organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(3,7-Di­methyl-4-oxo-4,5-di­hydro­isoxazolo[4,5-d]pyridazin-5-yl)benzene­sulfonamide

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 6 August 2011; accepted 21 August 2011; online 27 August 2011)

The nine-membered fused-ring system of the title pyridazine derivative, C13H12N4O4S, is approximately planar (r.m.s. deviation 0.027 Å), and the benzene ring of the phenyl­sulfamide substituent is aligned at 43.5 (1)° to the fused-ring system. The amine group of the sulfonamide substituent forms an N—H⋯O hydrogen bond to the ketonic O atom of two neigboring mol­ecules to generate a chain running along the c axis.

Related literature

For a related structure, see: Abdel-Aziz et al. (2010[Abdel-Aziz, H. A., Bari, A. & Ng, S. W. (2010). Acta Cryst. E66, o3344.]). For the biological activity of the class of pyridazines, see: Faid-Allah et al. (2011[Faid-Allah, H. S., Khan, K. A. & Makki, M. S. (2011). J. Chin. Chem. Soc. 58, 191-198.]); Makki & Faid-Allah (1996[Makki, M. S. & Faid-Allah, H. S. (1996). J. Chin. Chem. Soc. 43, 433-438.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12N4O4S

  • Mr = 320.33

  • Orthorhombic, F d d 2

  • a = 18.0113 (4) Å

  • b = 35.5302 (11) Å

  • c = 8.2900 (2) Å

  • V = 5305.1 (2) Å3

  • Z = 16

  • Cu Kα radiation

  • μ = 2.43 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.05 mm

Data collection
  • Agilent Technologies SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.529, Tmax = 0.888

  • 7699 measured reflections

  • 1886 independent reflections

  • 1870 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.096

  • S = 1.08

  • 1886 reflections

  • 207 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 441 Friedel pairs

  • Flack parameter: 0.026 (18)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1⋯O2i 0.95 (3) 2.09 (4) 3.012 (3) 163 (3)
N4—H2⋯O2ii 0.85 (5) 2.11 (5) 2.933 (3) 162 (4)
Symmetry codes: (i) x, y, z+1; (ii) [-x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have reported the synthesis of some pyridazines, which exhibit biological activity (Faid-Allah et al., 2011; Makki & Faid-Allah, 1996). There are few crystal structure reports of such systems; recently, we reported the crystal structure of 3-methyl-2-(4-methyl)-2H-pyrazolo[3,4-d]pyridazin-5-ium thiocyanate, a salt (Abdel-Aziz et al., 2010).

The nine-membered fused-ring system of C13H12N4O4S (Scheme I), is planar and the benzene ring of the phenylsufamido substitutent is aligned at 43.5 (1) ° (Fig. 1). The amino group the substitutent forms a hydrogen bond to the ketonic O atom of two neigboring molecules to generate a chain running along the c-axis of the orthorhombic unit cell (Table 1).

Related literature top

For a related structure, see: Abdel-Aziz et al. (2010). For the biological activity of the class of pyridazines, see: Faid-Allah et al. (2011); Makki & Faid-Allah (1996).

Experimental top

A solution of ethyl 5-acetyl-3-methylisoxazole-4-carboxylate (0.39 g, 0.002 mol) in ethanol (25 ml) was refluxed with p-sulfonamidophenyl hydrazine hydrochloride (0.49 g, 0.002 mol) for 2 h. The pyridazine which separated after concentration of the reaction mixture was filtered off, washed with ethanol and recrystallized from the same solvent to give long thin prisms in 90% yield, m.p. 488 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The amino H-atoms were located in a difference Fourier map, and were refined freely.

The Flack (Flack, 1983) parameter was refined from 441 Friedel pairs.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C13H12N4O4S at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
4-(3,7-Dimethyl-4-oxo-4,5- dihydroisoxazolo[4,5-d]pyridazin-5-yl)benzenesulfonamide top
Crystal data top
C13H12N4O4SF(000) = 2656
Mr = 320.33Dx = 1.604 Mg m3
Orthorhombic, Fdd2Cu Kα radiation, λ = 1.54184 Å
Hall symbol: F 2 -2dCell parameters from 5872 reflections
a = 18.0113 (4) Åθ = 4.9–74.4°
b = 35.5302 (11) ŵ = 2.43 mm1
c = 8.2900 (2) ÅT = 100 K
V = 5305.1 (2) Å3Plate, colorless
Z = 160.30 × 0.20 × 0.05 mm
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with Atlas detector
1886 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1870 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 10.4041 pixels mm-1θmax = 74.5°, θmin = 5.0°
ω scanh = 4244
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 2222
Tmin = 0.529, Tmax = 0.888l = 107
7699 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0772P)2 + 4.3892P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1886 reflectionsΔρmax = 0.41 e Å3
207 parametersΔρmin = 0.35 e Å3
1 restraintAbsolute structure: Flack (1983), 441 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.026 (18)
Crystal data top
C13H12N4O4SV = 5305.1 (2) Å3
Mr = 320.33Z = 16
Orthorhombic, Fdd2Cu Kα radiation
a = 18.0113 (4) ŵ = 2.43 mm1
b = 35.5302 (11) ÅT = 100 K
c = 8.2900 (2) Å0.30 × 0.20 × 0.05 mm
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with Atlas detector
1886 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1870 reflections with I > 2σ(I)
Tmin = 0.529, Tmax = 0.888Rint = 0.032
7699 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096Δρmax = 0.41 e Å3
S = 1.08Δρmin = 0.35 e Å3
1886 reflectionsAbsolute structure: Flack (1983), 441 Friedel pairs
207 parametersAbsolute structure parameter: 0.026 (18)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.12413 (3)0.212823 (15)0.43880 (7)0.01769 (17)
O10.21513 (9)0.37146 (4)0.5296 (2)0.0193 (4)
O20.05983 (9)0.28881 (4)0.2671 (2)0.0188 (4)
O30.17529 (10)0.22599 (5)0.5595 (2)0.0235 (4)
N40.04217 (11)0.22369 (5)0.5034 (3)0.0213 (4)
N10.14841 (11)0.36838 (5)0.6234 (3)0.0200 (4)
N20.17467 (10)0.30278 (5)0.1592 (3)0.0154 (4)
N30.24011 (10)0.32316 (5)0.1526 (3)0.0163 (4)
O40.12339 (11)0.17367 (5)0.3966 (3)0.0277 (5)
C10.32798 (13)0.36781 (6)0.2608 (3)0.0204 (5)
H1A0.35470.36120.16180.031*
H1B0.31680.39480.26030.031*
H1C0.35890.36180.35460.031*
C20.25679 (12)0.34585 (6)0.2694 (3)0.0170 (5)
C30.20621 (12)0.34980 (6)0.3997 (3)0.0169 (5)
C40.13880 (13)0.33186 (6)0.4030 (3)0.0156 (5)
C50.10469 (13)0.34528 (6)0.5465 (3)0.0177 (5)
C60.02971 (13)0.33542 (7)0.6145 (3)0.0213 (5)
H6A0.02180.34920.71530.032*
H6B0.00900.34230.53670.032*
H6C0.02750.30830.63570.032*
C70.11926 (12)0.30620 (6)0.2766 (3)0.0155 (5)
C80.16360 (12)0.28011 (6)0.0177 (3)0.0159 (5)
C90.18337 (13)0.29491 (6)0.1314 (3)0.0175 (5)
H90.20400.31950.13830.021*
C100.17290 (12)0.27382 (6)0.2696 (3)0.0175 (5)
H100.18760.28350.37150.021*
C110.14063 (12)0.23826 (6)0.2583 (3)0.0171 (5)
C120.12297 (12)0.22293 (7)0.1099 (4)0.0189 (5)
H120.10260.19830.10370.023*
C130.13496 (12)0.24347 (6)0.0300 (3)0.0174 (5)
H130.12400.23290.13250.021*
H10.0433 (17)0.2472 (9)0.559 (4)0.025 (8)*
H20.008 (2)0.2165 (10)0.439 (6)0.043 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0235 (3)0.0179 (3)0.0117 (3)0.00015 (18)0.0010 (2)0.0027 (2)
O10.0226 (8)0.0227 (7)0.0124 (9)0.0015 (6)0.0005 (7)0.0035 (7)
O20.0198 (8)0.0231 (7)0.0135 (9)0.0028 (5)0.0009 (7)0.0002 (7)
O30.0273 (9)0.0289 (8)0.0143 (10)0.0008 (7)0.0034 (8)0.0049 (7)
N40.0219 (10)0.0270 (10)0.0150 (11)0.0041 (8)0.0011 (9)0.0002 (9)
N10.0230 (9)0.0225 (9)0.0145 (11)0.0025 (7)0.0033 (9)0.0000 (8)
N20.0190 (8)0.0174 (8)0.0098 (10)0.0005 (7)0.0018 (8)0.0000 (8)
N30.0183 (9)0.0169 (7)0.0136 (10)0.0005 (7)0.0002 (8)0.0033 (8)
O40.0464 (11)0.0194 (8)0.0172 (11)0.0006 (7)0.0003 (8)0.0042 (8)
C10.0236 (10)0.0242 (10)0.0134 (13)0.0058 (8)0.0020 (11)0.0016 (9)
C20.0208 (10)0.0163 (8)0.0139 (12)0.0009 (8)0.0016 (10)0.0015 (8)
C30.0219 (10)0.0166 (9)0.0123 (12)0.0003 (8)0.0025 (10)0.0015 (9)
C40.0201 (10)0.0171 (9)0.0096 (12)0.0017 (8)0.0007 (9)0.0015 (9)
C50.0220 (10)0.0202 (9)0.0107 (12)0.0031 (8)0.0020 (10)0.0003 (9)
C60.0220 (11)0.0291 (11)0.0128 (12)0.0017 (8)0.0028 (10)0.0024 (10)
C70.0195 (10)0.0164 (9)0.0107 (13)0.0032 (7)0.0005 (9)0.0007 (9)
C80.0170 (9)0.0176 (9)0.0130 (13)0.0022 (7)0.0013 (10)0.0015 (9)
C90.0220 (10)0.0176 (10)0.0127 (12)0.0001 (8)0.0001 (10)0.0016 (9)
C100.0223 (10)0.0195 (10)0.0107 (11)0.0017 (8)0.0003 (10)0.0007 (9)
C110.0179 (9)0.0186 (10)0.0147 (13)0.0027 (8)0.0016 (10)0.0030 (10)
C120.0210 (11)0.0171 (9)0.0186 (14)0.0000 (8)0.0009 (10)0.0022 (10)
C130.0212 (10)0.0189 (10)0.0122 (13)0.0004 (8)0.0022 (9)0.0023 (9)
Geometric parameters (Å, º) top
S1—O41.4345 (19)C2—C31.420 (3)
S1—O31.4385 (19)C3—C41.372 (3)
S1—N41.617 (2)C4—C51.422 (4)
S1—C111.773 (3)C4—C71.433 (3)
O1—C31.333 (3)C5—C61.505 (3)
O1—N11.435 (3)C6—H6A0.9800
O2—C71.238 (3)C6—H6B0.9800
N4—H10.95 (3)C6—H6C0.9800
N4—H20.85 (5)C8—C91.389 (4)
N1—C51.304 (3)C8—C131.404 (3)
N2—N31.384 (3)C9—C101.382 (3)
N2—C71.399 (3)C9—H90.9500
N2—C81.437 (3)C10—C111.394 (3)
N3—C21.296 (3)C10—H100.9500
C1—C21.502 (3)C11—C121.383 (4)
C1—H1A0.9800C12—C131.387 (4)
C1—H1B0.9800C12—H120.9500
C1—H1C0.9800C13—H130.9500
O4—S1—O3119.41 (11)N1—C5—C4111.0 (2)
O4—S1—N4107.69 (11)N1—C5—C6120.4 (2)
O3—S1—N4106.07 (12)C4—C5—C6128.5 (2)
O4—S1—C11106.85 (12)C5—C6—H6A109.5
O3—S1—C11108.30 (11)C5—C6—H6B109.5
N4—S1—C11108.10 (11)H6A—C6—H6B109.5
C3—O1—N1107.01 (16)C5—C6—H6C109.5
S1—N4—H1110.4 (18)H6A—C6—H6C109.5
S1—N4—H2112 (3)H6B—C6—H6C109.5
H1—N4—H2125 (3)O2—C7—N2121.9 (2)
C5—N1—O1106.8 (2)O2—C7—C4125.2 (2)
N3—N2—C7126.1 (2)N2—C7—C4112.9 (2)
N3—N2—C8112.27 (18)C9—C8—C13120.6 (2)
C7—N2—C8121.16 (18)C9—C8—N2118.59 (18)
C2—N3—N2119.6 (2)C13—C8—N2120.8 (2)
C2—C1—H1A109.5C10—C9—C8119.8 (2)
C2—C1—H1B109.5C10—C9—H9120.1
H1A—C1—H1B109.5C8—C9—H9120.1
C2—C1—H1C109.5C9—C10—C11119.5 (2)
H1A—C1—H1C109.5C9—C10—H10120.2
H1B—C1—H1C109.5C11—C10—H10120.2
N3—C2—C3118.8 (2)C12—C11—C10120.8 (2)
N3—C2—C1119.0 (2)C12—C11—S1120.77 (17)
C3—C2—C1122.2 (2)C10—C11—S1118.4 (2)
O1—C3—C4111.0 (2)C11—C12—C13120.0 (2)
O1—C3—C2126.5 (2)C11—C12—H12120.0
C4—C3—C2122.5 (2)C13—C12—H12120.0
C3—C4—C5104.1 (2)C12—C13—C8119.0 (2)
C3—C4—C7119.9 (2)C12—C13—H13120.5
C5—C4—C7136.0 (2)C8—C13—H13120.5
C3—O1—N1—C50.6 (2)C3—C4—C7—O2179.4 (2)
C7—N2—N3—C25.6 (3)C5—C4—C7—O21.1 (4)
C8—N2—N3—C2177.91 (19)C3—C4—C7—N20.3 (3)
N2—N3—C2—C31.5 (3)C5—C4—C7—N2179.9 (2)
N2—N3—C2—C1179.99 (19)N3—N2—C8—C938.9 (3)
N1—O1—C3—C41.5 (2)C7—N2—C8—C9133.9 (2)
N1—O1—C3—C2176.5 (2)N3—N2—C8—C13139.7 (2)
N3—C2—C3—O1179.1 (2)C7—N2—C8—C1347.5 (3)
C1—C2—C3—O12.4 (4)C13—C8—C9—C101.8 (3)
N3—C2—C3—C43.2 (3)N2—C8—C9—C10179.60 (19)
C1—C2—C3—C4175.3 (2)C8—C9—C10—C111.8 (3)
O1—C3—C4—C51.7 (2)C9—C10—C11—C123.8 (3)
C2—C3—C4—C5176.3 (2)C9—C10—C11—S1177.18 (17)
O1—C3—C4—C7177.95 (19)O4—S1—C11—C1224.3 (2)
C2—C3—C4—C74.0 (3)O3—S1—C11—C12154.11 (18)
O1—N1—C5—C40.5 (3)N4—S1—C11—C1291.4 (2)
O1—N1—C5—C6179.15 (19)O4—S1—C11—C10154.73 (18)
C3—C4—C5—N11.3 (3)O3—S1—C11—C1024.9 (2)
C7—C4—C5—N1178.2 (2)N4—S1—C11—C1089.6 (2)
C3—C4—C5—C6179.9 (2)C10—C11—C12—C132.2 (3)
C7—C4—C5—C60.3 (4)S1—C11—C12—C13178.81 (17)
N3—N2—C7—O2174.6 (2)C11—C12—C13—C81.4 (3)
C8—N2—C7—O22.9 (3)C9—C8—C13—C123.4 (3)
N3—N2—C7—C44.5 (3)N2—C8—C13—C12178.04 (19)
C8—N2—C7—C4176.19 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1···O2i0.95 (3)2.09 (4)3.012 (3)163 (3)
N4—H2···O2ii0.85 (5)2.11 (5)2.933 (3)162 (4)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H12N4O4S
Mr320.33
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)100
a, b, c (Å)18.0113 (4), 35.5302 (11), 8.2900 (2)
V3)5305.1 (2)
Z16
Radiation typeCu Kα
µ (mm1)2.43
Crystal size (mm)0.30 × 0.20 × 0.05
Data collection
DiffractometerAgilent Technologies SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.529, 0.888
No. of measured, independent and
observed [I > 2σ(I)] reflections
7699, 1886, 1870
Rint0.032
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.096, 1.08
No. of reflections1886
No. of parameters207
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.35
Absolute structureFlack (1983), 441 Friedel pairs
Absolute structure parameter0.026 (18)

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1···O2i0.95 (3)2.09 (4)3.012 (3)163 (3)
N4—H2···O2ii0.85 (5)2.11 (5)2.933 (3)162 (4)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

We thank King Abdulaziz University and the University of Malaya for supporting this study.

References

First citationAbdel-Aziz, H. A., Bari, A. & Ng, S. W. (2010). Acta Cryst. E66, o3344.  CrossRef IUCr Journals Google Scholar
First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationFaid-Allah, H. S., Khan, K. A. & Makki, M. S. (2011). J. Chin. Chem. Soc. 58, 191–198.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMakki, M. S. & Faid-Allah, H. S. (1996). J. Chin. Chem. Soc. 43, 433–438.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds