—N1—N2115.6 (3)C11—C16—C15121.2 (4)
C9—N2—N1120.9 (3)C11—C16—H16119.4
C9—N2—H2N119.5C15—C16—H16119.4
N1—N2—H2N119.5C22—C17—C18118.9 (5)
C23—N3—N4114.5 (4)C22—C17—C23119.9 (4)
C25—N4—N3121.3 (3)C18—C17—C23121.2 (4)
C25—N4—H4N119.3C19—C18—C17117.6 (5)
N3—N4—H4N119.3C19—C18—C24120.4 (5)
C6—C1—C2119.9 (4)C17—C18—C24121.9 (5)
C6—C1—C7119.6 (4)C20—C19—C18123.3 (5)
C2—C1—C7120.6 (4)C20—C19—H19118.4
C3—C2—C1117.3 (4)C18—C19—H19118.4
C3—C2—C8120.5 (5)C21—C20—C19119.5 (6)
C1—C2—C8122.2 (4)C21—C20—H20120.2
C4—C3—C2122.9 (5)C19—C20—H20120.2
C4—C3—H3118.5C20—C21—C22119.3 (5)
C2—C3—H3118.5C20—C21—H21120.4
C5—C4—C3119.0 (5)C22—C21—H21120.4
C5—C4—H4120.5C17—C22—C21121.4 (5)
C3—C4—H4120.5C17—C22—H22119.3
C4—C5—C6120.6 (5)C21—C22—H22119.3
C4—C5—H5119.7N3—C23—C17122.5 (4)
C6—C5—H5119.7N3—C23—H23118.7
C5—C6—C1120.2 (4)C17—C23—H23118.7
C5—C6—H6119.9C18—C24—H24A109.5
C1—C6—H6119.9C18—C24—H24B109.5
N1—C7—C1121.5 (4)H24A—C24—H24B109.5
N1—C7—H7119.3C18—C24—H24C109.5
C1—C7—H7119.3H24A—C24—H24C109.5
C2—C8—H8A109.5H24B—C24—H24C109.5
C2—C8—H8B109.5N4—C25—S3119.8 (3)
H8A—C8—H8B109.5N4—C25—S4113.0 (3)
C2—C8—H8C109.5S3—C25—S4127.2 (3)
H8A—C8—H8C109.5C27—C26—S4109.2 (3)
H8B—C8—H8C109.5C27—C26—H26A109.8
N2—C9—S1120.6 (3)S4—C26—H26A109.8
N2—C9—S2113.4 (3)C27—C26—H26B109.8
S1—C9—S2126.0 (3)S4—C26—H26B109.8
C11—C10—S2109.6 (3)H26A—C26—H26B108.3
C11—C10—H10A109.8C32—C27—C28117.4 (4)
S2—C10—H10A109.8C32—C27—C26121.7 (4)
C11—C10—H10B109.8C28—C27—C26120.9 (4)
S2—C10—H10B109.8C27—C28—C29121.6 (5)
H10A—C10—H10B108.2C27—C28—H28119.2
C16—C11—C12118.4 (4)C29—C28—H28119.2
C16—C11—C10121.0 (4)C30—C29—C28120.1 (5)
C12—C11—C10120.5 (4)C30—C29—H29119.9
C11—C12—C13121.0 (4)C28—C29—H29119.9
C11—C12—H12119.5C31—C30—C29119.0 (5)
C13—C12—H12119.5C31—C30—H30120.5
C14—C13—C12119.8 (4)C29—C30—H30120.5
C14—C13—H13120.1C30—C31—C32121.2 (5)
C12—C13—H13120.1C30—C31—H31119.4
C13—C14—C15119.8 (5)C32—C31—H31119.4
C13—C14—H14120.1C27—C32—C31120.6 (5)
C15—C14—H14120.1C27—C32—H32119.7
C14—C15—C16119.8 (5)C31—C32—H32119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···S1i0.862.563.400 (4)165
N4—H4N···S3ii0.862.773.577 (4)157
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H16N2S2
Mr300.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)21.976 (7), 6.126 (3), 23.099 (6)
β (°) 90.840 (4)
V3)3109 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.29 × 0.23 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.85, 0.93
No. of measured, independent and
observed [I > 2σ(I)] reflections
11281, 5596, 2739
Rint0.055
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.162, 1.02
No. of reflections5596
No. of parameters363
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.19

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···S1i0.862.563.400 (4)165
N4—H4N···S3ii0.862.773.577 (4)157
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

The work was supported by the Natural Science Foundation of Zhejiang Province, China (No. M203027).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHu, W., Sun, N. & Yang, Z. (2001). Chem. J. Chin. Univ. 22, 2014–2017.  CAS Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationShan, S., Huang, Y.-L., Guo, H.-Q., Li, D.-F. & Sun, J. (2011). Acta Cryst. E67, o2498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008a). Acta Cryst. E64, o1014.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008b). Acta Cryst. E64, o1024.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Zhang, Y.-L. & Xu, D.-J. (2006). Acta Cryst. E62, o1567–o1569.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds