organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Meth­­oxy­phen­yl)-2-oxo-1,2,5,6-tetra­hydro­benzo[h]quinoline-3-carbo­nitrile

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 7 August 2011; accepted 19 August 2011; online 27 August 2011)

In the mol­ecule of the title compound, C21H16N2O2, the tetra­hydro­benzo[h]quinoline fused-ring system is buckled owing to the ethyl­ene –CH2CH2– fragment, the benzene ring and the pyridine ring being twisted by 19.7 (1)°. The 4-substituted aromatic ring is bent away from the pyridine ring by 50.3 (1)° in order to avoid crowding the cyanide substituent. In the crystal, two mol­ecules are linked by a pair of N—H⋯O hydrogen bonds to form a centrosymmetric dimer.

Related literature

For background to the anti­cancer properties of this class of compounds, see: Rostom et al. (2011[Rostom, S. A. F., Faidallah, H. M. & Al-Saadi, M. S. (2011). Med. Chem. Res. 20 (DOI: 10.1007/s00044-010-9469-0).]).

[Scheme 1]

Experimental

Crystal data
  • C21H16N2O2

  • Mr = 328.36

  • Monoclinic, P 21 /c

  • a = 14.2016 (2) Å

  • b = 14.4725 (2) Å

  • c = 7.9935 (1) Å

  • β = 96.017 (1)°

  • V = 1633.87 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.818, Tmax = 0.873

  • 6187 measured reflections

  • 3211 independent reflections

  • 3011 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.096

  • S = 1.03

  • 3211 reflections

  • 230 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.90 (2) 1.94 (2) 2.823 (1) 166 (1)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The compound (Scheme I) belongs to a series of cyano-pyridinones that have been evaluated for their anticancer properties (Rostom et al., 2011). The tetrahydrobenzo[h]quinoline fused-ring system is buckled owing to the ethylene –CH2CH2– fragment, the benzene ring and the pyridine ring being twisted by 19.7 (1)°. The 4-subsituted aromatic ring is bent away from the pyridine ring by 50.3 (1) ° in order to avoid crowding the cyanide substituent (Fig. 1). Two molecules are linked by an N—H···O hydrogen bonds to form a centrosymmetric dimer (Table 1).

Related literature top

For background to the anticancer properties of this class of compounds, see: Rostom et al. (2011).

Experimental top

A mixture of p-anisaldehyde (1.36 g, 10 mmol), 1-tetralone (1.46 g, 10 mmol), ethyl cyanoacetate (1.1 g, 10 mmol) and ammonium acetate (6.2 g, 80 mmol) in absolute ethanol (50 ml) was refluxed for 6 h. The reaction mixture was allowed to cool, and the yellow precipitate that formed was filtered, washed with water, dried and recrystallized from ethanol; m.p. 587–589 K.

Refinement top

Carbon- and nitrogen-bound H atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The amino H atom was located in a difference Fourier map and was freely refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C21H16N2O2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
4-(4-Methoxyphenyl)-2-oxo-1,2,5,6-tetrahydrobenzo[h]quinoline- 3-carbonitrile top
Crystal data top
C21H16N2O2F(000) = 688
Mr = 328.36Dx = 1.335 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 4172 reflections
a = 14.2016 (2) Åθ = 3.1–74.1°
b = 14.4725 (2) ŵ = 0.70 mm1
c = 7.9935 (1) ÅT = 100 K
β = 96.017 (1)°Prism, yellow
V = 1633.87 (4) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
3211 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3011 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.014
Detector resolution: 10.4041 pixels mm-1θmax = 74.2°, θmin = 4.4°
ω scansh = 1714
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 917
Tmin = 0.818, Tmax = 0.873l = 99
6187 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.481P]
where P = (Fo2 + 2Fc2)/3
3211 reflections(Δ/σ)max = 0.001
230 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C21H16N2O2V = 1633.87 (4) Å3
Mr = 328.36Z = 4
Monoclinic, P21/cCu Kα radiation
a = 14.2016 (2) ŵ = 0.70 mm1
b = 14.4725 (2) ÅT = 100 K
c = 7.9935 (1) Å0.30 × 0.25 × 0.20 mm
β = 96.017 (1)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
3211 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3011 reflections with I > 2σ(I)
Tmin = 0.818, Tmax = 0.873Rint = 0.014
6187 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.21 e Å3
3211 reflectionsΔρmin = 0.21 e Å3
230 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38937 (5)0.48227 (6)0.53692 (9)0.01885 (19)
O20.13689 (6)0.71903 (6)0.05350 (12)0.0263 (2)
N10.42821 (6)0.55604 (6)0.30260 (11)0.0154 (2)
H10.4886 (11)0.5401 (11)0.3377 (19)0.026 (4)*
N20.15375 (7)0.53084 (7)0.58833 (12)0.0215 (2)
C10.40584 (8)0.60068 (7)0.15327 (13)0.0150 (2)
C20.48272 (8)0.62138 (7)0.04885 (13)0.0159 (2)
C30.57808 (8)0.62155 (8)0.11363 (14)0.0186 (2)
H30.59510.60820.22920.022*
C40.64792 (8)0.64118 (8)0.00983 (15)0.0218 (2)
H40.71270.64040.05400.026*
C50.62308 (9)0.66197 (8)0.15877 (15)0.0228 (3)
H50.67080.67630.22940.027*
C60.52862 (8)0.66177 (8)0.22408 (14)0.0208 (2)
H60.51220.67590.33950.025*
C70.45770 (8)0.64121 (7)0.12269 (13)0.0168 (2)
C80.35509 (8)0.63521 (8)0.19115 (13)0.0184 (2)
H8A0.33870.57000.21810.022*
H8B0.34470.67140.29650.022*
C90.29074 (8)0.67172 (8)0.06574 (13)0.0178 (2)
H9A0.29940.73930.05310.021*
H9B0.22390.65990.10850.021*
C100.31283 (7)0.62548 (7)0.10368 (13)0.0151 (2)
C110.24237 (7)0.60637 (7)0.21242 (13)0.0150 (2)
C120.26806 (7)0.55905 (7)0.36226 (13)0.0149 (2)
C130.36372 (7)0.52863 (7)0.40914 (13)0.0151 (2)
C140.20310 (7)0.54250 (7)0.48475 (13)0.0159 (2)
C150.14293 (7)0.63712 (7)0.16970 (13)0.0153 (2)
C160.12282 (8)0.72862 (7)0.12434 (13)0.0161 (2)
H160.17360.77090.11960.019*
C170.03069 (8)0.75948 (8)0.08598 (14)0.0177 (2)
H170.01840.82230.05690.021*
C180.04357 (7)0.69700 (8)0.09073 (14)0.0181 (2)
C190.02511 (8)0.60501 (8)0.13544 (14)0.0193 (2)
H190.07590.56260.13860.023*
C200.06719 (8)0.57570 (8)0.17509 (13)0.0174 (2)
H200.07930.51320.20630.021*
C210.15928 (8)0.81389 (9)0.01842 (17)0.0261 (3)
H21A0.22790.82070.00750.039*
H21B0.12750.83440.07810.039*
H21C0.13780.85160.11690.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0173 (4)0.0238 (4)0.0149 (4)0.0045 (3)0.0007 (3)0.0043 (3)
O20.0117 (4)0.0218 (4)0.0445 (5)0.0017 (3)0.0010 (3)0.0067 (4)
N10.0124 (4)0.0186 (5)0.0147 (4)0.0027 (3)0.0015 (3)0.0015 (3)
N20.0212 (5)0.0219 (5)0.0217 (5)0.0001 (4)0.0034 (4)0.0016 (4)
C10.0168 (5)0.0133 (5)0.0141 (5)0.0009 (4)0.0014 (4)0.0011 (4)
C20.0160 (5)0.0136 (5)0.0178 (5)0.0014 (4)0.0004 (4)0.0001 (4)
C30.0179 (5)0.0175 (5)0.0199 (5)0.0004 (4)0.0005 (4)0.0024 (4)
C40.0157 (5)0.0212 (6)0.0281 (6)0.0009 (4)0.0009 (4)0.0022 (5)
C50.0221 (6)0.0220 (6)0.0254 (6)0.0017 (4)0.0079 (4)0.0020 (4)
C60.0252 (6)0.0194 (5)0.0181 (5)0.0008 (4)0.0032 (4)0.0019 (4)
C70.0191 (5)0.0143 (5)0.0167 (5)0.0017 (4)0.0009 (4)0.0002 (4)
C80.0189 (5)0.0224 (5)0.0134 (5)0.0023 (4)0.0009 (4)0.0013 (4)
C90.0173 (5)0.0208 (5)0.0148 (5)0.0033 (4)0.0004 (4)0.0019 (4)
C100.0155 (5)0.0151 (5)0.0142 (5)0.0011 (4)0.0013 (4)0.0006 (4)
C110.0157 (5)0.0128 (5)0.0156 (5)0.0001 (4)0.0023 (4)0.0025 (4)
C120.0144 (5)0.0147 (5)0.0152 (5)0.0005 (4)0.0003 (4)0.0010 (4)
C130.0162 (5)0.0151 (5)0.0138 (5)0.0015 (4)0.0002 (4)0.0010 (4)
C140.0153 (5)0.0141 (5)0.0172 (5)0.0014 (4)0.0038 (4)0.0003 (4)
C150.0146 (5)0.0180 (5)0.0128 (5)0.0012 (4)0.0012 (4)0.0007 (4)
C160.0139 (5)0.0175 (5)0.0165 (5)0.0018 (4)0.0006 (4)0.0004 (4)
C170.0172 (5)0.0155 (5)0.0199 (5)0.0009 (4)0.0003 (4)0.0015 (4)
C180.0119 (5)0.0206 (6)0.0212 (5)0.0016 (4)0.0013 (4)0.0011 (4)
C190.0147 (5)0.0186 (5)0.0240 (6)0.0030 (4)0.0003 (4)0.0006 (4)
C200.0179 (5)0.0153 (5)0.0183 (5)0.0004 (4)0.0011 (4)0.0008 (4)
C210.0168 (5)0.0229 (6)0.0383 (7)0.0060 (5)0.0012 (5)0.0064 (5)
Geometric parameters (Å, º) top
O1—C131.2443 (13)C8—H8B0.9900
O2—C181.3653 (13)C9—C101.5137 (14)
O2—C211.4304 (14)C9—H9A0.9900
N1—C11.3652 (13)C9—H9B0.9900
N1—C131.3729 (14)C10—C111.4197 (15)
N1—H10.904 (16)C11—C121.3947 (15)
N2—C141.1519 (15)C11—C151.4859 (14)
C1—C101.3859 (15)C12—C141.4341 (15)
C1—C21.4729 (15)C12—C131.4399 (14)
C2—C31.3984 (15)C15—C161.3947 (15)
C2—C71.4095 (15)C15—C201.3994 (15)
C3—C41.3875 (16)C16—C171.3860 (15)
C3—H30.9500C16—H160.9500
C4—C51.3898 (17)C17—C181.3928 (16)
C4—H40.9500C17—H170.9500
C5—C61.3875 (17)C18—C191.3961 (16)
C5—H50.9500C19—C201.3826 (15)
C6—C71.3896 (16)C19—H190.9500
C6—H60.9500C20—H200.9500
C7—C81.5044 (15)C21—H21A0.9800
C8—C91.5204 (15)C21—H21B0.9800
C8—H8A0.9900C21—H21C0.9800
C18—O2—C21117.24 (9)C1—C10—C11119.10 (9)
C1—N1—C13124.74 (9)C1—C10—C9118.18 (10)
C1—N1—H1121.2 (10)C11—C10—C9122.72 (9)
C13—N1—H1114.0 (9)C12—C11—C10118.93 (9)
N1—C1—C10120.00 (10)C12—C11—C15120.07 (10)
N1—C1—C2118.25 (9)C10—C11—C15120.99 (9)
C10—C1—C2121.74 (9)C11—C12—C14122.63 (10)
C3—C2—C7119.70 (10)C11—C12—C13121.90 (10)
C3—C2—C1122.49 (10)C14—C12—C13115.35 (9)
C7—C2—C1117.81 (10)O1—C13—N1120.54 (10)
C4—C3—C2120.28 (10)O1—C13—C12124.44 (10)
C4—C3—H3119.9N1—C13—C12115.01 (9)
C2—C3—H3119.9N2—C14—C12177.04 (11)
C3—C4—C5119.97 (11)C16—C15—C20118.30 (10)
C3—C4—H4120.0C16—C15—C11120.52 (10)
C5—C4—H4120.0C20—C15—C11121.18 (10)
C6—C5—C4120.10 (11)C17—C16—C15121.76 (10)
C6—C5—H5119.9C17—C16—H16119.1
C4—C5—H5119.9C15—C16—H16119.1
C5—C6—C7120.81 (10)C16—C17—C18118.99 (10)
C5—C6—H6119.6C16—C17—H17120.5
C7—C6—H6119.6C18—C17—H17120.5
C6—C7—C2119.13 (10)O2—C18—C17124.26 (10)
C6—C7—C8122.27 (10)O2—C18—C19115.50 (10)
C2—C7—C8118.55 (10)C17—C18—C19120.24 (10)
C7—C8—C9111.49 (9)C20—C19—C18119.96 (10)
C7—C8—H8A109.3C20—C19—H19120.0
C9—C8—H8A109.3C18—C19—H19120.0
C7—C8—H8B109.3C19—C20—C15120.75 (10)
C9—C8—H8B109.3C19—C20—H20119.6
H8A—C8—H8B108.0C15—C20—H20119.6
C10—C9—C8110.71 (9)O2—C21—H21A109.5
C10—C9—H9A109.5O2—C21—H21B109.5
C8—C9—H9A109.5H21A—C21—H21B109.5
C10—C9—H9B109.5O2—C21—H21C109.5
C8—C9—H9B109.5H21A—C21—H21C109.5
H9A—C9—H9B108.1H21B—C21—H21C109.5
C13—N1—C1—C103.20 (16)C1—C10—C11—C15175.99 (9)
C13—N1—C1—C2176.95 (9)C9—C10—C11—C154.29 (16)
N1—C1—C2—C318.44 (15)C10—C11—C12—C14175.55 (9)
C10—C1—C2—C3161.41 (10)C15—C11—C12—C143.61 (16)
N1—C1—C2—C7161.30 (10)C10—C11—C12—C130.36 (16)
C10—C1—C2—C718.86 (15)C15—C11—C12—C13179.53 (9)
C7—C2—C3—C40.04 (16)C1—N1—C13—O1174.67 (10)
C1—C2—C3—C4179.77 (10)C1—N1—C13—C126.45 (15)
C2—C3—C4—C50.84 (17)C11—C12—C13—O1176.24 (10)
C3—C4—C5—C60.96 (18)C14—C12—C13—O17.56 (16)
C4—C5—C6—C70.19 (18)C11—C12—C13—N14.93 (15)
C5—C6—C7—C20.69 (17)C14—C12—C13—N1171.27 (9)
C5—C6—C7—C8176.55 (11)C12—C11—C15—C16128.40 (11)
C3—C2—C7—C60.80 (16)C10—C11—C15—C1650.74 (14)
C1—C2—C7—C6179.46 (10)C12—C11—C15—C2051.08 (14)
C3—C2—C7—C8176.55 (10)C10—C11—C15—C20129.78 (11)
C1—C2—C7—C83.20 (15)C20—C15—C16—C170.34 (16)
C6—C7—C8—C9144.07 (11)C11—C15—C16—C17179.16 (10)
C2—C7—C8—C938.67 (14)C15—C16—C17—C180.89 (16)
C7—C8—C9—C1052.36 (12)C21—O2—C18—C174.32 (17)
N1—C1—C10—C111.94 (15)C21—O2—C18—C19175.79 (10)
C2—C1—C10—C11177.91 (9)C16—C17—C18—O2179.15 (10)
N1—C1—C10—C9177.80 (9)C16—C17—C18—C190.73 (16)
C2—C1—C10—C92.36 (15)O2—C18—C19—C20179.86 (10)
C8—C9—C10—C133.28 (13)C17—C18—C19—C200.04 (17)
C8—C9—C10—C11146.44 (10)C18—C19—C20—C150.53 (17)
C1—C10—C11—C123.17 (15)C16—C15—C20—C190.38 (16)
C9—C10—C11—C12176.55 (10)C11—C15—C20—C19179.87 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.90 (2)1.94 (2)2.823 (1)166 (1)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC21H16N2O2
Mr328.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.2016 (2), 14.4725 (2), 7.9935 (1)
β (°) 96.017 (1)
V3)1633.87 (4)
Z4
Radiation typeCu Kα
µ (mm1)0.70
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.818, 0.873
No. of measured, independent and
observed [I > 2σ(I)] reflections
6187, 3211, 3011
Rint0.014
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.03
No. of reflections3211
No. of parameters230
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.21

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.90 (2)1.94 (2)2.823 (1)166 (1)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank King Abdulaziz University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationRostom, S. A. F., Faidallah, H. M. & Al-Saadi, M. S. (2011). Med. Chem. Res. 20 (DOI: 10.1007/s00044-010-9469-0).  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds