organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Oxo-4-(thio­phen-2-yl)-1,2,5,6-tetra­hydro­benzo[h]quinoline-3-carbo­nitrile

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 7 August 2011; accepted 19 August 2011; online 27 August 2011)

In the mol­ecule of the title compound, C18H12N2OS, the tetra­hydro­benzo[h]quinoline fused-ring system is buckled owing to the ethyl­ene –CH2CH2– fragment, the benzene ring and the pyridine ring being twisted by 16.0 (1)°. The 4-substituted aromatic ring is bent away from the pyridine ring by 59.5 (2)° (for the major disordered thienyl component) in order to avoid crowding the cyanide substituent. In the crystal, two mol­ecules are linked by a pair of N—H⋯O hydrogen bonds to form a centrosymmetric dimer. The thienyl ring is disordered over two sites in a 72.7 (2):27.3 ratio.

Related literature

For background to the anti­cancer properties of this class of compounds, see: Rostom et al. (2011[Rostom, S. A. F., Faidallah, H. M. & Al-Saadi, M. S. (2011). Med. Chem. Res. 20 (DOI: 10.1007/s00044-010-9469-0). ]) .

[Scheme 1]

Experimental

Crystal data
  • C18H12N2OS

  • Mr = 304.36

  • Triclinic, [P \overline 1]

  • a = 6.9952 (3) Å

  • b = 9.1809 (4) Å

  • c = 11.1837 (5) Å

  • α = 93.990 (4)°

  • β = 95.293 (4)°

  • γ = 100.903 (4)°

  • V = 699.48 (5) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.07 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.575, Tmax = 0.682

  • 5795 measured reflections

  • 2740 independent reflections

  • 2600 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.098

  • S = 1.07

  • 2740 reflections

  • 216 parameters

  • 19 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.89 (1) 1.97 (1) 2.851 (1) 173 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The compound (Scheme I) belongs to a series of cyano-pyridinones that have been evaluated for their anticancer properties (Rostom et al., 2011). The tetrahydrobenzo[h]quinoline fused-ring system is buckled owing to the ethylene –CH2CH2– fragment, the benzene ring and the pyridine ring being twisted by 16.0 (1)°. The 4-subsituted aromatic ring is bent away from the pyridine ring by 59.5 (2) ° in order to avoid crowding the cyanide substituent (Fig. 1). Two molecules are linked by an N—H···O hydrogen bonds to form a centrosymmetric dimer (Table 1).

Related literature top

For background to the anticancer properties of this class of compounds, see: Rostom et al. (2011).

Experimental top

A mixture of thiophene-2-carbaldehyde (1.10 g, 10 mmol), 1-tetralone (1.46 g, 10 mmol), ethyl cyanoacetate (1.1 g, 10 mmol) and ammonium acetate (6.2 g, 80 mmol) in absolute ethanol (50 ml) was refluxed for 6 h. The reaction mixture was allowed to cool, and the yellow precipitate that formed was filtered, washed with water, dried and recrystallized from ethanol; m.p. 622–623 K.

Refinement top

Carbon- and nitrogen-bound H atoms were placed in calculated positions [C—H 0.95 to 0.99 Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The amino H atom was located in a difference Fourier map and was refined with an N—H 0.88 (1) Å restraint.

The thienyl ring is disordered over two positions in a 72.7 (2):27.3 ratio. The temperature factors of the primed atoms were set to those of the unprimed ones; the atom that is connected to the fused-ring is ordered. The anisotropic temperature factors of the disordered atoms were tightly restrained to be nearly isotropic.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C18H12N2OS at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in the thienyl ring is not shown.
2-Oxo-4-(thiophen-2-yl)-1,2,5,6-tetrahydrobenzo[h]quinoline-3- carbonitrile top
Crystal data top
C18H12N2OSZ = 2
Mr = 304.36F(000) = 316
Triclinic, P1Dx = 1.445 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 6.9952 (3) ÅCell parameters from 4426 reflections
b = 9.1809 (4) Åθ = 4.0–74.1°
c = 11.1837 (5) ŵ = 2.07 mm1
α = 93.990 (4)°T = 100 K
β = 95.293 (4)°Prism, yellow
γ = 100.903 (4)°0.30 × 0.25 × 0.20 mm
V = 699.48 (5) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
2740 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2600 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.020
Detector resolution: 10.4041 pixels mm-1θmax = 74.3°, θmin = 4.0°
ω scansh = 78
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1110
Tmin = 0.575, Tmax = 0.682l = 1313
5795 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.2491P]
where P = (Fo2 + 2Fc2)/3
2740 reflections(Δ/σ)max = 0.001
216 parametersΔρmax = 0.22 e Å3
19 restraintsΔρmin = 0.45 e Å3
Crystal data top
C18H12N2OSγ = 100.903 (4)°
Mr = 304.36V = 699.48 (5) Å3
Triclinic, P1Z = 2
a = 6.9952 (3) ÅCu Kα radiation
b = 9.1809 (4) ŵ = 2.07 mm1
c = 11.1837 (5) ÅT = 100 K
α = 93.990 (4)°0.30 × 0.25 × 0.20 mm
β = 95.293 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
2740 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2600 reflections with I > 2σ(I)
Tmin = 0.575, Tmax = 0.682Rint = 0.020
5795 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03519 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.22 e Å3
2740 reflectionsΔρmin = 0.45 e Å3
216 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S11.02806 (12)0.99939 (9)0.19100 (9)0.0171 (2)0.727 (2)
C11.2328 (6)1.0301 (6)0.1115 (5)0.0157 (7)0.727 (2)
H1A1.25781.10550.05780.019*0.727 (2)
C21.3559 (7)0.9300 (6)0.1367 (5)0.0163 (7)0.727 (2)
H21.47480.92890.10220.020*0.727 (2)
C31.2770 (14)0.8250 (17)0.2247 (12)0.0299 (8)0.727 (2)
H31.33730.74740.25260.036*0.727 (2)
S1'1.3139 (8)0.8217 (10)0.2250 (7)0.0299 (8)0.27
C1'1.0531 (18)0.9773 (13)0.1982 (12)0.0171 (2)0.27
H1'0.93941.01800.20670.021*0.273 (2)
C2'1.196 (2)1.025 (2)0.1248 (15)0.0157 (7)0.27
H2'1.19221.10450.07500.019*0.273 (2)
C3'1.330 (2)0.9528 (19)0.1306 (17)0.0163 (7)0.27
H3'1.43570.97230.08290.020*0.273 (2)
O10.50080 (13)0.56034 (11)0.36325 (8)0.0192 (2)
N10.76813 (15)0.61659 (12)0.50268 (10)0.0153 (2)
H10.692 (2)0.5628 (18)0.5492 (14)0.027 (4)*
N20.64560 (17)0.68980 (14)0.08687 (10)0.0219 (3)
C41.10455 (19)0.85666 (15)0.25948 (11)0.0162 (3)
C50.71303 (18)0.69445 (15)0.18506 (12)0.0168 (3)
C60.67568 (18)0.62164 (15)0.38930 (12)0.0159 (3)
C70.79651 (18)0.70041 (15)0.30795 (12)0.0159 (3)
C80.98753 (19)0.77471 (15)0.34578 (12)0.0160 (3)
C91.06717 (19)0.77150 (15)0.46658 (12)0.0162 (3)
C101.26416 (19)0.86240 (16)0.52013 (12)0.0198 (3)
H10A1.24530.95550.56360.024*
H10B1.34660.88960.45470.024*
C111.36693 (19)0.77390 (16)0.60685 (12)0.0182 (3)
H11A1.40510.68970.56100.022*
H11B1.48760.83870.64820.022*
C121.23569 (19)0.71478 (14)0.69931 (12)0.0164 (3)
C131.3114 (2)0.69892 (15)0.81603 (12)0.0203 (3)
H131.44900.72240.83730.024*
C141.1894 (2)0.64951 (16)0.90172 (12)0.0217 (3)
H141.24350.63970.98110.026*
C150.9873 (2)0.61428 (15)0.87154 (12)0.0202 (3)
H150.90330.58310.93090.024*
C160.90914 (19)0.62486 (15)0.75477 (12)0.0181 (3)
H160.77160.59830.73370.022*
C171.03169 (19)0.67444 (14)0.66757 (11)0.0153 (3)
C180.95516 (18)0.68759 (14)0.54271 (11)0.0153 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0179 (4)0.0139 (4)0.0219 (3)0.0049 (2)0.0047 (2)0.0097 (2)
C10.0132 (19)0.0185 (8)0.0149 (14)0.0033 (14)0.0089 (11)0.0063 (9)
C20.0145 (16)0.0178 (19)0.0197 (9)0.0090 (9)0.0038 (11)0.0044 (11)
C30.029 (2)0.0331 (6)0.0259 (4)0.0033 (16)0.0123 (14)0.0043 (4)
S1'0.029 (2)0.0331 (6)0.0259 (4)0.0033 (16)0.0123 (14)0.0043 (4)
C1'0.0179 (4)0.0139 (4)0.0219 (3)0.0049 (2)0.0047 (2)0.0097 (2)
C2'0.0132 (19)0.0185 (8)0.0149 (14)0.0033 (14)0.0089 (11)0.0063 (9)
C3'0.0145 (16)0.0178 (19)0.0197 (9)0.0090 (9)0.0038 (11)0.0044 (11)
O10.0129 (4)0.0267 (5)0.0170 (5)0.0003 (4)0.0007 (3)0.0071 (4)
N10.0134 (5)0.0190 (6)0.0137 (5)0.0012 (4)0.0029 (4)0.0054 (4)
N20.0192 (6)0.0287 (7)0.0182 (6)0.0045 (5)0.0013 (5)0.0070 (5)
C40.0159 (6)0.0181 (7)0.0138 (6)0.0011 (5)0.0005 (5)0.0050 (5)
C50.0132 (6)0.0189 (7)0.0192 (7)0.0030 (5)0.0043 (5)0.0055 (5)
C60.0141 (6)0.0182 (6)0.0160 (6)0.0040 (5)0.0015 (5)0.0033 (5)
C70.0148 (6)0.0191 (7)0.0147 (6)0.0043 (5)0.0026 (5)0.0052 (5)
C80.0159 (6)0.0174 (6)0.0163 (6)0.0049 (5)0.0038 (5)0.0044 (5)
C90.0147 (6)0.0177 (6)0.0158 (6)0.0015 (5)0.0022 (5)0.0036 (5)
C100.0176 (6)0.0222 (7)0.0169 (6)0.0030 (5)0.0010 (5)0.0041 (5)
C110.0139 (6)0.0220 (7)0.0168 (6)0.0006 (5)0.0004 (5)0.0023 (5)
C120.0177 (6)0.0149 (6)0.0157 (6)0.0015 (5)0.0007 (5)0.0009 (5)
C130.0190 (7)0.0206 (7)0.0186 (7)0.0007 (5)0.0024 (5)0.0020 (5)
C140.0268 (7)0.0212 (7)0.0148 (6)0.0005 (6)0.0030 (5)0.0035 (5)
C150.0242 (7)0.0201 (7)0.0152 (6)0.0001 (5)0.0037 (5)0.0037 (5)
C160.0172 (6)0.0191 (7)0.0170 (6)0.0009 (5)0.0018 (5)0.0028 (5)
C170.0175 (6)0.0144 (6)0.0138 (6)0.0026 (5)0.0015 (5)0.0015 (5)
C180.0148 (6)0.0163 (6)0.0151 (6)0.0036 (5)0.0020 (5)0.0020 (5)
Geometric parameters (Å, º) top
S1—C41.7085 (14)C6—C71.4378 (18)
S1—C11.743 (3)C7—C81.3930 (18)
C1—C21.398 (6)C8—C91.4175 (18)
C1—H1A0.9500C9—C181.3850 (18)
C2—C31.495 (15)C9—C101.5156 (18)
C2—H20.9500C10—C111.5230 (19)
C3—C41.377 (10)C10—H10A0.9900
C3—H30.9500C10—H10B0.9900
S1'—C41.631 (6)C11—C121.5071 (17)
S1'—C3'1.651 (19)C11—H11A0.9900
C1'—C2'1.377 (18)C11—H11B0.9900
C1'—C41.427 (11)C12—C131.3904 (18)
C1'—H1'0.9500C12—C171.4099 (18)
C2'—C3'1.25 (2)C13—C141.385 (2)
C2'—H2'0.9500C13—H130.9500
C3'—H3'0.9500C14—C151.393 (2)
O1—C61.2447 (16)C14—H140.9500
N1—C181.3659 (17)C15—C161.3856 (19)
N1—C61.3771 (16)C15—H150.9500
N1—H10.885 (9)C16—C171.4005 (18)
N2—C51.1491 (18)C16—H160.9500
C4—C81.4770 (17)C17—C181.4701 (17)
C5—C71.4361 (18)
C4—S1—C192.12 (19)C7—C8—C4119.51 (12)
C2—C1—S1111.6 (4)C9—C8—C4120.73 (12)
C2—C1—H1A124.2C18—C9—C8118.65 (12)
S1—C1—H1A124.2C18—C9—C10117.54 (12)
C1—C2—C3111.6 (6)C8—C9—C10123.70 (12)
C1—C2—H2124.2C9—C10—C11110.44 (11)
C3—C2—H2124.2C9—C10—H10A109.6
C4—C3—C2110.3 (10)C11—C10—H10A109.6
C4—C3—H3124.9C9—C10—H10B109.6
C2—C3—H3124.9C11—C10—H10B109.6
C4—S1'—C3'90.2 (6)H10A—C10—H10B108.1
C2'—C1'—C4108.7 (11)C12—C11—C10111.07 (11)
C2'—C1'—H1'125.6C12—C11—H11A109.4
C4—C1'—H1'125.6C10—C11—H11A109.4
C3'—C2'—C1'112.7 (15)C12—C11—H11B109.4
C3'—C2'—H2'123.6C10—C11—H11B109.4
C1'—C2'—H2'123.6H11A—C11—H11B108.0
C2'—C3'—S1'116.8 (14)C13—C12—C17118.92 (12)
C2'—C3'—H3'121.6C13—C12—C11121.40 (12)
S1'—C3'—H3'121.6C17—C12—C11119.69 (11)
C18—N1—C6125.02 (11)C14—C13—C12121.08 (13)
C18—N1—H1122.2 (12)C14—C13—H13119.5
C6—N1—H1112.8 (12)C12—C13—H13119.5
C3—C4—C1'110.3 (8)C13—C14—C15120.03 (13)
C3—C4—C8124.6 (6)C13—C14—H14120.0
C1'—C4—C8125.0 (5)C15—C14—H14120.0
C1'—C4—S1'111.5 (6)C16—C15—C14119.84 (12)
C8—C4—S1'123.5 (3)C16—C15—H15120.1
C3—C4—S1114.4 (6)C14—C15—H15120.1
C8—C4—S1120.97 (10)C15—C16—C17120.41 (12)
S1'—C4—S1115.5 (3)C15—C16—H16119.8
N2—C5—C7179.74 (15)C17—C16—H16119.8
O1—C6—N1120.39 (11)C16—C17—C12119.65 (12)
O1—C6—C7124.73 (12)C16—C17—C18122.26 (12)
N1—C6—C7114.88 (11)C12—C17—C18118.08 (11)
C8—C7—C5121.69 (11)N1—C18—C9119.93 (12)
C8—C7—C6121.52 (12)N1—C18—C17118.58 (11)
C5—C7—C6116.76 (11)C9—C18—C17121.49 (12)
C7—C8—C9119.75 (12)
C4—S1—C1—C20.8 (4)S1—C4—C8—C759.63 (16)
S1—C1—C2—C30.0 (8)C3—C4—C8—C961.7 (7)
C1—C2—C3—C41.1 (11)C1'—C4—C8—C9119.9 (7)
C4—C1'—C2'—C3'0 (2)S1'—C4—C8—C958.6 (4)
C1'—C2'—C3'—S1'2 (2)S1—C4—C8—C9120.06 (13)
C4—S1'—C3'—C2'2.4 (17)C7—C8—C9—C183.23 (19)
C2—C3—C4—C1'1.5 (11)C4—C8—C9—C18177.08 (12)
C2—C3—C4—C8179.9 (5)C7—C8—C9—C10172.91 (12)
C2—C3—C4—S1'113 (20)C4—C8—C9—C106.8 (2)
C2—C3—C4—S11.7 (10)C18—C9—C10—C1140.78 (16)
C2'—C1'—C4—C30.9 (14)C8—C9—C10—C11143.04 (13)
C2'—C1'—C4—C8179.6 (9)C9—C10—C11—C1252.44 (15)
C2'—C1'—C4—S1'1.8 (13)C10—C11—C12—C13147.28 (13)
C2'—C1'—C4—S1177 (9)C10—C11—C12—C1732.72 (17)
C3'—S1'—C4—C364 (19)C17—C12—C13—C142.3 (2)
C3'—S1'—C4—C1'2.3 (10)C11—C12—C13—C14177.69 (13)
C3'—S1'—C4—C8179.1 (7)C12—C13—C14—C150.2 (2)
C3'—S1'—C4—S12.2 (8)C13—C14—C15—C161.8 (2)
C1—S1—C4—C31.5 (6)C14—C15—C16—C171.6 (2)
C1—S1—C4—C1'2 (8)C15—C16—C17—C120.5 (2)
C1—S1—C4—C8180.0 (2)C15—C16—C17—C18179.92 (12)
C1—S1—C4—S1'1.3 (4)C13—C12—C17—C162.4 (2)
C18—N1—C6—O1175.77 (12)C11—C12—C17—C16177.59 (12)
C18—N1—C6—C74.57 (19)C13—C12—C17—C18178.11 (12)
O1—C6—C7—C8175.70 (13)C11—C12—C17—C181.90 (18)
N1—C6—C7—C84.65 (19)C6—N1—C18—C90.6 (2)
O1—C6—C7—C56.4 (2)C6—N1—C18—C17178.47 (11)
N1—C6—C7—C5173.28 (11)C8—C9—C18—N13.49 (19)
C5—C7—C8—C9176.88 (12)C10—C9—C18—N1172.89 (12)
C6—C7—C8—C90.9 (2)C8—C9—C18—C17177.49 (11)
C5—C7—C8—C43.42 (19)C10—C9—C18—C176.14 (19)
C6—C7—C8—C4178.75 (12)C16—C17—C18—N116.20 (19)
C3—C4—C8—C7118.6 (7)C12—C17—C18—N1164.33 (12)
C1'—C4—C8—C759.8 (7)C16—C17—C18—C9162.84 (13)
S1'—C4—C8—C7121.7 (4)C12—C17—C18—C916.63 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.89 (1)1.97 (1)2.851 (1)173 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H12N2OS
Mr304.36
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.9952 (3), 9.1809 (4), 11.1837 (5)
α, β, γ (°)93.990 (4), 95.293 (4), 100.903 (4)
V3)699.48 (5)
Z2
Radiation typeCu Kα
µ (mm1)2.07
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.575, 0.682
No. of measured, independent and
observed [I > 2σ(I)] reflections
5795, 2740, 2600
Rint0.020
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.098, 1.07
No. of reflections2740
No. of parameters216
No. of restraints19
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.45

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.89 (1)1.97 (1)2.851 (1)173 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank King Abdulaziz University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationRostom, S. A. F., Faidallah, H. M. & Al-Saadi, M. S. (2011). Med. Chem. Res. 20 (DOI: 10.1007/s00044-010-9469-0).  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds