metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1209-m1210

Di­aqua­bis­­(4-bromo­benzoato-κO)bis­­(N,N-di­ethyl­nicotinamide-κN1)manganese(II)

aKafkas University, Department of Chemistry, 36100 Kars, Turkey, and bHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 3 August 2011; accepted 3 August 2011; online 6 August 2011)

In the crystal structure of the title MnII complex, [Mn(C7H4BrO2)2(C10H14N2O)2(H2O)2], the MnII cation is located on an inversion center and coordinated by two diethyl­nicotinamide (DENA) ligands, two 4-bromo­benzoate (PBB) anions and two water mol­ecules in a distorted octa­hedral geometry. The dihedral angle between the carboxyl­ate group and the adjacent benzene ring is 3.25 (14)°. In the mol­ecule, the pyridine ring and the benzene ring are oriented at a dihedral angle of 77.24 (5)°. In the crystal, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into a two-dimensional network. Weak inter­molecular C—H⋯O hydrogen bonds and ππ inter­actions between the pyridine rings of neighbouring mol­ecules [centroid–centroid distance = 3.537 (1) Å] further consolidate the crystal packing.

Related literature

For literature on niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For information on the nicotinic acid derivative N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Hökelek et al. (1996[Hökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470-2473.], 2009a[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466-m467.],b[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m607-m608.]); Hökelek & Necefoğlu (1998[Hökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242-1244.], 2007[Hökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821-m823.]); Necefoğlu et al. (2011[Necefoğlu, H., Maracı, A., Özbek, F. E., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m619-m620.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C7H4BrO2)2(C10H14N2O)2(H2O)2]

  • Mr = 847.46

  • Triclinic, [P \overline 1]

  • a = 7.2939 (2) Å

  • b = 8.5130 (2) Å

  • c = 16.1252 (4) Å

  • α = 83.970 (3)°

  • β = 79.529 (3)°

  • γ = 68.031 (2)°

  • V = 912.34 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.61 mm−1

  • T = 100 K

  • 0.35 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.462, Tmax = 0.594

  • 16194 measured reflections

  • 4616 independent reflections

  • 4127 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.073

  • S = 1.09

  • 4616 reflections

  • 233 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H41⋯O2 0.86 (3) 1.82 (3) 2.6606 (18) 165 (3)
O4—H42⋯O3 0.82 (2) 1.92 (3) 2.742 (2) 166 (3)
C6—H6⋯O2i 0.93 2.30 3.168 (3) 155
C10—H10⋯O2 0.93 2.44 3.353 (2) 168
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigations of transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The asymmetric unit of the title mononuclear MnII complex, (Fig. 1), contains one-half molecule, the MnII atom being located on an inversion center. It consists of two N,N-diethylnicotinamide (DENA), two 4-bromobenzoate (PBB) ligands and two coordinated water molecules, all ligands coordinating in a monodentate manner. The crystal structures of similar omplexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C7H5O2)2(C10H14N2O)2] (Hökelek et al., 1996), [Co(C6H6N2O)2(C7H4NO4)2(H2O)2] (Hökelek & Necefoğlu, 1998), [Co(C9H9O2)2(C10H14N2O)2(H2O)2] (Necefoğlu et al., 2011), [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009a), [Mn(C9H10NO2)2(H2O)4].2H2O (Hökelek & Necefoğlu, 2007) and [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009b) have also been reported. In the copper(II) complex mentioned above the two benzoate ions coordinate to the CuII atom as bidentate ligands, while in the other structures all the ligands coordinate in a monodentate manner.

In the title complex, the four symmetry related O atoms (O1, O1', O4 and O4') in the equatorial plane around the MnII ion form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the DENA ligands (N1 and N1') in the axial positions. The intramolecular O—H···O hydrogen bonds (Table 1, Fig. 1) link the water molecules to the carboxylate oxygens. The near equalities of the C1—O1 [1.266 (2) Å] and C1—O2 [1.256 (2) Å] bonds in the carboxylate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The Mn—O bond lengths are 2.1542 (12) Å (for benzoate oxygen) and 2.2088 (13) Å (for water oxygen), and the Mn—N bond length is 2.2632 (14) Å, close to standard values (Allen et al., 1987). The Mn atom is displaced out of the mean-plane of the carboxylate group (O1/C1/O2) by 0.9729 (1) Å. The dihedral angle between the planar carboxylate group and the adjacent benzene ring A (C2—C7) is 3.25 (14)°. The benzene A (C2—C7) and the pyridine B (N1/C8—C12) rings are oriented at a dihedral angle of A/B = 77.24 (5)°.

In the crystal, intermolecular O—H···O hydrogen bonds (Table 1, Fig. 2) link the molecules into a two-dimensional network. Weak intermolecular C—H···O hydrogen bonds (Table 1) and π···π interactions between the pyridine rings, Cg2—Cg2i, of neighbouring molecules [centroid-centroid distance = 3.537 (1) Å; symmetry code: (i) -x, 1 - y, 1 - z; Cg2 is the centroid of the ring B (N1/C8—C12)] further consolidate the crystal packing.

Related literature top

For literature on niacin, see: Krishnamachari (1974). For information on the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (1996, 2009a,b); Hökelek & Necefoğlu (1998, 2007); Necefoğlu et al. (2011). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the reaction of MnSO4.H2O (0.85 g, 5 mmol) in H2O (25 ml) and DENA (1.78 g, 10 mmol) in H2O (25 ml) with sodium 4-bromobenzoate (2.23 g, 10 mmol) in H2O (100 ml) at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for two weeks, giving colorless single crystals.

Refinement top

Atoms H41 and H42 (for water molecules) were located in a difference Fourier map and were freely refined. The C-bound H-atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code ('): -x, -y, -z]. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound. Only the intermolecular O—H···O hydrogen bonds are shown as dashed lines. [H-atoms not involved in hydrogen bonding have been omitted for clarity].
Diaquabis(4-bromobenzoato-κO)bis(N,N- diethylnicotinamide-κN1)manganese(II) top
Crystal data top
[Mn(C7H4BrO2)2(C10H14N2O)2(H2O)2]Z = 1
Mr = 847.46F(000) = 431
Triclinic, P1Dx = 1.542 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2939 (2) ÅCell parameters from 9256 reflections
b = 8.5130 (2) Åθ = 2.6–28.5°
c = 16.1252 (4) ŵ = 2.61 mm1
α = 83.970 (3)°T = 100 K
β = 79.529 (3)°Block, colorless
γ = 68.031 (2)°0.35 × 0.25 × 0.20 mm
V = 912.34 (4) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4616 independent reflections
Radiation source: fine-focus sealed tube4127 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 28.7°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 98
Tmin = 0.462, Tmax = 0.594k = 1111
16194 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0308P)2 + 0.6418P]
where P = (Fo2 + 2Fc2)/3
4616 reflections(Δ/σ)max = 0.001
233 parametersΔρmax = 0.42 e Å3
2 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Mn(C7H4BrO2)2(C10H14N2O)2(H2O)2]γ = 68.031 (2)°
Mr = 847.46V = 912.34 (4) Å3
Triclinic, P1Z = 1
a = 7.2939 (2) ÅMo Kα radiation
b = 8.5130 (2) ŵ = 2.61 mm1
c = 16.1252 (4) ÅT = 100 K
α = 83.970 (3)°0.35 × 0.25 × 0.20 mm
β = 79.529 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4616 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4127 reflections with I > 2σ(I)
Tmin = 0.462, Tmax = 0.594Rint = 0.029
16194 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0262 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.42 e Å3
4616 reflectionsΔρmin = 0.39 e Å3
233 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.75487 (3)0.83337 (3)0.028844 (11)0.02549 (7)
Mn11.50001.00000.50000.01072 (8)
O11.38994 (18)0.87032 (15)0.39214 (7)0.0149 (2)
O21.58179 (18)0.86624 (16)0.29746 (8)0.0162 (2)
O32.33701 (19)0.67456 (16)0.62449 (8)0.0180 (3)
O41.73146 (19)1.01296 (16)0.43251 (8)0.0164 (2)
H411.695 (5)0.972 (4)0.3842 (14)0.061 (10)*
H421.724 (4)1.107 (2)0.4215 (17)0.039 (7)*
N11.7301 (2)0.75479 (18)0.55238 (9)0.0135 (3)
N22.3337 (2)0.57656 (18)0.74841 (9)0.0154 (3)
C11.4231 (3)0.8666 (2)0.31747 (10)0.0132 (3)
C21.2580 (3)0.8627 (2)0.24697 (10)0.0122 (3)
C31.2803 (3)0.8670 (2)0.16323 (11)0.0156 (3)
H31.39600.87570.15110.019*
C41.1308 (3)0.8583 (2)0.09777 (11)0.0167 (3)
H41.14530.86060.04180.020*
C50.9600 (3)0.8463 (2)0.11768 (11)0.0159 (3)
C60.9306 (3)0.8470 (2)0.20023 (11)0.0158 (3)
H60.81280.84200.21210.019*
C71.0816 (3)0.8554 (2)0.26481 (10)0.0145 (3)
H71.06470.85610.32070.017*
C81.7011 (3)0.6072 (2)0.54066 (10)0.0142 (3)
H81.58130.60550.50950.017*
C91.8416 (3)0.4569 (2)0.57292 (11)0.0158 (3)
H91.81640.35670.56350.019*
C102.0201 (3)0.4589 (2)0.61946 (11)0.0148 (3)
H102.11620.36030.64260.018*
C112.0531 (3)0.6112 (2)0.63100 (10)0.0131 (3)
C121.9050 (3)0.7549 (2)0.59574 (10)0.0137 (3)
H121.92810.85610.60250.016*
C132.2514 (3)0.6235 (2)0.66923 (11)0.0138 (3)
C142.5372 (3)0.5766 (2)0.77833 (12)0.0203 (4)
H14A2.61830.52720.73410.024*
H14B2.59640.50540.82660.024*
C152.5430 (3)0.7523 (2)0.80336 (13)0.0261 (4)
H15A2.67870.74330.82320.039*
H15B2.46360.80210.84740.039*
H15C2.49020.82230.75530.039*
C162.2354 (3)0.5264 (2)0.80695 (11)0.0192 (4)
H16A2.31760.41260.82460.023*
H16B2.10820.52370.77750.023*
C172.1988 (4)0.6441 (3)0.88473 (14)0.0370 (5)
H17A2.13060.60660.91950.056*
H17B2.11820.75720.86780.056*
H17C2.32460.64270.91600.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02017 (11)0.04066 (12)0.01687 (10)0.01507 (9)0.00437 (7)0.00377 (8)
Mn10.00970 (17)0.01062 (15)0.01099 (16)0.00281 (13)0.00032 (13)0.00241 (12)
O10.0165 (6)0.0158 (6)0.0132 (5)0.0070 (5)0.0006 (5)0.0021 (4)
O20.0120 (6)0.0194 (6)0.0172 (6)0.0056 (5)0.0026 (5)0.0003 (5)
O30.0163 (6)0.0198 (6)0.0203 (6)0.0083 (5)0.0027 (5)0.0043 (5)
O40.0175 (6)0.0174 (6)0.0167 (6)0.0085 (5)0.0031 (5)0.0022 (5)
N10.0128 (7)0.0138 (6)0.0136 (6)0.0042 (5)0.0019 (5)0.0025 (5)
N20.0155 (7)0.0146 (6)0.0152 (7)0.0055 (6)0.0013 (6)0.0024 (5)
C10.0151 (8)0.0084 (7)0.0138 (7)0.0024 (6)0.0003 (6)0.0022 (5)
C20.0121 (8)0.0104 (7)0.0130 (7)0.0026 (6)0.0011 (6)0.0021 (6)
C30.0140 (8)0.0174 (8)0.0158 (8)0.0056 (7)0.0024 (6)0.0022 (6)
C40.0183 (9)0.0187 (8)0.0124 (7)0.0057 (7)0.0014 (7)0.0030 (6)
C50.0142 (8)0.0176 (8)0.0151 (8)0.0061 (7)0.0018 (6)0.0023 (6)
C60.0126 (8)0.0178 (8)0.0181 (8)0.0065 (7)0.0031 (6)0.0009 (6)
C70.0179 (9)0.0138 (7)0.0125 (7)0.0062 (7)0.0022 (6)0.0019 (6)
C80.0126 (8)0.0157 (7)0.0150 (7)0.0063 (6)0.0014 (6)0.0011 (6)
C90.0188 (9)0.0133 (7)0.0172 (8)0.0076 (7)0.0028 (7)0.0017 (6)
C100.0158 (8)0.0112 (7)0.0155 (7)0.0026 (6)0.0009 (6)0.0040 (6)
C110.0129 (8)0.0154 (7)0.0114 (7)0.0053 (6)0.0019 (6)0.0020 (6)
C120.0141 (8)0.0120 (7)0.0150 (7)0.0048 (6)0.0019 (6)0.0014 (6)
C130.0132 (8)0.0095 (7)0.0165 (8)0.0021 (6)0.0008 (6)0.0016 (6)
C140.0173 (9)0.0177 (8)0.0233 (9)0.0068 (7)0.0066 (7)0.0053 (7)
C150.0253 (10)0.0219 (9)0.0304 (10)0.0119 (8)0.0064 (8)0.0034 (8)
C160.0248 (10)0.0197 (8)0.0146 (8)0.0098 (7)0.0015 (7)0.0034 (6)
C170.0505 (15)0.0392 (12)0.0281 (11)0.0209 (11)0.0191 (11)0.0106 (9)
Geometric parameters (Å, º) top
Br1—C51.9009 (17)C6—H60.9300
Mn1—O12.1542 (12)C7—C21.393 (2)
Mn1—O1i2.1542 (12)C7—H70.9300
Mn1—O42.2088 (13)C8—C91.387 (2)
Mn1—O4i2.2089 (13)C8—H80.9300
Mn1—N12.2632 (14)C9—H90.9300
Mn1—N1i2.2632 (14)C10—C91.385 (2)
O1—C11.266 (2)C10—C111.393 (2)
O2—C11.256 (2)C10—H100.9300
O3—C131.238 (2)C11—C131.503 (2)
O4—H410.860 (18)C12—C111.386 (2)
O4—H420.823 (17)C12—H120.9300
N1—C81.339 (2)C14—C151.521 (2)
N1—C121.339 (2)C14—H14A0.9700
N2—C131.341 (2)C14—H14B0.9700
N2—C141.475 (2)C15—H15A0.9600
N2—C161.465 (2)C15—H15B0.9600
C1—C21.506 (2)C15—H15C0.9600
C3—C21.395 (2)C16—C171.518 (3)
C3—H30.9300C16—H16A0.9700
C4—C31.391 (2)C16—H16B0.9700
C4—C51.383 (3)C17—H17A0.9600
C4—H40.9300C17—H17B0.9600
C5—C61.385 (2)C17—H17C0.9600
C6—C71.389 (2)
O1i—Mn1—O1180.000 (1)C6—C7—C2120.84 (15)
O1—Mn1—O490.55 (5)C6—C7—H7119.6
O1i—Mn1—O489.45 (5)N1—C8—C9122.95 (16)
O1—Mn1—O4i89.45 (5)N1—C8—H8118.5
O1i—Mn1—O4i90.55 (5)C9—C8—H8118.5
O4—Mn1—O4i180.00 (5)C8—C9—H9120.6
O1—Mn1—N192.44 (5)C10—C9—C8118.76 (15)
O1i—Mn1—N187.56 (5)C10—C9—H9120.6
O1—Mn1—N1i87.56 (5)C9—C10—C11118.77 (15)
O1i—Mn1—N1i92.44 (5)C9—C10—H10120.6
O4—Mn1—N187.02 (5)C11—C10—H10120.6
O4i—Mn1—N192.98 (5)C10—C11—C13123.27 (15)
O4—Mn1—N1i92.98 (5)C12—C11—C10118.50 (15)
O4i—Mn1—N1i87.02 (5)C12—C11—C13117.68 (14)
N1—Mn1—N1i180.0N1—C12—C11123.06 (15)
C1—O1—Mn1125.95 (11)N1—C12—H12118.5
Mn1—O4—H4198 (2)C11—C12—H12118.5
Mn1—O4—H42118 (2)O3—C13—N2121.63 (16)
H42—O4—H41103 (3)O3—C13—C11117.65 (15)
C8—N1—Mn1122.84 (11)N2—C13—C11120.70 (15)
C12—N1—Mn1119.21 (11)N2—C14—C15113.64 (16)
C12—N1—C8117.93 (15)N2—C14—H14A108.8
C13—N2—C14117.30 (15)N2—C14—H14B108.8
C13—N2—C16124.64 (15)C15—C14—H14A108.8
C16—N2—C14118.06 (14)C15—C14—H14B108.8
O1—C1—C2117.11 (15)H14A—C14—H14B107.7
O2—C1—O1125.40 (15)C14—C15—H15A109.5
O2—C1—C2117.49 (14)C14—C15—H15B109.5
C3—C2—C1120.22 (15)C14—C15—H15C109.5
C7—C2—C1120.33 (15)H15A—C15—H15B109.5
C7—C2—C3119.45 (15)H15A—C15—H15C109.5
C2—C3—H3119.8H15B—C15—H15C109.5
C4—C3—C2120.44 (16)N2—C16—C17113.53 (16)
C4—C3—H3119.8N2—C16—H16A108.9
C3—C4—H4120.7N2—C16—H16B108.9
C5—C4—C3118.55 (16)C17—C16—H16A108.9
C5—C4—H4120.7C17—C16—H16B108.9
C4—C5—Br1119.00 (13)H16A—C16—H16B107.7
C4—C5—C6122.43 (16)C16—C17—H17A109.5
C6—C5—Br1118.55 (13)C16—C17—H17B109.5
C5—C6—C7118.23 (16)C16—C17—H17C109.5
C5—C6—H6120.9H17A—C17—H17B109.5
C7—C6—H6120.9H17A—C17—H17C109.5
C2—C7—H7119.6H17B—C17—H17C109.5
O4—Mn1—O1—C118.28 (14)C14—N2—C16—C1763.1 (2)
O4i—Mn1—O1—C1161.72 (14)O1—C1—C2—C3176.80 (15)
N1—Mn1—O1—C1105.33 (14)O1—C1—C2—C73.0 (2)
N1i—Mn1—O1—C174.67 (14)O2—C1—C2—C33.0 (2)
O1—Mn1—N1—C831.20 (13)O2—C1—C2—C7177.19 (14)
O1i—Mn1—N1—C8148.80 (13)C4—C3—C2—C1178.07 (15)
O1—Mn1—N1—C12147.52 (12)C4—C3—C2—C72.1 (2)
O1i—Mn1—N1—C1232.48 (12)C3—C4—C5—Br1179.73 (13)
O4—Mn1—N1—C8121.63 (13)C3—C4—C5—C61.7 (3)
O4i—Mn1—N1—C858.37 (13)C5—C4—C3—C20.3 (3)
O4—Mn1—N1—C1257.09 (13)Br1—C5—C6—C7179.61 (13)
O4i—Mn1—N1—C12122.91 (13)C4—C5—C6—C71.9 (3)
Mn1—O1—C1—O233.9 (2)C5—C6—C7—C20.1 (2)
Mn1—O1—C1—C2145.88 (11)C6—C7—C2—C1178.19 (15)
Mn1—N1—C8—C9179.79 (13)C6—C7—C2—C32.0 (2)
C12—N1—C8—C91.5 (2)N1—C8—C9—C100.1 (3)
Mn1—N1—C12—C11179.07 (12)C11—C10—C9—C81.0 (3)
C8—N1—C12—C112.1 (2)C9—C10—C11—C120.4 (2)
C14—N2—C13—O34.2 (2)C9—C10—C11—C13170.84 (16)
C14—N2—C13—C11174.13 (15)C10—C11—C13—O3117.15 (18)
C16—N2—C13—O3175.47 (16)C10—C11—C13—N261.2 (2)
C16—N2—C13—C116.2 (2)C12—C11—C13—O354.2 (2)
C13—N2—C14—C1578.2 (2)C12—C11—C13—N2127.49 (17)
C16—N2—C14—C15101.50 (19)N1—C12—C11—C101.2 (3)
C13—N2—C16—C17116.6 (2)N1—C12—C11—C13172.96 (15)
Symmetry code: (i) x3, y2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O20.86 (3)1.82 (3)2.6606 (18)165 (3)
O4—H42···O30.82 (2)1.92 (3)2.742 (2)166 (3)
C6—H6···O2ii0.932.303.168 (3)155
C10—H10···O20.932.443.353 (2)168
Symmetry code: (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Mn(C7H4BrO2)2(C10H14N2O)2(H2O)2]
Mr847.46
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.2939 (2), 8.5130 (2), 16.1252 (4)
α, β, γ (°)83.970 (3), 79.529 (3), 68.031 (2)
V3)912.34 (4)
Z1
Radiation typeMo Kα
µ (mm1)2.61
Crystal size (mm)0.35 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.462, 0.594
No. of measured, independent and
observed [I > 2σ(I)] reflections
16194, 4616, 4127
Rint0.029
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.073, 1.09
No. of reflections4616
No. of parameters233
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.39

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O20.86 (3)1.82 (3)2.6606 (18)165 (3)
O4—H42···O30.82 (2)1.92 (3)2.742 (2)166 (3)
C6—H6···O2i0.932.303.168 (3)155
C10—H10···O20.932.443.353 (2)168
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer. This work was supported financially by the Scientific and Technological Research Council of Turkey (grant No. 106 T472).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m607–m608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470–2473.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242–1244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821–m823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationNecefoğlu, H., Maracı, A., Özbek, F. E., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m619–m620.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1209-m1210
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds