metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Di­methyl­amino)­pyridinium tetra­chlorido(quinoline-2-carboxyl­ato-κ2N,O)stannate(IV)

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 1 August 2011; accepted 4 August 2011; online 11 August 2011)

In the title salt, (C7H11N2)[SnCl4(C10H6NO2)], the SnIV atom is chelated by the N,O-bidentate carboxyl­ate ions and four chloride ions, showing a distorted octa­hedral SnNOCl4 coordination. In the crystal, the cation and anion are linked by a pyridinium–carboxyl­ate N—H⋯O hydrogen bond.

Related literature

For a related ammonium tetra­chlorido(pyridine-2-carboxyl­ato)stannate(IV), see: Najafi et al. (2011[Najafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m351.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H11N2)[SnCl4(C10H6NO2)]

  • Mr = 555.83

  • Triclinic, [P \overline 1]

  • a = 8.6681 (3) Å

  • b = 8.8407 (4) Å

  • c = 14.4447 (5) Å

  • α = 96.721 (3)°

  • β = 91.924 (3)°

  • γ = 108.038 (4)°

  • V = 1042.43 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.76 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.621, Tmax = 0.844

  • 8056 measured reflections

  • 4610 independent reflections

  • 4202 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.047

  • S = 1.06

  • 4610 reflections

  • 250 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1 0.87 (1) 1.98 (1) 2.816 (2) 160 (2)

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have recently synthesized some ammonium tetrachlorido(carboxylato)stannates; in a recent study, we reacted stannic chloride with pyridine-2-carboxylic acid and triethylamine to yield the chelated stannate salt (Najafi et al., 2011). The use of quinoline-2-carboxylic acid and 4-dimethyaminopyridine yielded the expected dimethylaminopyridinium stannate in which the amine is protonated on the aromatic nitrogen atom (Scheme I, Fig. 1). The SnIV atom is chelated by the N,O-bidentate carboxylate ligand and four chloride ions, and shows octahedral SnNOCl4 coordination at the metal atom. The cation and anion are linked an N–Hpyridinium···O hydrogen bond (Table 1).

Related literature top

For a related ammonium tetrachlorido(pyridine-2-carboxylato)stannate(IV), see: Najafi et al. (2011).

Experimental top

Stannic chloride pentahydrate (1 mmol), quinoline-2-carboxylic acid (1 mmol) and 4-dimethylaminopyridine (1 mmol) were loaded into a convection tube and the tube was filled with dry methanol and kept at 333 K. Colorless crystals were collected from the side arm after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The ammonium H-atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.88±0.01 Å; its temperature factor was refined.

Omitted from the refinement was the (0 1 0) reflection.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of (C7H11N2)[SnCl4(C10H6NO2)] at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
4-(Dimethylamino)pyridinium tetrachlorido(quinoline-2-carboxylato-κ2N,O)stannate(IV) top
Crystal data top
(C7H11N2)[SnCl4(C10H6NO2)]Z = 2
Mr = 555.83F(000) = 548
Triclinic, P1Dx = 1.771 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6681 (3) ÅCell parameters from 5833 reflections
b = 8.8407 (4) Åθ = 2.4–29.2°
c = 14.4447 (5) ŵ = 1.76 mm1
α = 96.721 (3)°T = 100 K
β = 91.924 (3)°Block, colorless
γ = 108.038 (4)°0.30 × 0.20 × 0.10 mm
V = 1042.43 (7) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4610 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4202 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.022
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 811
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1111
Tmin = 0.621, Tmax = 0.844l = 1818
8056 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0181P)2 + 0.127P]
where P = (Fo2 + 2Fc2)/3
4610 reflections(Δ/σ)max = 0.001
250 parametersΔρmax = 0.52 e Å3
1 restraintΔρmin = 0.49 e Å3
Crystal data top
(C7H11N2)[SnCl4(C10H6NO2)]γ = 108.038 (4)°
Mr = 555.83V = 1042.43 (7) Å3
Triclinic, P1Z = 2
a = 8.6681 (3) ÅMo Kα radiation
b = 8.8407 (4) ŵ = 1.76 mm1
c = 14.4447 (5) ÅT = 100 K
α = 96.721 (3)°0.30 × 0.20 × 0.10 mm
β = 91.924 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4610 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
4202 reflections with I > 2σ(I)
Tmin = 0.621, Tmax = 0.844Rint = 0.022
8056 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0211 restraint
wR(F2) = 0.047H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.52 e Å3
4610 reflectionsΔρmin = 0.49 e Å3
250 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.361135 (16)0.258730 (15)0.271428 (9)0.01232 (5)
Cl10.16903 (6)0.37830 (6)0.33361 (4)0.02211 (12)
Cl20.13953 (6)0.04597 (6)0.18599 (3)0.01824 (11)
Cl30.41373 (6)0.41174 (6)0.14341 (4)0.02133 (11)
Cl40.58090 (6)0.44245 (6)0.37084 (4)0.02246 (12)
O10.51697 (17)0.14313 (16)0.21142 (9)0.0165 (3)
O20.57573 (18)0.08559 (17)0.19327 (10)0.0207 (3)
N10.36250 (19)0.06808 (18)0.36458 (10)0.0124 (3)
N21.0685 (2)0.3405 (2)0.12106 (11)0.0173 (4)
N30.7058 (2)0.2281 (2)0.05939 (12)0.0203 (4)
H30.629 (2)0.206 (3)0.0979 (13)0.024 (6)*
C10.2921 (2)0.0400 (2)0.44784 (13)0.0134 (4)
C20.2404 (2)0.1582 (2)0.49972 (13)0.0173 (4)
H20.25350.25820.47770.021*
C30.1712 (3)0.1279 (3)0.58221 (14)0.0203 (5)
H3A0.13690.20800.61720.024*
C40.1499 (3)0.0194 (3)0.61614 (14)0.0219 (5)
H40.09870.03890.67260.026*
C50.2022 (2)0.1341 (3)0.56843 (14)0.0194 (5)
H50.18880.23270.59230.023*
C60.2768 (2)0.1071 (2)0.48305 (13)0.0158 (4)
C70.3379 (2)0.2201 (2)0.43302 (14)0.0172 (4)
H70.32690.31990.45500.021*
C80.4130 (2)0.1860 (2)0.35297 (13)0.0164 (4)
H80.45770.25980.31960.020*
C90.4230 (2)0.0400 (2)0.32101 (13)0.0133 (4)
C100.5114 (2)0.0037 (2)0.23433 (13)0.0145 (4)
C110.9504 (2)0.3054 (2)0.06169 (13)0.0143 (4)
C120.9714 (3)0.2416 (2)0.02178 (14)0.0184 (4)
H121.07170.22480.03750.022*
C130.8486 (3)0.2047 (2)0.07897 (14)0.0205 (5)
H130.86380.16120.13440.025*
C140.6811 (3)0.2898 (2)0.01880 (14)0.0199 (5)
H140.57970.30620.03160.024*
C150.7983 (2)0.3288 (2)0.07943 (14)0.0166 (4)
H150.77840.37200.13410.020*
C161.2127 (3)0.2906 (3)0.10898 (16)0.0242 (5)
H16A1.27610.34880.05110.036*
H16B1.27940.31460.16210.036*
H16C1.17930.17500.10570.036*
C171.0413 (3)0.3978 (3)0.20898 (14)0.0258 (5)
H17A0.99280.48400.19710.039*
H17B0.96760.30910.25220.039*
H17C1.14540.43880.23670.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01240 (7)0.01035 (8)0.01461 (8)0.00357 (6)0.00258 (5)0.00280 (5)
Cl10.0238 (3)0.0179 (3)0.0275 (3)0.0104 (2)0.0071 (2)0.0023 (2)
Cl20.0183 (3)0.0146 (2)0.0197 (2)0.0034 (2)0.0038 (2)0.00033 (19)
Cl30.0229 (3)0.0214 (3)0.0235 (3)0.0086 (2)0.0061 (2)0.0125 (2)
Cl40.0208 (3)0.0168 (3)0.0243 (3)0.0010 (2)0.0032 (2)0.0012 (2)
O10.0185 (7)0.0168 (7)0.0173 (7)0.0084 (6)0.0074 (6)0.0045 (6)
O20.0244 (8)0.0229 (8)0.0197 (8)0.0145 (7)0.0054 (6)0.0025 (6)
N10.0110 (8)0.0117 (8)0.0134 (8)0.0021 (7)0.0000 (7)0.0015 (6)
N20.0155 (9)0.0163 (9)0.0181 (9)0.0026 (7)0.0042 (7)0.0005 (7)
N30.0200 (10)0.0245 (10)0.0175 (9)0.0072 (8)0.0089 (8)0.0042 (7)
C10.0110 (9)0.0149 (10)0.0122 (9)0.0010 (8)0.0007 (8)0.0027 (8)
C20.0167 (10)0.0170 (11)0.0171 (10)0.0039 (9)0.0004 (8)0.0024 (8)
C30.0164 (11)0.0256 (12)0.0177 (10)0.0062 (9)0.0013 (9)0.0013 (9)
C40.0159 (11)0.0329 (13)0.0134 (10)0.0027 (10)0.0022 (8)0.0030 (9)
C50.0159 (10)0.0194 (11)0.0183 (10)0.0027 (9)0.0010 (9)0.0075 (9)
C60.0126 (10)0.0164 (10)0.0155 (10)0.0006 (8)0.0029 (8)0.0032 (8)
C70.0187 (11)0.0117 (10)0.0187 (10)0.0012 (9)0.0048 (9)0.0034 (8)
C80.0166 (10)0.0146 (10)0.0169 (10)0.0052 (9)0.0034 (8)0.0013 (8)
C90.0113 (9)0.0139 (10)0.0136 (10)0.0033 (8)0.0012 (8)0.0003 (8)
C100.0120 (10)0.0171 (10)0.0136 (10)0.0039 (8)0.0016 (8)0.0019 (8)
C110.0157 (10)0.0098 (9)0.0154 (10)0.0021 (8)0.0023 (8)0.0022 (7)
C120.0170 (10)0.0204 (11)0.0193 (10)0.0084 (9)0.0006 (9)0.0020 (8)
C130.0245 (12)0.0204 (11)0.0179 (10)0.0077 (10)0.0017 (9)0.0062 (8)
C140.0178 (11)0.0230 (12)0.0198 (11)0.0096 (9)0.0000 (9)0.0020 (9)
C150.0195 (11)0.0174 (10)0.0143 (10)0.0086 (9)0.0002 (8)0.0002 (8)
C160.0132 (10)0.0261 (12)0.0317 (12)0.0054 (9)0.0070 (9)0.0015 (10)
C170.0333 (13)0.0236 (12)0.0204 (11)0.0065 (10)0.0118 (10)0.0068 (9)
Geometric parameters (Å, º) top
Sn1—O12.0848 (13)C4—H40.9500
Sn1—N12.2790 (16)C5—C61.422 (3)
Sn1—Cl12.3802 (5)C5—H50.9500
Sn1—Cl42.3840 (5)C6—C71.409 (3)
Sn1—Cl32.3912 (5)C7—C81.365 (3)
Sn1—Cl22.4106 (5)C7—H70.9500
O1—C101.301 (2)C8—C91.400 (3)
O2—C101.213 (2)C8—H80.9500
N1—C91.333 (2)C9—C101.516 (3)
N1—C11.381 (2)C11—C151.416 (3)
N2—C111.343 (2)C11—C121.419 (3)
N2—C171.459 (3)C12—C131.353 (3)
N2—C161.460 (3)C12—H120.9500
N3—C131.343 (3)C13—H130.9500
N3—C141.348 (3)C14—C151.353 (3)
N3—H30.869 (9)C14—H140.9500
C1—C21.408 (3)C15—H150.9500
C1—C61.421 (3)C16—H16A0.9800
C2—C31.369 (3)C16—H16B0.9800
C2—H20.9500C16—H16C0.9800
C3—C41.406 (3)C17—H17A0.9800
C3—H3A0.9500C17—H17B0.9800
C4—C51.360 (3)C17—H17C0.9800
O1—Sn1—N175.24 (5)C7—C6—C5122.27 (19)
O1—Sn1—Cl1176.27 (4)C1—C6—C5118.72 (19)
N1—Sn1—Cl1104.74 (4)C8—C7—C6119.87 (18)
O1—Sn1—Cl490.93 (4)C8—C7—H7120.1
N1—Sn1—Cl488.46 (4)C6—C7—H7120.1
Cl1—Sn1—Cl492.797 (19)C7—C8—C9118.64 (19)
O1—Sn1—Cl385.08 (4)C7—C8—H8120.7
N1—Sn1—Cl3160.21 (4)C9—C8—H8120.7
Cl1—Sn1—Cl394.762 (18)N1—C9—C8123.44 (17)
Cl4—Sn1—Cl393.991 (19)N1—C9—C10116.83 (17)
O1—Sn1—Cl287.29 (4)C8—C9—C10119.70 (17)
N1—Sn1—Cl283.40 (4)O2—C10—O1124.30 (18)
Cl1—Sn1—Cl289.002 (18)O2—C10—C9120.59 (18)
Cl4—Sn1—Cl2171.852 (17)O1—C10—C9115.05 (17)
Cl3—Sn1—Cl293.779 (18)N2—C11—C15121.88 (18)
C10—O1—Sn1118.81 (12)N2—C11—C12121.52 (19)
C9—N1—C1119.22 (16)C15—C11—C12116.60 (18)
C9—N1—Sn1110.22 (12)C13—C12—C11119.88 (19)
C1—N1—Sn1129.82 (13)C13—C12—H12120.1
C11—N2—C17120.69 (18)C11—C12—H12120.1
C11—N2—C16120.42 (17)N3—C13—C12121.67 (19)
C17—N2—C16117.65 (17)N3—C13—H13119.2
C13—N3—C14120.35 (18)C12—C13—H13119.2
C13—N3—H3120.3 (15)N3—C14—C15121.2 (2)
C14—N3—H3119.4 (15)N3—C14—H14119.4
N1—C1—C2120.50 (17)C15—C14—H14119.4
N1—C1—C6119.72 (17)C14—C15—C11120.29 (19)
C2—C1—C6119.74 (17)C14—C15—H15119.9
C3—C2—C1119.50 (19)C11—C15—H15119.9
C3—C2—H2120.2N2—C16—H16A109.5
C1—C2—H2120.2N2—C16—H16B109.5
C2—C3—C4121.3 (2)H16A—C16—H16B109.5
C2—C3—H3A119.3N2—C16—H16C109.5
C4—C3—H3A119.3H16A—C16—H16C109.5
C5—C4—C3120.29 (19)H16B—C16—H16C109.5
C5—C4—H4119.9N2—C17—H17A109.5
C3—C4—H4119.9N2—C17—H17B109.5
C4—C5—C6120.34 (19)H17A—C17—H17B109.5
C4—C5—H5119.8N2—C17—H17C109.5
C6—C5—H5119.8H17A—C17—H17C109.5
C7—C6—C1119.00 (17)H17B—C17—H17C109.5
N1—Sn1—O1—C1017.16 (14)C4—C5—C6—C11.4 (3)
Cl4—Sn1—O1—C10105.32 (14)C1—C6—C7—C81.2 (3)
Cl3—Sn1—O1—C10160.75 (14)C5—C6—C7—C8177.90 (19)
Cl2—Sn1—O1—C1066.72 (14)C6—C7—C8—C91.9 (3)
O1—Sn1—N1—C916.03 (12)C1—N1—C9—C82.9 (3)
Cl1—Sn1—N1—C9160.11 (12)Sn1—N1—C9—C8168.24 (16)
Cl4—Sn1—N1—C9107.40 (12)C1—N1—C9—C10174.97 (16)
Cl3—Sn1—N1—C99.9 (2)Sn1—N1—C9—C1013.9 (2)
Cl2—Sn1—N1—C972.90 (12)C7—C8—C9—N10.2 (3)
O1—Sn1—N1—C1174.03 (17)C7—C8—C9—C10177.68 (17)
Cl1—Sn1—N1—C19.83 (16)Sn1—O1—C10—O2167.37 (15)
Cl4—Sn1—N1—C182.65 (16)Sn1—O1—C10—C915.3 (2)
Cl3—Sn1—N1—C1179.84 (11)N1—C9—C10—O2176.83 (18)
Cl2—Sn1—N1—C197.05 (16)C8—C9—C10—O21.1 (3)
C9—N1—C1—C2174.22 (18)N1—C9—C10—O10.6 (3)
Sn1—N1—C1—C216.6 (3)C8—C9—C10—O1178.61 (17)
C9—N1—C1—C63.6 (3)C17—N2—C11—C152.8 (3)
Sn1—N1—C1—C6165.62 (14)C16—N2—C11—C15169.76 (18)
N1—C1—C2—C3179.86 (18)C17—N2—C11—C12176.65 (18)
C6—C1—C2—C32.1 (3)C16—N2—C11—C129.6 (3)
C1—C2—C3—C40.3 (3)N2—C11—C12—C13178.67 (19)
C2—C3—C4—C51.8 (3)C15—C11—C12—C130.8 (3)
C3—C4—C5—C60.9 (3)C14—N3—C13—C120.0 (3)
N1—C1—C6—C71.6 (3)C11—C12—C13—N30.5 (3)
C2—C1—C6—C7176.23 (18)C13—N3—C14—C150.3 (3)
N1—C1—C6—C5179.32 (17)N3—C14—C15—C110.1 (3)
C2—C1—C6—C52.9 (3)N2—C11—C15—C14178.95 (19)
C4—C5—C6—C7177.70 (19)C12—C11—C15—C140.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.87 (1)1.98 (1)2.816 (2)160 (2)

Experimental details

Crystal data
Chemical formula(C7H11N2)[SnCl4(C10H6NO2)]
Mr555.83
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.6681 (3), 8.8407 (4), 14.4447 (5)
α, β, γ (°)96.721 (3), 91.924 (3), 108.038 (4)
V3)1042.43 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.76
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.621, 0.844
No. of measured, independent and
observed [I > 2σ(I)] reflections
8056, 4610, 4202
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.047, 1.06
No. of reflections4610
No. of parameters250
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.49

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.87 (1)1.98 (1)2.816 (2)160 (2)
 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m351.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds