organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2-Azaniumyl­eth­yl)piperazin-1-ium bis­(perchlorate)

aChemistry Department, Isfahan University, 81646-73441 Isfahan, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 12 August 2011; accepted 19 August 2011; online 27 August 2011)

In the title compound, C6H17N32+·2ClO4, the piperazine ring adopts a chair conformation with the ethyl­ammonium fragment occupying an equatorial position. In the crystal, the dications and perchlorate anions are linked through N—H⋯O hydrogen bonding and weak C—H⋯O hydrogen bonding into a three-dimensional supra­molecular network.

Related literature

For the structures of related salts of the 4-(2-ammonio­ethyl)piperazin-1-ium cation, see: Guerfel et al. (1999[Guerfel, T., Bdiri, M. & Jouini, A. (1999). J. Chem. Crystallogr. 29, 1205-1210.]); Srinivasan et al. (2008[Srinivasan, B. R., Dhuri, S. N., Naik, A. R., Näther, C. & Bensch, W. (2008). Polyhedron, 27, 25-34.], 2009[Srinivasan, B. R., Naik, A. R., Dhuri, S. N., Näther, C. & Bensch, W. (2009). Polyhedron, 28, 3715-3722.]).

[Scheme 1]

Experimental

Crystal data
  • C6H17N32+·2ClO4

  • Mr = 330.13

  • Monoclinic, P 21 /n

  • a = 7.5218 (1) Å

  • b = 11.4371 (2) Å

  • c = 15.2239 (2) Å

  • β = 97.437 (1)°

  • V = 1298.66 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 100 K

  • 0.28 × 0.17 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.863, Tmax = 0.968

  • 8644 measured reflections

  • 2969 independent reflections

  • 2671 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.080

  • S = 1.05

  • 2969 reflections

  • 187 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O4i 0.90 (2) 2.16 (2) 2.9298 (19) 143 (2)
N1—H1D⋯O3ii 0.88 (2) 2.09 (2) 2.964 (2) 168 (2)
N3—H3C⋯O6i 0.89 (2) 2.38 (2) 3.0741 (19) 135 (2)
N3—H3C⋯O4 0.89 (2) 2.39 (2) 3.0225 (19) 128 (2)
N3—H3D⋯O1iii 0.89 (2) 2.12 (2) 2.9875 (18) 163 (2)
N3—H3E⋯O8iv 0.88 (2) 2.14 (2) 2.9025 (19) 145 (2)
N3—H3E⋯O3 0.88 (2) 2.52 (2) 3.0724 (19) 122 (2)
C1—H1B⋯O7v 0.99 2.56 3.407 (2) 143
C3—H3A⋯O8iii 0.99 2.56 3.226 (2) 124
C5—H5A⋯O5vi 0.99 2.58 3.436 (2) 145
C5—H5B⋯O2iii 0.99 2.46 3.452 (2) 178
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x-1, y, z; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystals of the title compound were obtained unexpectedly during an attempt to prepare a tin(IV) complex of 1-(2-aminoethyl)piperazine in the presence of sodium perchlorate. The organic molecule is doubly protonated at its primary and secondary N atoms, while the tertiary N atom, N2, remains unprotonated. Similar to the structures of some other 1-(2-ammoniumethyl)piperazinium salts (Guerfel et al., 1999; Srinivasan et al., 2008, 2009), the piperazine ring adopts a chair conformation with the ethylammonium group occupying an equatorial position. In the crystal, the dicationic organic moieties and perchlorate anions are linked through N—H···O and C—H···O interactions (Table 1) into a three-dimensional supra-molecular network.

Related literature top

For the structures of related salts of the 4-(2-ammonioethyl)piperazin-1-ium cation, see: Guerfel et al. (1999); Srinivasan et al. (2008, 2009).

Experimental top

A mixture of 4-(2-aminoethyl)piperazine (0.26 g, 2 mmol) and Bu2SnCl2 (0.6 g, 2 mmol) in methanol (50 ml) was refluxed for 2 h. NaClO4 (0.56 g, 4 mmol) was then added and the precipitated sodium chloride was filtered off. The filtrate was evaporated and the obtained solid was recrystallized from ethanol at room temperature to give the colorless crystals of the title compound.

Refinement top

The C-bound H atoms were placed at calculated positions and were treated as riding on their parent C atoms with C—H = 0.99 Å. The N-bound H atoms were located in a difference Fourier map, and refined with distance restraints of N—H = 0.91 (2) Å. For all H atoms, Uiso(H) was set to 1.2Ueq(carrier atom).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with thermal ellipsoids at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.
4-(2-Azaniumylethyl)piperazin-1-ium bis(perchlorate) top
Crystal data top
C6H17N32+·2ClO4F(000) = 688
Mr = 330.13Dx = 1.688 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4052 reflections
a = 7.5218 (1) Åθ = 2.2–30.5°
b = 11.4371 (2) ŵ = 0.54 mm1
c = 15.2239 (2) ÅT = 100 K
β = 97.437 (1)°Blade, colourless
V = 1298.66 (3) Å30.28 × 0.17 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2969 independent reflections
Radiation source: fine-focus sealed tube2671 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.863, Tmax = 0.968k = 1412
8644 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0388P)2 + 0.8608P]
where P = (Fo2 + 2Fc2)/3
2969 reflections(Δ/σ)max = 0.001
187 parametersΔρmax = 0.27 e Å3
5 restraintsΔρmin = 0.59 e Å3
Crystal data top
C6H17N32+·2ClO4V = 1298.66 (3) Å3
Mr = 330.13Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.5218 (1) ŵ = 0.54 mm1
b = 11.4371 (2) ÅT = 100 K
c = 15.2239 (2) Å0.28 × 0.17 × 0.06 mm
β = 97.437 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2969 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2671 reflections with I > 2σ(I)
Tmin = 0.863, Tmax = 0.968Rint = 0.023
8644 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0305 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.27 e Å3
2969 reflectionsΔρmin = 0.59 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3280 (2)0.44351 (13)0.34193 (10)0.0188 (3)
H1C0.390 (3)0.5105 (15)0.3389 (14)0.023*
H1D0.268 (3)0.4345 (19)0.2884 (11)0.023*
N20.22434 (17)0.25008 (12)0.44167 (9)0.0137 (3)
N30.26916 (19)0.16033 (12)0.61553 (9)0.0138 (3)
H3C0.308 (3)0.2308 (14)0.6010 (13)0.017*
H3D0.161 (2)0.1729 (17)0.6323 (13)0.017*
H3E0.340 (2)0.1314 (17)0.6606 (11)0.017*
C10.4538 (2)0.34346 (15)0.36621 (12)0.0212 (4)
H1A0.52950.36040.42290.025*
H1B0.53340.33270.31990.025*
C20.3466 (2)0.23325 (15)0.37506 (11)0.0182 (3)
H2A0.27690.21370.31730.022*
H2B0.42890.16740.39280.022*
C30.1959 (2)0.45727 (15)0.40696 (12)0.0186 (3)
H3A0.10990.52050.38730.022*
H3B0.25950.47870.46580.022*
C40.0963 (2)0.34326 (15)0.41350 (12)0.0190 (3)
H4A0.00950.35130.45680.023*
H4B0.02890.32350.35520.023*
C50.1375 (2)0.13996 (15)0.46127 (11)0.0165 (3)
H5A0.12570.08860.40850.020*
H5B0.01600.15590.47680.020*
C60.2498 (2)0.08004 (14)0.53790 (11)0.0158 (3)
H6A0.19110.00650.55290.019*
H6B0.36940.06060.52140.019*
Cl10.72577 (5)0.21252 (3)0.61138 (3)0.01391 (10)
O10.90644 (15)0.24485 (11)0.64617 (9)0.0220 (3)
O20.71413 (18)0.18723 (12)0.51861 (8)0.0263 (3)
O30.67246 (17)0.10996 (11)0.65736 (9)0.0241 (3)
O40.60538 (16)0.30697 (11)0.62494 (10)0.0246 (3)
Cl20.74537 (5)0.57603 (3)0.26377 (2)0.01355 (10)
O50.59033 (15)0.51100 (11)0.22387 (8)0.0188 (3)
O60.75093 (17)0.57359 (11)0.35894 (8)0.0200 (3)
O70.73342 (17)0.69479 (10)0.23263 (8)0.0204 (3)
O80.90557 (15)0.52178 (11)0.23899 (8)0.0202 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0269 (8)0.0140 (7)0.0159 (7)0.0024 (6)0.0044 (6)0.0008 (6)
N20.0141 (6)0.0131 (7)0.0144 (7)0.0002 (5)0.0034 (5)0.0015 (5)
N30.0150 (6)0.0119 (7)0.0147 (7)0.0003 (5)0.0026 (5)0.0003 (5)
C10.0235 (9)0.0174 (9)0.0246 (9)0.0005 (7)0.0107 (7)0.0029 (7)
C20.0227 (8)0.0158 (8)0.0178 (8)0.0002 (6)0.0090 (6)0.0002 (6)
C30.0193 (8)0.0171 (8)0.0195 (8)0.0022 (6)0.0030 (6)0.0004 (7)
C40.0151 (8)0.0187 (9)0.0227 (9)0.0016 (6)0.0009 (6)0.0016 (7)
C50.0175 (8)0.0162 (8)0.0158 (8)0.0044 (6)0.0027 (6)0.0009 (6)
C60.0190 (8)0.0125 (8)0.0164 (8)0.0014 (6)0.0046 (6)0.0026 (6)
Cl10.01169 (18)0.01297 (19)0.0174 (2)0.00018 (13)0.00309 (13)0.00125 (14)
O10.0125 (6)0.0229 (7)0.0300 (7)0.0028 (5)0.0010 (5)0.0039 (5)
O20.0263 (7)0.0354 (8)0.0176 (7)0.0007 (6)0.0045 (5)0.0055 (6)
O30.0219 (6)0.0207 (7)0.0290 (7)0.0045 (5)0.0012 (5)0.0090 (5)
O40.0155 (6)0.0157 (6)0.0437 (8)0.0021 (5)0.0076 (5)0.0067 (6)
Cl20.01502 (19)0.01298 (19)0.01291 (19)0.00041 (13)0.00284 (13)0.00077 (13)
O50.0160 (6)0.0196 (6)0.0206 (6)0.0037 (5)0.0016 (5)0.0013 (5)
O60.0283 (7)0.0194 (6)0.0128 (6)0.0033 (5)0.0045 (5)0.0001 (5)
O70.0274 (7)0.0134 (6)0.0207 (6)0.0012 (5)0.0038 (5)0.0031 (5)
O80.0164 (6)0.0227 (7)0.0223 (7)0.0022 (5)0.0056 (5)0.0069 (5)
Geometric parameters (Å, º) top
N1—C31.499 (2)C3—H3A0.9900
N1—C11.500 (2)C3—H3B0.9900
N1—H1C0.902 (15)C4—H4A0.9900
N1—H1D0.884 (15)C4—H4B0.9900
N2—C41.463 (2)C5—C61.513 (2)
N2—C51.467 (2)C5—H5A0.9900
N2—C21.467 (2)C5—H5B0.9900
N3—C61.489 (2)C6—H6A0.9900
N3—H3C0.894 (15)C6—H6B0.9900
N3—H3D0.894 (15)Cl1—O21.4331 (13)
N3—H3E0.878 (15)Cl1—O11.4414 (12)
C1—C21.512 (2)Cl1—O41.4416 (12)
C1—H1A0.9900Cl1—O31.4489 (13)
C1—H1B0.9900Cl2—O71.4376 (12)
C2—H2A0.9900Cl2—O61.4444 (12)
C2—H2B0.9900Cl2—O81.4481 (12)
C3—C41.513 (2)Cl2—O51.4487 (12)
C3—N1—C1111.60 (13)H3A—C3—H3B108.3
C3—N1—H1C109.7 (13)N2—C4—C3109.53 (13)
C1—N1—H1C110.3 (13)N2—C4—H4A109.8
C3—N1—H1D108.6 (14)C3—C4—H4A109.8
C1—N1—H1D111.6 (14)N2—C4—H4B109.8
H1C—N1—H1D104.8 (19)C3—C4—H4B109.8
C4—N2—C5113.04 (13)H4A—C4—H4B108.2
C4—N2—C2109.92 (13)N2—C5—C6109.07 (13)
C5—N2—C2111.30 (13)N2—C5—H5A109.9
C6—N3—H3C111.2 (13)C6—C5—H5A109.9
C6—N3—H3D109.1 (13)N2—C5—H5B109.9
H3C—N3—H3D105.1 (18)C6—C5—H5B109.9
C6—N3—H3E112.0 (13)H5A—C5—H5B108.3
H3C—N3—H3E110.4 (18)N3—C6—C5108.67 (13)
H3D—N3—H3E108.8 (18)N3—C6—H6A110.0
N1—C1—C2109.35 (14)C5—C6—H6A110.0
N1—C1—H1A109.8N3—C6—H6B110.0
C2—C1—H1A109.8C5—C6—H6B110.0
N1—C1—H1B109.8H6A—C6—H6B108.3
C2—C1—H1B109.8O2—Cl1—O1110.39 (8)
H1A—C1—H1B108.3O2—Cl1—O4109.44 (8)
N2—C2—C1109.97 (14)O1—Cl1—O4109.57 (8)
N2—C2—H2A109.7O2—Cl1—O3109.10 (8)
C1—C2—H2A109.7O1—Cl1—O3109.69 (8)
N2—C2—H2B109.7O4—Cl1—O3108.62 (8)
C1—C2—H2B109.7O7—Cl2—O6109.97 (7)
H2A—C2—H2B108.2O7—Cl2—O8109.73 (8)
N1—C3—C4109.21 (14)O6—Cl2—O8109.63 (7)
N1—C3—H3A109.8O7—Cl2—O5109.52 (7)
C4—C3—H3A109.8O6—Cl2—O5109.14 (7)
N1—C3—H3B109.8O8—Cl2—O5108.82 (7)
C4—C3—H3B109.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O4i0.90 (2)2.16 (2)2.9298 (19)143 (2)
N1—H1D···O3ii0.88 (2)2.09 (2)2.964 (2)168 (2)
N3—H3C···O6i0.89 (2)2.38 (2)3.0741 (19)135 (2)
N3—H3C···O40.89 (2)2.39 (2)3.0225 (19)128 (2)
N3—H3D···O1iii0.89 (2)2.12 (2)2.9875 (18)163 (2)
N3—H3E···O8iv0.88 (2)2.14 (2)2.9025 (19)145 (2)
N3—H3E···O30.88 (2)2.52 (2)3.0724 (19)122 (2)
C1—H1B···O7v0.992.563.407 (2)143
C3—H3A···O8iii0.992.563.226 (2)124
C5—H5A···O5vi0.992.583.436 (2)145
C5—H5B···O2iii0.992.463.452 (2)178
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x1, y, z; (iv) x1/2, y+1/2, z+1/2; (v) x+3/2, y1/2, z+1/2; (vi) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H17N32+·2ClO4
Mr330.13
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.5218 (1), 11.4371 (2), 15.2239 (2)
β (°) 97.437 (1)
V3)1298.66 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.28 × 0.17 × 0.06
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.863, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
8644, 2969, 2671
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.05
No. of reflections2969
No. of parameters187
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.59

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O4i0.902 (15)2.158 (18)2.9298 (19)143.1 (18)
N1—H1D···O3ii0.884 (15)2.094 (16)2.964 (2)167.8 (19)
N3—H3C···O6i0.894 (15)2.375 (18)3.0741 (19)135.2 (16)
N3—H3C···O40.894 (15)2.387 (18)3.0225 (19)128.2 (16)
N3—H3D···O1iii0.894 (15)2.121 (16)2.9875 (18)163.0 (18)
N3—H3E···O8iv0.878 (15)2.141 (17)2.9025 (19)144.7 (18)
N3—H3E···O30.878 (15)2.517 (18)3.0724 (19)121.9 (16)
C1—H1B···O7v0.992.563.407 (2)143.1
C3—H3A···O8iii0.992.563.226 (2)124.4
C5—H5A···O5vi0.992.583.436 (2)145.1
C5—H5B···O2iii0.992.463.452 (2)177.5
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x1, y, z; (iv) x1/2, y+1/2, z+1/2; (v) x+3/2, y1/2, z+1/2; (vi) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (PPP grant No. PS359/2009C).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuerfel, T., Bdiri, M. & Jouini, A. (1999). J. Chem. Crystallogr. 29, 1205–1210.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivasan, B. R., Dhuri, S. N., Naik, A. R., Näther, C. & Bensch, W. (2008). Polyhedron, 27, 25–34.  CrossRef CAS Google Scholar
First citationSrinivasan, B. R., Naik, A. R., Dhuri, S. N., Näther, C. & Bensch, W. (2009). Polyhedron, 28, 3715–3722.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds