organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Oxo-4-phenyl-1,2,5,6-tetra­hydro­benzo[h]quinoline-3-carbo­nitrile

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 7 August 2011; accepted 19 August 2011; online 27 August 2011)

In the mol­ecule of the title compound, C20H14N2O, the tetra­hydro­benzo[h]quinoline fused-ring system is buckled owing to the ethyl­ene –CH2CH2– fragment, the benzene ring and the pyridine ring being twisted by 19.7 (1)°. The 4-substituted aromatic ring is bent away from the pyridine ring by 62.9 (1)° in order to avoid crowding the cyanide substituent. In the crystal, two mol­ecules are linked by a pair of N—H⋯O hydrogen bonds to form a centrosymmetric dimer.

Related literature

The title compound belongs to a series of cyano-pyridino­nes that have been evaluated for their anti­cancer properties, see: Rostom et al. (2011[Rostom, S. A. F., Faidallah, H. M. & Al-Saadi, M. S. (2011). Med. Chem. Res. 20 (DOI: 10.1007/s00044-010-9469-0). ]).

[Scheme 1]

Experimental

Crystal data
  • C20H14N2O

  • Mr = 298.33

  • Triclinic, [P \overline 1]

  • a = 7.4075 (5) Å

  • b = 9.7204 (4) Å

  • c = 10.7358 (6) Å

  • α = 77.001 (4)°

  • β = 74.348 (6)°

  • γ = 81.674 (5)°

  • V = 722.36 (7) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.68 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.797, Tmax = 0.848

  • 4086 measured reflections

  • 2785 independent reflections

  • 2576 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.106

  • S = 1.03

  • 2785 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.97 (2) 1.89 (2) 2.848 (1) 168 (1)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The compound (Scheme I) belongs to a series of cyano-pyridinones that have been evaluated for their anticancer properties (Rostom et al., 2011). The tetrahydrobenzo[h]quinoline fused-ring system is buckled owing to the ethylene –CH2CH2– fragment, the benzene ring and the pyridine ring being twisted by 19.7 (1)°. The 4-subsituted aromatic ring is bent away from the pyridine ring by 62.9 (1) ° in order to avoid crowding the cyanide substituent (Fig. 1). Two molecules are linked by an N—H···O hydrogen bonds to form a centrosymmetric dimer (Table 1).

Related literature top

The title compound belongs to a series of cyano-pyridinones that have been evaluated for their anticancer properties, see: Rostom et al. (2011).

Experimental top

A mixture of benzaldehyde (1.06 g, 10 mmol), 1-tetralone (1.46 g, 10 mmol), ethyl cyanoacetate (1.1 g, 10 mmol) and ammonium acetate (6.2 g, 80 mmol) in absolute ethanol (50 ml) was refluxed for 6 h. The reaction mixture was allowed to cool, and the orange precipitate that formed was filtered, washed with water, dried and recrystallized from ethanol; m.p. 585–597 K.

Refinement top

Carbon- and nitrogen-bound H atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The amino H atom was located in a difference Fourier map and was freely refined.

The diffraction data are 94% complete at a 2θ limit of 150° but are 99% complete at 135°.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C20H14N2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2-Oxo-4-phenyl-1,2,5,6-tetrahydrobenzo[h]quinoline-3-carbonitrile top
Crystal data top
C20H14N2OZ = 2
Mr = 298.33F(000) = 312
Triclinic, P1Dx = 1.372 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 7.4075 (5) ÅCell parameters from 2774 reflections
b = 9.7204 (4) Åθ = 4.4–74.3°
c = 10.7358 (6) ŵ = 0.68 mm1
α = 77.001 (4)°T = 100 K
β = 74.348 (6)°Block, yellow
γ = 81.674 (5)°0.35 × 0.30 × 0.25 mm
V = 722.36 (7) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
2785 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2576 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.015
Detector resolution: 10.4041 pixels mm-1θmax = 74.5°, θmin = 4.4°
ω scansh = 98
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 129
Tmin = 0.797, Tmax = 0.848l = 1213
4086 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0667P)2 + 0.1847P]
where P = (Fo2 + 2Fc2)/3
2785 reflections(Δ/σ)max = 0.001
212 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C20H14N2Oγ = 81.674 (5)°
Mr = 298.33V = 722.36 (7) Å3
Triclinic, P1Z = 2
a = 7.4075 (5) ÅCu Kα radiation
b = 9.7204 (4) ŵ = 0.68 mm1
c = 10.7358 (6) ÅT = 100 K
α = 77.001 (4)°0.35 × 0.30 × 0.25 mm
β = 74.348 (6)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
2785 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2576 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 0.848Rint = 0.015
4086 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.24 e Å3
2785 reflectionsΔρmin = 0.27 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36679 (10)0.61389 (8)0.41605 (8)0.0164 (2)
N10.24537 (13)0.48620 (10)0.62038 (9)0.0133 (2)
N20.01407 (14)0.86078 (10)0.31963 (10)0.0196 (2)
C10.10482 (15)0.45737 (11)0.73289 (11)0.0134 (2)
C20.14223 (15)0.34124 (11)0.83986 (11)0.0144 (2)
C30.32488 (15)0.28586 (12)0.84832 (11)0.0163 (2)
H30.43030.32580.78540.020*
C40.35215 (16)0.17277 (12)0.94846 (12)0.0188 (3)
H40.47620.13610.95450.023*
C50.19842 (17)0.11307 (12)1.03992 (12)0.0197 (3)
H50.21730.03421.10710.024*
C60.01712 (16)0.16880 (12)1.03297 (11)0.0186 (3)
H60.08740.12801.09630.022*
C70.01372 (15)0.28330 (12)0.93487 (11)0.0157 (2)
C80.20935 (15)0.34442 (12)0.92477 (11)0.0185 (3)
H8A0.29820.32381.01260.022*
H8B0.24980.29950.86390.022*
C90.21419 (16)0.50443 (12)0.87427 (11)0.0178 (3)
H9A0.34070.54200.86120.021*
H9B0.18850.55080.94010.021*
C100.06775 (15)0.53738 (12)0.74493 (11)0.0142 (2)
C110.09384 (15)0.64960 (11)0.64016 (11)0.0140 (2)
C120.05055 (15)0.67305 (11)0.52614 (11)0.0138 (2)
C130.23126 (15)0.59235 (11)0.51369 (11)0.0132 (2)
C140.02822 (14)0.77868 (11)0.41323 (11)0.0148 (2)
C150.26822 (15)0.74948 (12)0.65116 (11)0.0146 (2)
C160.44492 (16)0.70524 (12)0.66625 (11)0.0186 (3)
H160.45730.60880.66810.022*
C170.60284 (16)0.80230 (14)0.67855 (12)0.0217 (3)
H170.72300.77220.68770.026*
C180.58610 (17)0.94329 (13)0.67750 (12)0.0218 (3)
H180.69491.00880.68780.026*
C190.41072 (17)0.98783 (12)0.66149 (12)0.0210 (3)
H190.39891.08430.66000.025*
C200.25188 (16)0.89167 (12)0.64761 (11)0.0176 (2)
H200.13150.92280.63560.021*
H10.372 (2)0.4387 (17)0.6103 (16)0.029 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0117 (4)0.0184 (4)0.0152 (4)0.0000 (3)0.0004 (3)0.0005 (3)
N10.0103 (4)0.0144 (4)0.0135 (5)0.0003 (3)0.0016 (3)0.0017 (4)
N20.0182 (5)0.0197 (5)0.0192 (5)0.0001 (4)0.0040 (4)0.0019 (4)
C10.0123 (5)0.0149 (5)0.0134 (5)0.0031 (4)0.0017 (4)0.0042 (4)
C20.0154 (5)0.0148 (5)0.0131 (5)0.0013 (4)0.0024 (4)0.0046 (4)
C30.0142 (5)0.0179 (5)0.0147 (5)0.0018 (4)0.0004 (4)0.0026 (4)
C40.0175 (5)0.0194 (6)0.0182 (6)0.0011 (4)0.0048 (4)0.0019 (4)
C50.0244 (6)0.0170 (5)0.0154 (6)0.0011 (4)0.0037 (5)0.0005 (4)
C60.0186 (6)0.0193 (6)0.0150 (6)0.0047 (4)0.0012 (4)0.0020 (4)
C70.0151 (5)0.0174 (5)0.0146 (5)0.0025 (4)0.0017 (4)0.0050 (4)
C80.0133 (5)0.0231 (6)0.0162 (6)0.0042 (4)0.0005 (4)0.0009 (4)
C90.0143 (5)0.0217 (6)0.0143 (6)0.0008 (4)0.0002 (4)0.0031 (4)
C100.0122 (5)0.0161 (5)0.0145 (5)0.0018 (4)0.0016 (4)0.0049 (4)
C110.0122 (5)0.0153 (5)0.0162 (5)0.0019 (4)0.0034 (4)0.0061 (4)
C120.0120 (5)0.0145 (5)0.0152 (5)0.0009 (4)0.0033 (4)0.0037 (4)
C130.0127 (5)0.0136 (5)0.0132 (5)0.0026 (4)0.0020 (4)0.0031 (4)
C140.0103 (5)0.0154 (5)0.0186 (6)0.0013 (4)0.0013 (4)0.0056 (5)
C150.0133 (5)0.0178 (5)0.0117 (5)0.0013 (4)0.0022 (4)0.0038 (4)
C160.0168 (6)0.0204 (6)0.0197 (6)0.0006 (4)0.0038 (4)0.0074 (5)
C170.0126 (5)0.0319 (7)0.0219 (6)0.0008 (5)0.0046 (4)0.0091 (5)
C180.0176 (6)0.0258 (6)0.0192 (6)0.0084 (5)0.0040 (4)0.0060 (5)
C190.0235 (6)0.0176 (6)0.0195 (6)0.0032 (5)0.0033 (5)0.0044 (4)
C200.0156 (5)0.0190 (6)0.0171 (6)0.0009 (4)0.0024 (4)0.0039 (4)
Geometric parameters (Å, º) top
O1—C131.2429 (13)C8—H8B0.9900
N1—C11.3694 (14)C9—C101.5150 (15)
N1—C131.3745 (14)C9—H9A0.9900
N1—H10.970 (17)C9—H9B0.9900
N2—C141.1530 (15)C10—C111.4130 (16)
C1—C101.3870 (15)C11—C121.3904 (15)
C1—C21.4723 (15)C11—C151.4938 (15)
C2—C31.4007 (16)C12—C141.4318 (15)
C2—C71.4094 (15)C12—C131.4393 (15)
C3—C41.3879 (16)C15—C161.3934 (16)
C3—H30.9500C15—C201.3959 (16)
C4—C51.3890 (16)C16—C171.3889 (16)
C4—H40.9500C16—H160.9500
C5—C61.3884 (17)C17—C181.3911 (18)
C5—H50.9500C17—H170.9500
C6—C71.3888 (16)C18—C191.3834 (18)
C6—H60.9500C18—H180.9500
C7—C81.5071 (16)C19—C201.3892 (16)
C8—C91.5262 (16)C19—H190.9500
C8—H8A0.9900C20—H200.9500
C1—N1—C13124.83 (9)C8—C9—H9B109.7
C1—N1—H1123.1 (9)H9A—C9—H9B108.2
C13—N1—H1111.8 (9)C1—C10—C11118.74 (10)
N1—C1—C10120.15 (10)C1—C10—C9117.52 (10)
N1—C1—C2118.52 (9)C11—C10—C9123.63 (10)
C10—C1—C2121.33 (10)C12—C11—C10119.34 (10)
C3—C2—C7119.71 (10)C12—C11—C15118.71 (10)
C3—C2—C1122.50 (10)C10—C11—C15121.85 (10)
C7—C2—C1117.78 (10)C11—C12—C14121.99 (10)
C4—C3—C2120.15 (10)C11—C12—C13122.24 (10)
C4—C3—H3119.9C14—C12—C13115.77 (9)
C2—C3—H3119.9O1—C13—N1121.03 (9)
C3—C4—C5120.14 (11)O1—C13—C12124.38 (10)
C3—C4—H4119.9N1—C13—C12114.59 (9)
C5—C4—H4119.9N2—C14—C12177.69 (12)
C6—C5—C4119.91 (11)C16—C15—C20119.43 (10)
C6—C5—H5120.0C16—C15—C11122.37 (10)
C4—C5—H5120.0C20—C15—C11118.19 (10)
C5—C6—C7121.00 (11)C17—C16—C15119.90 (11)
C5—C6—H6119.5C17—C16—H16120.1
C7—C6—H6119.5C15—C16—H16120.1
C6—C7—C2119.05 (10)C16—C17—C18120.39 (11)
C6—C7—C8121.83 (10)C16—C17—H17119.8
C2—C7—C8119.09 (10)C18—C17—H17119.8
C7—C8—C9110.56 (9)C19—C18—C17119.86 (10)
C7—C8—H8A109.5C19—C18—H18120.1
C9—C8—H8A109.5C17—C18—H18120.1
C7—C8—H8B109.5C18—C19—C20120.05 (11)
C9—C8—H8B109.5C18—C19—H19120.0
H8A—C8—H8B108.1C20—C19—H19120.0
C10—C9—C8109.84 (9)C19—C20—C15120.35 (11)
C10—C9—H9A109.7C19—C20—H20119.8
C8—C9—H9A109.7C15—C20—H20119.8
C10—C9—H9B109.7
C13—N1—C1—C100.43 (17)C1—C10—C11—C122.66 (16)
C13—N1—C1—C2179.06 (9)C9—C10—C11—C12178.76 (10)
N1—C1—C2—C318.21 (16)C1—C10—C11—C15173.72 (10)
C10—C1—C2—C3161.28 (11)C9—C10—C11—C152.38 (17)
N1—C1—C2—C7160.55 (10)C10—C11—C12—C14175.67 (10)
C10—C1—C2—C719.96 (15)C15—C11—C12—C147.84 (16)
C7—C2—C3—C41.16 (17)C10—C11—C12—C133.94 (17)
C1—C2—C3—C4177.57 (10)C15—C11—C12—C13172.55 (9)
C2—C3—C4—C50.66 (17)C1—N1—C13—O1178.43 (10)
C3—C4—C5—C61.51 (18)C1—N1—C13—C121.51 (15)
C4—C5—C6—C70.53 (18)C11—C12—C13—O1176.65 (10)
C5—C6—C7—C21.27 (17)C14—C12—C13—O13.71 (16)
C5—C6—C7—C8179.37 (11)C11—C12—C13—N13.27 (16)
C3—C2—C7—C62.10 (16)C14—C12—C13—N1176.36 (9)
C1—C2—C7—C6176.69 (10)C12—C11—C15—C16119.29 (12)
C3—C2—C7—C8179.74 (10)C10—C11—C15—C1664.31 (15)
C1—C2—C7—C81.47 (15)C12—C11—C15—C2061.49 (14)
C6—C7—C8—C9146.11 (11)C10—C11—C15—C20114.91 (12)
C2—C7—C8—C935.79 (14)C20—C15—C16—C170.47 (17)
C7—C8—C9—C1054.80 (13)C11—C15—C16—C17178.75 (10)
N1—C1—C10—C110.94 (16)C15—C16—C17—C180.78 (18)
C2—C1—C10—C11178.54 (9)C16—C17—C18—C191.29 (18)
N1—C1—C10—C9177.28 (10)C17—C18—C19—C200.54 (18)
C2—C1—C10—C92.20 (16)C18—C19—C20—C150.70 (18)
C8—C9—C10—C139.57 (14)C16—C15—C20—C191.21 (17)
C8—C9—C10—C11144.29 (11)C11—C15—C20—C19178.04 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.97 (2)1.89 (2)2.848 (1)168 (1)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC20H14N2O
Mr298.33
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.4075 (5), 9.7204 (4), 10.7358 (6)
α, β, γ (°)77.001 (4), 74.348 (6), 81.674 (5)
V3)722.36 (7)
Z2
Radiation typeCu Kα
µ (mm1)0.68
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.797, 0.848
No. of measured, independent and
observed [I > 2σ(I)] reflections
4086, 2785, 2576
Rint0.015
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.106, 1.03
No. of reflections2785
No. of parameters212
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.27

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.97 (2)1.89 (2)2.848 (1)168 (1)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank King Abdulaziz University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationRostom, S. A. F., Faidallah, H. M. & Al-Saadi, M. S. (2011). Med. Chem. Res. 20 (DOI: 10.1007/s00044-010-9469-0).  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds