organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,7-Di­methyl-1,3-thia­zolo[4,5-d]pyridazin-4(5H)-one

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 6 August 2011; accepted 20 August 2011; online 27 August 2011)

The nine-membered fused-ring system of the title pyridazine derivative, C7H7N3OS, is almost planar (r.m.s. deviation 0.012 Å). In the crystal, the amino H atom forms a hydrogen bond to the ketonic O atom of a neighboring mol­ecule to generate a centrosymmetric dimer.

Related literature

For a related structure, see: Abdel-Aziz et al. (2010[Abdel-Aziz, H. A., Bari, A. & Ng, S. W. (2010). Acta Cryst. E66, o3344.]). For the biological activity of the class of pyridazines, see: Faid-Allah et al. (2011[Faid-Allah, H. S., Khan, K. A. & Makki, M. S. (2011). J. Chin. Chem. Soc. 58, 191-198.]); Makki & Faid-Allah (1996[Makki, M. S. & Faid-Allah, H. S. (1996). J. Chin. Chem. Soc. 43, 433-438.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7N3OS

  • Mr = 181.22

  • Triclinic, [P \overline 1]

  • a = 6.9262 (4) Å

  • b = 7.0540 (4) Å

  • c = 8.8079 (6) Å

  • α = 71.002 (6)°

  • β = 75.845 (5)°

  • γ = 85.570 (5)°

  • V = 394.54 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 3.26 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent Technologies SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.442, Tmax = 0.562

  • 2363 measured reflections

  • 1539 independent reflections

  • 1523 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.080

  • S = 1.05

  • 1539 reflections

  • 115 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.88 (2) 1.97 (2) 2.845 (2) 173 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have reported the synthesis of some pyridazines, which exhibit biological activity (Faid-Allah et al., 2011; Makki & Faid-Allah, 1996). There are few crystal structure reports of such systems; recently, we reported the crystal structure of 3-methyl-2-(4-methyl)-2H-pyrazolo[3,4-d]pyridazin-5-ium thiocyanate, a salt (Abdel-Aziz et al., 2010). The nine-membered fused-ring system of C7H7N3OS (Scheme I) is planar (Fig. 1). The amino group forms a hydrogen bond to the ketonic O atom of a neigboring molecule to form a dimer (Table 1).

Related literature top

For a related structure, see: Abdel-Aziz et al. (2010). For the biological activity of the class of pyridazines, see: Faid-Allah et al. (2011); Makki & Faid-Allah (1996).

Experimental top

A solution of ethyl 5-acetyl-3-methylisoxazole-4-carboxylate (2.10 g, 10 mmol) in ethanol (25 ml) was refluxed with hydrazine hydrate (0.50 g, 10 mmol) for 2 h. The pyridazine which separated after concentration of the reaction mixture was filtered off, washed with ethanol and recrystallized from the same solvent to give colorless prisms in 90% yield, mp 527 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The amino H-atom was located in a difference Fourier map, and were refined freely.

Omitted were (4 0 4), (1 0 1) and (-7 - 2 1).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C7H7N3OS at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2,7-Dimethyl-1,3-thiazolo[4,5-d]pyridazin-4(5H)-one top
Crystal data top
C7H7N3OSZ = 2
Mr = 181.22F(000) = 188
Triclinic, P1Dx = 1.525 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 6.9262 (4) ÅCell parameters from 1965 reflections
b = 7.0540 (4) Åθ = 6.6–74.2°
c = 8.8079 (6) ŵ = 3.26 mm1
α = 71.002 (6)°T = 100 K
β = 75.845 (5)°Prism, colorless
γ = 85.570 (5)°0.30 × 0.25 × 0.20 mm
V = 394.54 (4) Å3
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with Atlas detector
1539 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1523 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.012
Detector resolution: 10.4041 pixels mm-1θmax = 74.4°, θmin = 6.6°
ω scanh = 87
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 84
Tmin = 0.442, Tmax = 0.562l = 1010
2363 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.260P]
where P = (Fo2 + 2Fc2)/3
1539 reflections(Δ/σ)max = 0.001
115 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C7H7N3OSγ = 85.570 (5)°
Mr = 181.22V = 394.54 (4) Å3
Triclinic, P1Z = 2
a = 6.9262 (4) ÅCu Kα radiation
b = 7.0540 (4) ŵ = 3.26 mm1
c = 8.8079 (6) ÅT = 100 K
α = 71.002 (6)°0.30 × 0.25 × 0.20 mm
β = 75.845 (5)°
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with Atlas detector
1539 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1523 reflections with I > 2σ(I)
Tmin = 0.442, Tmax = 0.562Rint = 0.012
2363 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.41 e Å3
1539 reflectionsΔρmin = 0.30 e Å3
115 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.29210 (5)0.13257 (5)0.50269 (4)0.01037 (14)
O10.59921 (15)0.34439 (15)0.67118 (13)0.0136 (2)
N10.97795 (18)0.13725 (17)0.73210 (15)0.0114 (3)
N20.74300 (18)0.42456 (18)0.39677 (15)0.0112 (3)
H20.636 (3)0.490 (3)0.371 (3)0.027 (5)*
N30.88967 (18)0.43408 (18)0.25907 (15)0.0121 (3)
C11.2623 (2)0.0391 (2)0.84407 (19)0.0157 (3)
H1A1.16690.06600.95120.024*
H1B1.37320.04100.84150.024*
H1C1.31310.16630.82770.024*
C21.1611 (2)0.0736 (2)0.70979 (18)0.0118 (3)
C30.9338 (2)0.2388 (2)0.58191 (17)0.0103 (3)
C40.7459 (2)0.3356 (2)0.56003 (18)0.0107 (3)
C51.0839 (2)0.2502 (2)0.44375 (18)0.0101 (3)
C61.0596 (2)0.3495 (2)0.27985 (18)0.0111 (3)
C71.2245 (2)0.3608 (2)0.13145 (18)0.0167 (3)
H7A1.17560.42440.03120.025*
H7B1.27130.22520.13450.025*
H7C1.33460.44010.13140.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0081 (2)0.0092 (2)0.0123 (2)0.00189 (13)0.00196 (13)0.00205 (14)
O10.0089 (5)0.0137 (5)0.0156 (5)0.0007 (4)0.0001 (4)0.0034 (4)
N10.0113 (6)0.0082 (6)0.0136 (6)0.0004 (4)0.0028 (5)0.0019 (5)
N20.0081 (6)0.0104 (6)0.0140 (6)0.0020 (5)0.0022 (5)0.0032 (5)
N30.0120 (6)0.0103 (6)0.0130 (6)0.0000 (5)0.0018 (5)0.0029 (5)
C10.0147 (7)0.0150 (7)0.0155 (7)0.0025 (6)0.0051 (6)0.0015 (6)
C20.0124 (7)0.0076 (6)0.0142 (7)0.0016 (5)0.0020 (5)0.0021 (5)
C30.0103 (7)0.0057 (6)0.0137 (7)0.0016 (5)0.0019 (5)0.0016 (5)
C40.0103 (7)0.0057 (6)0.0157 (7)0.0021 (5)0.0030 (5)0.0025 (5)
C50.0095 (6)0.0060 (6)0.0151 (7)0.0002 (5)0.0034 (5)0.0034 (5)
C60.0122 (7)0.0078 (6)0.0127 (7)0.0011 (5)0.0026 (5)0.0022 (5)
C70.0151 (7)0.0191 (8)0.0127 (7)0.0022 (6)0.0017 (6)0.0022 (6)
Geometric parameters (Å, º) top
S1—C51.7141 (14)C1—H1A0.9800
S1—C21.7546 (15)C1—H1B0.9800
O1—C41.2404 (18)C1—H1C0.9800
N1—C21.3025 (19)C3—C51.378 (2)
N1—C31.3797 (18)C3—C41.4480 (19)
N2—N31.3647 (17)C5—C61.430 (2)
N2—C41.3736 (19)C6—C71.4953 (19)
N2—H20.88 (2)C7—H7A0.9800
N3—C61.3037 (19)C7—H7B0.9800
C1—C21.493 (2)C7—H7C0.9800
C5—S1—C289.25 (7)N1—C3—C4125.15 (13)
C2—N1—C3110.07 (12)O1—C4—N2120.86 (13)
N3—N2—C4129.17 (12)O1—C4—C3126.43 (13)
N3—N2—H2111.4 (14)N2—C4—C3112.70 (12)
C4—N2—H2119.3 (14)C3—C5—C6122.57 (13)
C6—N3—N2117.76 (12)C3—C5—S1109.49 (11)
C2—C1—H1A109.5C6—C5—S1127.94 (11)
C2—C1—H1B109.5N3—C6—C5119.21 (13)
H1A—C1—H1B109.5N3—C6—C7119.01 (13)
C2—C1—H1C109.5C5—C6—C7121.77 (13)
H1A—C1—H1C109.5C6—C7—H7A109.5
H1B—C1—H1C109.5C6—C7—H7B109.5
N1—C2—C1125.25 (13)H7A—C7—H7B109.5
N1—C2—S1114.91 (11)C6—C7—H7C109.5
C1—C2—S1119.83 (11)H7A—C7—H7C109.5
C5—C3—N1116.28 (12)H7B—C7—H7C109.5
C5—C3—C4118.56 (13)
C4—N2—N3—C60.4 (2)N1—C3—C5—C6179.58 (12)
C3—N1—C2—C1178.83 (13)C4—C3—C5—C61.6 (2)
C3—N1—C2—S10.33 (15)N1—C3—C5—S10.99 (16)
C5—S1—C2—N10.18 (11)C4—C3—C5—S1177.81 (10)
C5—S1—C2—C1179.39 (12)C2—S1—C5—C30.63 (10)
C2—N1—C3—C50.86 (17)C2—S1—C5—C6179.99 (13)
C2—N1—C3—C4177.85 (12)N2—N3—C6—C50.55 (19)
N3—N2—C4—O1178.56 (12)N2—N3—C6—C7178.84 (12)
N3—N2—C4—C30.7 (2)C3—C5—C6—N30.5 (2)
C5—C3—C4—O1177.59 (13)S1—C5—C6—N3178.85 (10)
N1—C3—C4—O11.1 (2)C3—C5—C6—C7179.84 (13)
C5—C3—C4—N21.63 (18)S1—C5—C6—C70.5 (2)
N1—C3—C4—N2179.69 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.88 (2)1.97 (2)2.845 (2)173 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC7H7N3OS
Mr181.22
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.9262 (4), 7.0540 (4), 8.8079 (6)
α, β, γ (°)71.002 (6), 75.845 (5), 85.570 (5)
V3)394.54 (4)
Z2
Radiation typeCu Kα
µ (mm1)3.26
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent Technologies SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.442, 0.562
No. of measured, independent and
observed [I > 2σ(I)] reflections
2363, 1539, 1523
Rint0.012
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.080, 1.05
No. of reflections1539
No. of parameters115
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.30

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.88 (2)1.97 (2)2.845 (2)173 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank King Abdulaziz University and the University of Malaya for supporting this study.

References

First citationAbdel-Aziz, H. A., Bari, A. & Ng, S. W. (2010). Acta Cryst. E66, o3344.  CrossRef IUCr Journals Google Scholar
First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationFaid-Allah, H. S., Khan, K. A. & Makki, M. S. (2011). J. Chin. Chem. Soc. 58, 191–198.  CAS Google Scholar
First citationMakki, M. S. & Faid-Allah, H. S. (1996). J. Chin. Chem. Soc. 43, 433–438.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds