organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Triprolidinium dipicrate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cDepartment of Chemistry, PES College of Science, Mandya 571 401, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 16 August 2011; accepted 22 August 2011; online 27 August 2011)

In the tripodinium cation of the title compound {systematic name: 2-[(E)-1-(4-methyl­phen­yl)-3-(pyrrolidin-1-ium-1-yl)prop-1-en­yl]pyridinium bis­(2,4,6-trinitro­phenolate)}, C19H24N2+·2C6H2N3O7, the N atoms on both the pyrrolidine and pyridinium groups are protonated. The pyrrolidine group adopts a slightly distorted envelope configuration. Strong N—H⋯O cation–anion hydrogen bonds and weak inter­molecular N—H⋯O inter­actions link the dication and two anions. In both picrate anions, the nitro groups display rotational disorder over two orientations in a 0.605 (6):0.395 (6) ratio. The crystal packing also features weak inter­molecular ππ [centroid–centroid distance = 3.8036 (14) Å] and C—H⋯O inter­actions.

Related literature

For anti­cholinergic properties, see: Salunga et al. (1996[Salunga, T. L., Han, X. Y., Wong, S. M., Takeuchi, H., Matsunami, K., Upton, C. & Mercer, A. D. (1996). Eur. J. Pharmacol. 304, 163-171.]). For related structures, see: James & Williams (1971[James, M. N. G. & Williams, G. J. B. (1971). J. Med. Chem. 14, 670-675.], 1974[James, M. N. G. & Williams, G. J. B. (1974). Can. J. Chem. 52, 1880-1888.]); Parvez & Sabir (1997[Parvez, M. & Sabir, A. P. (1997). Acta Cryst. C53, 679-681.]). For puckering paramerers, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H24N22+·2C6H2N3O7

  • Mr = 736.61

  • Monoclinic, P 21 /n

  • a = 15.0542 (7) Å

  • b = 12.7489 (5) Å

  • c = 17.1446 (7) Å

  • β = 100.218 (4)°

  • V = 3238.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 173 K

  • 0.34 × 0.23 × 0.21 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.960, Tmax = 0.975

  • 32796 measured reflections

  • 8355 independent reflections

  • 6144 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.192

  • S = 1.02

  • 8355 reflections

  • 486 parameters

  • 14 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O10 0.85 (2) 1.89 (2) 2.701 (2) 157 (2)
N1—H1N⋯O8 0.85 (2) 2.44 (2) 3.053 (7) 129 (2)
N1—H1N⋯O8A 0.85 (2) 2.57 (2) 3.173 (10) 128 (2)
N2—H2N⋯O3 0.86 (2) 1.85 (2) 2.648 (2) 153 (2)
C31—H31A⋯O11i 0.95 2.58 3.520 (3) 170
C9—H9A⋯O11 0.95 2.47 3.174 (3) 131
C5—H5B⋯O3ii 0.99 2.44 3.362 (4) 154
C5—H5A⋯O13Aiii 0.99 2.47 3.399 (6) 157
C4—H4A⋯O14Aiv 0.99 2.33 3.116 (7) 136
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Triprolidine, is a histamine H1 antagonist that competes with histamine for the normal H1-receptor sites on effector cells of the gastrointestinal tract, blood vessels and respiratory tract. Triprolidine has anticholinergic properties and is used to combat the symptoms associated with allergies and is sometimes combined with other cold medications designed to provide general relief for flu-like symptoms (Salunga et al., 1996). The crystal structures of triprolidine hydrochloride (James & Williams, 1971), triprolidine hydrochloride monohydrate (James & Williams, 1974) and triprolidine tetrachlorocuprate (II) (Parvez & Sabir, 1997) have been reported. In view of the importance of the title compound, this paper reports the crystal structure of (I), C19H24N2+. C12H4N6O14-.

In the tripodinium cation of the title compound [systematic name: 2-[(E)-1-(4-methylphenyl)-3-pyrrolidin-1-yl-prop-1-enyl]pyridinium bis(2,4,6-trinitrophenolate)], C19H24N2+. C12H4N6O14-., the N atoms on the pyrrolidine and pyridinium groups are protonated (Fig.1). The pyrrolidine group adopts a slightly distorted envelope configuration with puckering parametes Q = 0.288 (3)Å; ϕ = 32.2 (6)° (Cremer & Pople, 1975). Strong N—H···O cation-anion hydrogen bonds and weak N—H···O intermolecular interactions (Table 1) link the dication and two anions (Fig. 2). Bond lengths are in normal ranges (Allen et al., 1987). In both picrate anions, three of the nitro groups are rotationally disordered over two positions in a ratio of 0.605 (6): 0.395 (6) [O4A & O5A (0.395 (6), O4 & O5 (0.605 (6); O8A & O9A (0.395 (6), O8 & O9 (0.605 (6); O13A & O14A (0.605 (6), O13 & O14 (0.395 (6)]. The crystal packing is stabilized by weak intermolecular ππ [Cg4—Cg5 (3/2-x, 1/2+y, 1/2-z) centroid distances = 3.8036 (14)Å; Cg4 = C26—C31 & Cg5 = C20—C25] and C—H···O interactions forming chains along the a axis.

Related literature top

For anticholinergic properties, see: Salunga et al. (1996). For related structures, see: James & Williams (1971, 1974); Parvez & Sabir (1997). For puckering paramerers, see: Cremer & Pople (1975). For bond lengths, see: Allen et al. (1987).

Experimental top

Triprolidine hydrochloride (3.15 g, 0.01 mol) was dissolved in 10 ml of methanol and picric acid (2.29 g, 0.01 mol) was dissolved in 10 ml of methanol. Both the solutions were mixed and stirred in a beaker at 333 K for 30 minutes. The mixture was kept aside for three days at room temperature. The formed salt was filtered & dried in a vaccum desiccator over phosphorous pentoxide. The compound was recrystallized from dimethyl sulphoxide by slow evaporation (m.p: 466-468 K).

Refinement top

The oxygen atoms of three nitro groups on picrate cations are disordered over two positions in a ratio of 0.605 (6):0.395 (6).

H1N and H2N were located by a Fourier map and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with C–H lengths of 0.95 Å (CH), 0.99 Å (CH2) or 0.98 Å (CH3). The isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) or 1.5 (CH3) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labeling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound, viewed down the b axis. Dashed lined indicate N—H···O hydrogen bonds.
2-[(E)-1-(4-methylphenyl)-3-(pyrrolidin-1-ium- 1-yl)prop-1-enyl]pyridinium bis(2,4,6-trinitrophenolate) top
Crystal data top
C19H24N22+·2C6H2N3O7F(000) = 1528
Mr = 736.61Dx = 1.511 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 11024 reflections
a = 15.0542 (7) Åθ = 3.2–32.3°
b = 12.7489 (5) ŵ = 0.12 mm1
c = 17.1446 (7) ÅT = 173 K
β = 100.218 (4)°Block, colorless
V = 3238.3 (2) Å30.34 × 0.23 × 0.21 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
8355 independent reflections
Radiation source: Enhance (Mo) X-ray Source6144 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 16.1500 pixels mm-1θmax = 28.7°, θmin = 3.2°
ω scansh = 2020
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1717
Tmin = 0.960, Tmax = 0.975l = 2223
32796 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.087P)2 + 2.0922P]
where P = (Fo2 + 2Fc2)/3
8355 reflections(Δ/σ)max = 0.019
486 parametersΔρmax = 0.63 e Å3
14 restraintsΔρmin = 0.42 e Å3
Crystal data top
C19H24N22+·2C6H2N3O7V = 3238.3 (2) Å3
Mr = 736.61Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.0542 (7) ŵ = 0.12 mm1
b = 12.7489 (5) ÅT = 173 K
c = 17.1446 (7) Å0.34 × 0.23 × 0.21 mm
β = 100.218 (4)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
8355 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
6144 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.975Rint = 0.027
32796 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06714 restraints
wR(F2) = 0.192H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.63 e Å3
8355 reflectionsΔρmin = 0.42 e Å3
486 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.92233 (17)0.70372 (18)0.04819 (15)0.0835 (7)
O20.82310 (14)0.65125 (19)0.11427 (12)0.0733 (6)
O30.88982 (12)0.56044 (14)0.25150 (11)0.0561 (4)
O4A0.9819 (13)0.4781 (13)0.3699 (8)0.0957 (11)0.395 (6)
O40.9885 (8)0.4552 (8)0.3767 (5)0.0957 (11)0.605 (6)
O5A1.0956 (6)0.3773 (8)0.3664 (5)0.0957 (11)0.395 (6)
O51.0589 (4)0.3329 (5)0.3390 (3)0.0957 (11)0.605 (6)
O61.22955 (16)0.3894 (2)0.13260 (14)0.0886 (8)
O71.17901 (14)0.49452 (17)0.03706 (11)0.0650 (5)
O8A0.3039 (6)0.1518 (9)0.1006 (6)0.0706 (12)0.395 (6)
O80.3337 (4)0.1253 (5)0.1125 (4)0.0706 (12)0.605 (6)
O9A0.2177 (6)0.0413 (8)0.1356 (6)0.0706 (12)0.395 (6)
O90.2512 (4)0.0092 (5)0.1496 (3)0.0706 (12)0.605 (6)
O100.41754 (11)0.24944 (14)0.22274 (9)0.0496 (4)
O110.42811 (13)0.42582 (16)0.31111 (14)0.0662 (5)
O120.42006 (17)0.3801 (2)0.43080 (13)0.0884 (8)
O130.1432 (6)0.1580 (6)0.4551 (6)0.0708 (7)0.395 (6)
O13A0.1624 (3)0.1919 (4)0.4605 (4)0.0708 (7)0.605 (6)
O140.0765 (6)0.0945 (9)0.3400 (4)0.0708 (7)0.395 (6)
O14A0.0865 (4)0.0942 (5)0.3683 (3)0.0708 (7)0.605 (6)
N10.48222 (11)0.27782 (13)0.08706 (9)0.0334 (4)
H1N0.4503 (15)0.2601 (19)0.1214 (12)0.040*
N20.77333 (12)0.47437 (14)0.33144 (10)0.0385 (4)
H2N0.8096 (15)0.483 (2)0.2986 (13)0.046*
N30.89847 (15)0.64836 (17)0.09876 (12)0.0513 (5)
N41.02831 (16)0.42310 (19)0.32931 (13)0.0576 (6)
N51.17391 (15)0.45175 (18)0.10008 (13)0.0532 (5)
N60.27963 (15)0.10320 (18)0.15556 (12)0.0529 (5)
N70.40122 (14)0.36817 (18)0.35907 (13)0.0545 (5)
N80.14695 (19)0.1484 (2)0.39024 (16)0.0692 (7)
C10.46460 (15)0.20288 (18)0.01772 (12)0.0409 (5)
H1A0.51790.19750.00850.049*
H1B0.44930.13210.03510.049*
C20.3856 (2)0.2509 (2)0.03715 (16)0.0621 (7)
H2A0.38940.23590.09310.075*
H2B0.32800.22260.02590.075*
C30.3918 (2)0.3664 (3)0.0214 (2)0.0748 (9)
H3A0.41530.40270.06460.090*
H3B0.33140.39510.01860.090*
C40.4532 (3)0.3821 (2)0.05422 (19)0.0839 (11)
H4A0.42190.42080.09160.101*
H4B0.50630.42360.04590.101*
C50.57653 (15)0.2711 (2)0.12893 (15)0.0531 (6)
H5A0.61720.28710.09100.064*
H5B0.58890.19820.14770.064*
C60.59780 (15)0.3441 (2)0.19836 (13)0.0452 (5)
H6A0.54960.37850.21700.054*
C70.68177 (14)0.36208 (17)0.23445 (11)0.0363 (4)
C80.69781 (13)0.41772 (16)0.31109 (11)0.0343 (4)
C90.64044 (16)0.4112 (2)0.36606 (13)0.0447 (5)
H9A0.58640.37140.35400.054*
C100.66114 (19)0.4620 (2)0.43778 (14)0.0545 (6)
H10A0.62110.45780.47480.065*
C110.7398 (2)0.5186 (2)0.45588 (13)0.0536 (6)
H11A0.75530.55330.50550.064*
C120.79475 (18)0.52380 (19)0.40122 (13)0.0496 (6)
H12A0.84920.56300.41260.059*
C130.76235 (13)0.31890 (16)0.20509 (11)0.0343 (4)
C140.81005 (15)0.23621 (19)0.24497 (12)0.0434 (5)
H14A0.79130.20750.29060.052*
C150.88497 (16)0.19494 (19)0.21895 (14)0.0465 (5)
H15A0.91710.13860.24730.056*
C160.91379 (14)0.23425 (17)0.15237 (13)0.0395 (5)
C170.86463 (15)0.31561 (19)0.11187 (13)0.0436 (5)
H17A0.88220.34260.06530.052*
C180.79042 (15)0.35835 (18)0.13792 (13)0.0418 (5)
H18A0.75860.41500.10970.050*
C190.99617 (17)0.1905 (2)0.12528 (17)0.0578 (6)
H19A0.99040.19990.06790.087*
H19B1.00170.11560.13810.087*
H19C1.05000.22760.15220.087*
C200.96436 (15)0.57494 (16)0.14058 (12)0.0378 (4)
C210.95360 (15)0.53588 (16)0.21766 (13)0.0399 (5)
C221.02623 (16)0.46581 (18)0.25059 (13)0.0430 (5)
C231.09501 (16)0.43644 (18)0.21281 (14)0.0452 (5)
H23A1.13950.38800.23690.054*
C241.09888 (15)0.47827 (17)0.13884 (13)0.0414 (5)
C251.03443 (15)0.54831 (17)0.10349 (12)0.0389 (4)
H25A1.03860.57800.05350.047*
C260.28089 (15)0.15781 (17)0.22957 (12)0.0396 (5)
C270.35152 (13)0.23267 (16)0.25547 (11)0.0356 (4)
C280.34105 (14)0.28230 (18)0.32932 (12)0.0403 (5)
C290.27778 (17)0.25319 (19)0.37352 (13)0.0472 (6)
H29A0.27720.28480.42360.057*
C300.21500 (17)0.1777 (2)0.34464 (14)0.0492 (6)
C310.21513 (16)0.13026 (18)0.27218 (14)0.0453 (5)
H31A0.17060.07960.25210.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0933 (16)0.0729 (14)0.0937 (16)0.0258 (12)0.0423 (13)0.0435 (12)
O20.0577 (12)0.0972 (16)0.0691 (12)0.0240 (11)0.0224 (10)0.0111 (11)
O30.0602 (11)0.0571 (10)0.0597 (10)0.0013 (8)0.0343 (9)0.0068 (8)
O4A0.126 (2)0.110 (4)0.0594 (17)0.054 (2)0.0387 (17)0.0402 (14)
O40.126 (2)0.110 (4)0.0594 (17)0.054 (2)0.0387 (17)0.0402 (14)
O5A0.126 (2)0.110 (4)0.0594 (17)0.054 (2)0.0387 (17)0.0402 (14)
O50.126 (2)0.110 (4)0.0594 (17)0.054 (2)0.0387 (17)0.0402 (14)
O60.0714 (14)0.116 (2)0.0838 (15)0.0450 (14)0.0276 (12)0.0182 (14)
O70.0716 (13)0.0776 (13)0.0537 (10)0.0064 (10)0.0325 (9)0.0010 (9)
O8A0.077 (3)0.083 (3)0.058 (2)0.030 (2)0.030 (2)0.0174 (18)
O80.077 (3)0.083 (3)0.058 (2)0.030 (2)0.030 (2)0.0174 (18)
O9A0.077 (3)0.083 (3)0.058 (2)0.030 (2)0.030 (2)0.0174 (18)
O90.077 (3)0.083 (3)0.058 (2)0.030 (2)0.030 (2)0.0174 (18)
O100.0442 (9)0.0685 (11)0.0417 (8)0.0085 (8)0.0227 (7)0.0043 (7)
O110.0522 (11)0.0573 (11)0.0923 (15)0.0053 (9)0.0221 (10)0.0129 (11)
O120.0864 (16)0.1094 (19)0.0609 (12)0.0143 (14)0.0106 (11)0.0316 (13)
O130.0794 (16)0.0789 (14)0.0695 (15)0.0012 (12)0.0548 (18)0.025 (2)
O13A0.0794 (16)0.0789 (14)0.0695 (15)0.0012 (12)0.0548 (18)0.025 (2)
O140.0794 (16)0.0789 (14)0.0695 (15)0.0012 (12)0.0548 (18)0.025 (2)
O14A0.0794 (16)0.0789 (14)0.0695 (15)0.0012 (12)0.0548 (18)0.025 (2)
N10.0337 (8)0.0413 (9)0.0275 (7)0.0007 (7)0.0115 (6)0.0027 (6)
N20.0427 (10)0.0439 (9)0.0312 (8)0.0069 (8)0.0131 (7)0.0020 (7)
N30.0564 (12)0.0488 (11)0.0513 (11)0.0073 (9)0.0169 (10)0.0010 (9)
N40.0621 (14)0.0641 (14)0.0504 (12)0.0035 (11)0.0199 (10)0.0177 (10)
N50.0503 (12)0.0612 (13)0.0506 (11)0.0047 (10)0.0161 (10)0.0064 (10)
N60.0548 (12)0.0615 (13)0.0462 (10)0.0188 (10)0.0193 (9)0.0072 (9)
N70.0426 (11)0.0619 (13)0.0572 (12)0.0133 (10)0.0038 (10)0.0164 (11)
N80.0687 (16)0.0702 (15)0.0831 (17)0.0250 (13)0.0529 (14)0.0322 (13)
C10.0466 (12)0.0449 (11)0.0322 (9)0.0044 (9)0.0094 (9)0.0069 (8)
C20.0660 (17)0.0691 (17)0.0445 (13)0.0034 (13)0.0085 (12)0.0011 (12)
C30.0715 (19)0.0651 (18)0.077 (2)0.0079 (15)0.0153 (16)0.0112 (15)
C40.133 (3)0.0419 (14)0.0646 (17)0.0206 (17)0.0165 (19)0.0034 (13)
C50.0363 (11)0.0741 (17)0.0498 (13)0.0015 (11)0.0102 (10)0.0227 (12)
C60.0361 (11)0.0600 (14)0.0414 (11)0.0013 (10)0.0120 (9)0.0148 (10)
C70.0358 (10)0.0438 (11)0.0314 (9)0.0020 (8)0.0118 (8)0.0038 (8)
C80.0334 (10)0.0390 (10)0.0323 (9)0.0011 (8)0.0107 (8)0.0012 (8)
C90.0409 (11)0.0579 (13)0.0390 (10)0.0003 (10)0.0173 (9)0.0013 (10)
C100.0634 (16)0.0695 (16)0.0365 (11)0.0107 (13)0.0247 (11)0.0009 (11)
C110.0757 (18)0.0528 (14)0.0334 (10)0.0053 (12)0.0124 (11)0.0094 (10)
C120.0606 (15)0.0464 (12)0.0405 (11)0.0087 (11)0.0057 (10)0.0055 (9)
C130.0305 (9)0.0427 (11)0.0307 (9)0.0043 (8)0.0080 (7)0.0061 (8)
C140.0442 (12)0.0559 (13)0.0307 (9)0.0012 (10)0.0081 (9)0.0037 (9)
C150.0438 (12)0.0508 (13)0.0441 (11)0.0097 (10)0.0055 (9)0.0043 (10)
C160.0326 (10)0.0449 (11)0.0414 (10)0.0023 (8)0.0073 (8)0.0108 (9)
C170.0431 (12)0.0525 (13)0.0393 (10)0.0011 (10)0.0185 (9)0.0025 (9)
C180.0380 (11)0.0482 (12)0.0419 (11)0.0028 (9)0.0142 (9)0.0072 (9)
C190.0445 (13)0.0637 (16)0.0689 (16)0.0064 (12)0.0195 (12)0.0130 (13)
C200.0415 (11)0.0345 (10)0.0388 (10)0.0045 (8)0.0106 (8)0.0029 (8)
C210.0454 (11)0.0355 (10)0.0415 (10)0.0101 (9)0.0150 (9)0.0034 (8)
C220.0504 (13)0.0427 (11)0.0371 (10)0.0085 (9)0.0110 (9)0.0032 (9)
C230.0468 (12)0.0443 (12)0.0436 (11)0.0016 (9)0.0057 (10)0.0007 (9)
C240.0420 (11)0.0445 (11)0.0393 (10)0.0032 (9)0.0119 (9)0.0087 (9)
C250.0452 (11)0.0396 (11)0.0333 (9)0.0069 (9)0.0110 (9)0.0046 (8)
C260.0403 (11)0.0445 (11)0.0371 (10)0.0021 (9)0.0149 (9)0.0050 (8)
C270.0339 (10)0.0432 (11)0.0316 (9)0.0058 (8)0.0115 (8)0.0052 (8)
C280.0385 (11)0.0459 (11)0.0380 (10)0.0119 (9)0.0109 (8)0.0003 (9)
C290.0532 (13)0.0560 (13)0.0369 (10)0.0233 (11)0.0205 (10)0.0074 (10)
C300.0509 (13)0.0522 (13)0.0531 (13)0.0174 (11)0.0328 (11)0.0201 (11)
C310.0415 (11)0.0444 (12)0.0540 (13)0.0032 (9)0.0198 (10)0.0116 (10)
Geometric parameters (Å, º) top
O1—N31.220 (3)C5—H5A0.9900
O2—N31.211 (3)C5—H5B0.9900
O3—C211.247 (3)C6—C71.325 (3)
O4A—N41.280 (11)C6—H6A0.9500
O4—N41.166 (7)C7—C81.475 (3)
O5A—N41.242 (9)C7—C131.498 (3)
O5—N41.238 (6)C8—C91.389 (3)
O6—N51.216 (3)C9—C101.375 (3)
O7—N51.225 (3)C9—H9A0.9500
O8A—N61.235 (10)C10—C111.374 (4)
O8—N61.225 (6)C10—H10A0.9500
O9A—N61.224 (10)C11—C121.358 (4)
O9—N61.270 (6)C11—H11A0.9500
O10—C271.244 (2)C12—H12A0.9500
O11—N71.224 (3)C13—C141.386 (3)
O12—N71.222 (3)C13—C181.389 (3)
O13—N81.130 (10)C14—C151.388 (3)
O13A—N81.309 (7)C14—H14A0.9500
O14—N81.419 (12)C15—C161.385 (3)
O14A—N81.152 (8)C15—H15A0.9500
N1—C51.475 (3)C16—C171.387 (3)
N1—C41.480 (3)C16—C191.506 (3)
N1—C11.511 (3)C17—C181.386 (3)
N1—H1N0.854 (16)C17—H17A0.9500
N2—C81.340 (3)C18—H18A0.9500
N2—C121.340 (3)C19—H19A0.9800
N2—H2N0.858 (17)C19—H19B0.9800
N3—C201.457 (3)C19—H19C0.9800
N4—C221.451 (3)C20—C251.368 (3)
N5—C241.448 (3)C20—C211.448 (3)
N6—C261.445 (3)C21—C221.447 (3)
N7—C281.454 (3)C22—C231.367 (3)
N8—C301.444 (3)C23—C241.386 (3)
C1—C21.509 (3)C23—H23A0.9500
C1—H1A0.9900C24—C251.378 (3)
C1—H1B0.9900C25—H25A0.9500
C2—C31.497 (4)C26—C311.376 (3)
C2—H2A0.9900C26—C271.439 (3)
C2—H2B0.9900C27—C281.449 (3)
C3—C41.467 (4)C28—C291.369 (3)
C3—H3A0.9900C29—C301.378 (4)
C3—H3B0.9900C29—H29A0.9500
C4—H4A0.9900C30—C311.382 (3)
C4—H4B0.9900C31—H31A0.9500
C5—C61.501 (3)
C5—N1—C4115.6 (2)C8—C7—C13117.49 (17)
C5—N1—C1111.42 (16)N2—C8—C9117.15 (19)
C4—N1—C1105.67 (18)N2—C8—C7119.24 (17)
C5—N1—H1N105.1 (16)C9—C8—C7123.55 (19)
C4—N1—H1N109.6 (17)C10—C9—C8120.6 (2)
C1—N1—H1N109.5 (16)C10—C9—H9A119.7
C8—N2—C12123.00 (19)C8—C9—H9A119.7
C8—N2—H2N120.3 (17)C11—C10—C9119.9 (2)
C12—N2—H2N116.6 (18)C11—C10—H10A120.0
O2—N3—O1122.9 (2)C9—C10—H10A120.0
O2—N3—C20119.6 (2)C12—C11—C10118.4 (2)
O1—N3—C20117.4 (2)C12—C11—H11A120.8
O4—N4—O5117.2 (4)C10—C11—H11A120.8
O4—N4—O5A106.4 (6)N2—C12—C11120.9 (2)
O5—N4—O4A131.5 (5)N2—C12—H12A119.5
O4—N4—C22126.0 (3)C11—C12—H12A119.5
O5—N4—C22114.8 (3)C14—C13—C18118.50 (19)
O5A—N4—C22122.3 (4)C14—C13—C7119.56 (18)
O4A—N4—C22112.1 (4)C18—C13—C7121.93 (19)
O6—N5—O7123.3 (2)C13—C14—C15120.6 (2)
O6—N5—C24118.2 (2)C13—C14—H14A119.7
O7—N5—C24118.5 (2)C15—C14—H14A119.7
O9A—N6—O8122.3 (4)C16—C15—C14121.3 (2)
O9A—N6—O8A115.1 (8)C16—C15—H15A119.4
O8—N6—O9114.8 (5)C14—C15—H15A119.4
O8A—N6—O9123.6 (5)C15—C16—C17117.8 (2)
O9A—N6—C26116.6 (5)C15—C16—C19121.0 (2)
O8—N6—C26120.8 (4)C17—C16—C19121.2 (2)
O8A—N6—C26117.9 (6)C18—C17—C16121.5 (2)
O9—N6—C26118.5 (3)C18—C17—H17A119.3
O12—N7—O11123.8 (3)C16—C17—H17A119.3
O12—N7—C28117.8 (3)C17—C18—C13120.4 (2)
O11—N7—C28118.4 (2)C17—C18—H18A119.8
O13—N8—O14A102.2 (4)C13—C18—H18A119.8
O14A—N8—O13A123.8 (3)C16—C19—H19A109.5
O13—N8—O14119.2 (5)C16—C19—H19B109.5
O13A—N8—O14139.1 (4)H19A—C19—H19B109.5
O13—N8—C30132.0 (5)C16—C19—H19C109.5
O14A—N8—C30125.0 (3)H19A—C19—H19C109.5
O13A—N8—C30111.2 (3)H19B—C19—H19C109.5
O14—N8—C30108.8 (3)C25—C20—C21124.0 (2)
C2—C1—N1104.05 (19)C25—C20—N3116.41 (19)
C2—C1—H1A110.9C21—C20—N3119.58 (19)
N1—C1—H1A110.9O3—C21—C22124.4 (2)
C2—C1—H1B110.9O3—C21—C20124.0 (2)
N1—C1—H1B110.9C22—C21—C20111.67 (19)
H1A—C1—H1B109.0C23—C22—C21124.6 (2)
C3—C2—C1105.7 (2)C23—C22—N4116.4 (2)
C3—C2—H2A110.6C21—C22—N4119.0 (2)
C1—C2—H2A110.6C22—C23—C24119.1 (2)
C3—C2—H2B110.6C22—C23—H23A120.5
C1—C2—H2B110.6C24—C23—H23A120.5
H2A—C2—H2B108.7C25—C24—C23120.7 (2)
C4—C3—C2107.6 (2)C25—C24—N5119.7 (2)
C4—C3—H3A110.2C23—C24—N5119.5 (2)
C2—C3—H3A110.2C20—C25—C24119.84 (19)
C4—C3—H3B110.2C20—C25—H25A120.1
C2—C3—H3B110.2C24—C25—H25A120.1
H3A—C3—H3B108.5C31—C26—C27124.6 (2)
C3—C4—N1108.1 (2)C31—C26—N6116.4 (2)
C3—C4—H4A110.1C27—C26—N6118.99 (18)
N1—C4—H4A110.1O10—C27—C26125.50 (19)
C3—C4—H4B110.1O10—C27—C28122.6 (2)
N1—C4—H4B110.1C26—C27—C28111.73 (18)
H4A—C4—H4B108.4C29—C28—C27124.0 (2)
N1—C5—C6113.65 (19)C29—C28—N7117.4 (2)
N1—C5—H5A108.8C27—C28—N7118.53 (19)
C6—C5—H5A108.8C28—C29—C30119.4 (2)
N1—C5—H5B108.8C28—C29—H29A120.3
C6—C5—H5B108.8C30—C29—H29A120.3
H5A—C5—H5B107.7C29—C30—C31121.2 (2)
C7—C6—C5122.0 (2)C29—C30—N8119.6 (2)
C7—C6—H6A119.0C31—C30—N8119.2 (3)
C5—C6—H6A119.0C26—C31—C30118.8 (2)
C6—C7—C8119.40 (18)C26—C31—H31A120.6
C6—C7—C13122.81 (18)C30—C31—H31A120.6
C5—N1—C1—C2155.6 (2)O4A—N4—C22—C23158.7 (12)
C4—N1—C1—C229.3 (3)O4—N4—C22—C2117.2 (10)
N1—C1—C2—C327.9 (3)O5—N4—C22—C21146.1 (4)
C1—C2—C3—C416.3 (4)O5A—N4—C22—C21167.7 (7)
C2—C3—C4—N12.2 (4)O4A—N4—C22—C2120.9 (13)
C5—N1—C4—C3143.4 (3)C21—C22—C23—C242.3 (4)
C1—N1—C4—C319.7 (4)N4—C22—C23—C24177.2 (2)
C4—N1—C5—C659.3 (3)C22—C23—C24—C250.1 (3)
C1—N1—C5—C6179.9 (2)C22—C23—C24—N5176.9 (2)
N1—C5—C6—C7168.2 (2)O6—N5—C24—C25179.8 (2)
C5—C6—C7—C8168.2 (2)O7—N5—C24—C251.5 (3)
C5—C6—C7—C135.4 (4)O6—N5—C24—C233.1 (4)
C12—N2—C8—C90.1 (3)O7—N5—C24—C23175.6 (2)
C12—N2—C8—C7177.3 (2)C21—C20—C25—C241.7 (3)
C6—C7—C8—N2151.8 (2)N3—C20—C25—C24179.20 (19)
C13—C7—C8—N234.2 (3)C23—C24—C25—C201.8 (3)
C6—C7—C8—C931.2 (3)N5—C24—C25—C20178.9 (2)
C13—C7—C8—C9142.8 (2)O9A—N6—C26—C313.5 (6)
N2—C8—C9—C100.4 (3)O8—N6—C26—C31177.4 (4)
C7—C8—C9—C10177.5 (2)O8A—N6—C26—C31146.8 (5)
C8—C9—C10—C110.8 (4)O9—N6—C26—C3131.1 (4)
C9—C10—C11—C120.8 (4)O9A—N6—C26—C27179.2 (5)
C8—N2—C12—C110.1 (4)O8—N6—C26—C275.2 (5)
C10—C11—C12—N20.5 (4)O8A—N6—C26—C2735.9 (6)
C6—C7—C13—C14105.8 (3)O9—N6—C26—C27146.2 (4)
C8—C7—C13—C1467.9 (3)C31—C26—C27—O10170.8 (2)
C6—C7—C13—C1873.2 (3)N6—C26—C27—O106.3 (3)
C8—C7—C13—C18113.0 (2)C31—C26—C27—C284.7 (3)
C18—C13—C14—C151.0 (3)N6—C26—C27—C28178.24 (19)
C7—C13—C14—C15179.9 (2)O10—C27—C28—C29168.8 (2)
C13—C14—C15—C160.5 (4)C26—C27—C28—C296.9 (3)
C14—C15—C16—C170.7 (3)O10—C27—C28—N711.0 (3)
C14—C15—C16—C19178.8 (2)C26—C27—C28—N7173.36 (18)
C15—C16—C17—C181.6 (3)O12—N7—C28—C2930.3 (3)
C19—C16—C17—C18178.0 (2)O11—N7—C28—C29147.8 (2)
C16—C17—C18—C131.2 (3)O12—N7—C28—C27149.5 (2)
C14—C13—C18—C170.1 (3)O11—N7—C28—C2732.4 (3)
C7—C13—C18—C17179.2 (2)C27—C28—C29—C305.1 (3)
O2—N3—C20—C25157.6 (2)N7—C28—C29—C30175.1 (2)
O1—N3—C20—C2521.4 (3)C28—C29—C30—C310.5 (3)
O2—N3—C20—C2123.2 (3)C28—C29—C30—N8178.6 (2)
O1—N3—C20—C21157.8 (2)O13—N8—C30—C2919.7 (7)
C25—C20—C21—O3179.8 (2)O14A—N8—C30—C29172.0 (4)
N3—C20—C21—O30.7 (3)O13A—N8—C30—C297.8 (4)
C25—C20—C21—C220.3 (3)O14—N8—C30—C29163.1 (4)
N3—C20—C21—C22178.81 (19)O13—N8—C30—C31161.1 (6)
O3—C21—C22—C23178.2 (2)O14A—N8—C30—C317.1 (5)
C20—C21—C22—C232.3 (3)O13A—N8—C30—C31173.1 (3)
O3—C21—C22—N42.3 (3)O14—N8—C30—C3116.0 (5)
C20—C21—C22—N4177.22 (19)C27—C26—C31—C300.8 (3)
O4—N4—C22—C23162.4 (10)N6—C26—C31—C30177.9 (2)
O5—N4—C22—C2334.3 (5)C29—C30—C31—C261.6 (3)
O5A—N4—C22—C2311.9 (7)N8—C30—C31—C26179.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O100.85 (2)1.89 (2)2.701 (2)157 (2)
N1—H1N···O80.85 (2)2.44 (2)3.053 (7)129 (2)
N1—H1N···O8A0.85 (2)2.57 (2)3.173 (10)128 (2)
N2—H2N···O30.86 (2)1.85 (2)2.648 (2)153 (2)
C31—H31A···O11i0.952.583.520 (3)170
C9—H9A···O110.952.473.174 (3)131
C5—H5B···O3ii0.992.443.362 (4)154
C5—H5A···O13Aiii0.992.473.399 (6)157
C4—H4A···O14Aiv0.992.333.116 (7)136
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H24N22+·2C6H2N3O7
Mr736.61
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)15.0542 (7), 12.7489 (5), 17.1446 (7)
β (°) 100.218 (4)
V3)3238.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.34 × 0.23 × 0.21
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.960, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
32796, 8355, 6144
Rint0.027
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.192, 1.02
No. of reflections8355
No. of parameters486
No. of restraints14
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.42

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O100.854 (16)1.893 (18)2.701 (2)157 (2)
N1—H1N···O80.854 (16)2.44 (2)3.053 (7)129 (2)
N1—H1N···O8A0.854 (16)2.57 (2)3.173 (10)128 (2)
N2—H2N···O30.858 (17)1.854 (19)2.648 (2)153 (2)
C31—H31A···O11i0.952.583.520 (3)170.2
C9—H9A···O110.952.473.174 (3)131.3
C5—H5B···O3ii0.992.443.362 (4)153.8
C5—H5A···O13Aiii0.992.473.399 (6)157.0
C4—H4A···O14Aiv0.992.333.116 (7)136.2
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

ASD thanks the University of Mysore for research facilities and HSY thanks R. L. Fine Chemicals, Bangalore, for a gift sample of triprolidine hydro­chloride. JPJ acknowledges the NSF-MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationJames, M. N. G. & Williams, G. J. B. (1971). J. Med. Chem. 14, 670–675.  CrossRef CAS Google Scholar
First citationJames, M. N. G. & Williams, G. J. B. (1974). Can. J. Chem. 52, 1880–1888.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationParvez, M. & Sabir, A. P. (1997). Acta Cryst. C53, 679–681.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSalunga, T. L., Han, X. Y., Wong, S. M., Takeuchi, H., Matsunami, K., Upton, C. & Mercer, A. D. (1996). Eur. J. Pharmacol. 304, 163–171.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds