metal-organic compounds
Bis(μ2-pyridine-2-carboxamide oximato)bis[(pyridine-2-carboxamide oxime)zinc] dinitrate
aInstitute of Cash Crops, Hubei Academy of Agricultural Science, Wuhan 430064, People's Republic of China, and bKey Laboratory of Industrial Ecology and Environmental Engineering (MOE) and State Key Laboratory of Fine Chemical, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China
*Correspondence e-mail: xhdengyy@yahoo.com.cn
In the title dinuclear compound, [Zn2(C6H6N3O)2(C6H7N3O)2](NO3)2, the ZnII cation is N,N′-chelated by one pyridine-2-carboxamide oximate anion and one pyridine-2-carboxamide oxime molecule, and is further bridged by an oxime O atom from the adjacent pyridine-2-carboxamide oximate anion, forming a distorted trigonal bipyramidal coordination. Two pyridine-2-carboxamide oximate anions bridge two ZnII cations to form the centrosymmetric dinuclear molecule. Extensive O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds are present in the crystal structure.
Related literature
For similar metal complexes, see: Papatriantafyllopoulou et al. (2008); Stamatatos et al. (2006a,b). For the synthesis of the ligand, see: Bernasek (1957).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811034908/xu5304sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811034908/xu5304Isup2.hkl
The synthesis of pyridine-2-amidoxine was carried out according to literature (Bernasek, 1957). The title compound was synthesized by adding solid Zn(NO3)2.6H2O (297 mg, 1 mmol) to a solution of ligands (274 mg, 2 mmol) and NaOH (40 mg, 1 mmol) in ethanol/water (3:1, 20 ml), then the mixture was stirred for 2 h at room temperature. The solution was filtered and the filtrate was allowed to stand in air for 3 d, and yellow crystals were formed at the bottom of the vessel on slow evaporation of the solvent at room temperature. Yield: 48%. Anal. Calcd for C24H26N14Zn2O10: C 35.97, H 3.27, N 24.46. Found: C 35.94, H 3.29, N 23.93.
H atoms were included in calculated positions with C—H = 0.93 or 0.97, N—H = 086 and O—H = 0.82 Å, and refined using a riding-model with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. The packed diagram for the title compound, viewed down the a axis with hydrogen bonds drawn as dashed lines. |
[Zn2(C6H6N3O)2(C6H7N3O)2](NO3)2 | F(000) = 816 |
Mr = 801.33 | Dx = 1.793 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2632 reflections |
a = 7.4125 (14) Å | θ = 1.8–25.1° |
b = 22.201 (4) Å | µ = 1.70 mm−1 |
c = 9.4225 (17) Å | T = 293 K |
β = 106.794 (2)° | Block, yellow |
V = 1484.5 (5) Å3 | 0.51 × 0.48 × 0.39 mm |
Z = 2 |
Bruker SMART 1000 CCD area-detector diffractometer | 2632 independent reflections |
Radiation source: fine-focus sealed tube | 2297 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
ϕ and ω scans | θmax = 25.1°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→6 |
Tmin = 0.478, Tmax = 0.557 | k = −26→26 |
8302 measured reflections | l = −9→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0547P)2 + 4.2299P] where P = (Fo2 + 2Fc2)/3 |
2632 reflections | (Δ/σ)max = 0.001 |
209 parameters | Δρmax = 1.43 e Å−3 |
0 restraints | Δρmin = −0.97 e Å−3 |
[Zn2(C6H6N3O)2(C6H7N3O)2](NO3)2 | V = 1484.5 (5) Å3 |
Mr = 801.33 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.4125 (14) Å | µ = 1.70 mm−1 |
b = 22.201 (4) Å | T = 293 K |
c = 9.4225 (17) Å | 0.51 × 0.48 × 0.39 mm |
β = 106.794 (2)° |
Bruker SMART 1000 CCD area-detector diffractometer | 2632 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2297 reflections with I > 2σ(I) |
Tmin = 0.478, Tmax = 0.557 | Rint = 0.023 |
8302 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.03 | Δρmax = 1.43 e Å−3 |
2632 reflections | Δρmin = −0.97 e Å−3 |
209 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.46944 (6) | 0.437379 (19) | 0.86499 (5) | 0.02829 (17) | |
O2 | 0.3307 (4) | 0.44030 (11) | 1.0158 (3) | 0.0305 (6) | |
N6 | 0.5478 (4) | 0.52822 (14) | 0.8642 (3) | 0.0279 (7) | |
O1 | 0.8933 (4) | 0.45773 (13) | 1.0281 (4) | 0.0412 (7) | |
H1 | 0.8498 | 0.4919 | 1.0208 | 0.062* | |
C12 | 0.4742 (5) | 0.55977 (16) | 0.7481 (4) | 0.0290 (8) | |
N3 | 0.7493 (5) | 0.41671 (15) | 0.9631 (4) | 0.0326 (7) | |
C11 | 0.3546 (5) | 0.52544 (17) | 0.6194 (4) | 0.0302 (8) | |
N1 | 0.4877 (5) | 0.34274 (15) | 0.8238 (4) | 0.0321 (7) | |
N4 | 0.3239 (5) | 0.46677 (15) | 0.6470 (4) | 0.0311 (7) | |
N5 | 0.5021 (6) | 0.61900 (15) | 0.7361 (4) | 0.0465 (10) | |
H5A | 0.5739 | 0.6385 | 0.8099 | 0.056* | |
H5B | 0.4482 | 0.6375 | 0.6547 | 0.056* | |
N7 | 0.6922 (6) | 0.77875 (19) | 0.9401 (5) | 0.0590 (5) | |
N2 | 0.9964 (5) | 0.35112 (17) | 0.9759 (4) | 0.0429 (9) | |
H2A | 1.0797 | 0.3778 | 1.0161 | 0.051* | |
H2B | 1.0309 | 0.3156 | 0.9583 | 0.051* | |
C5 | 0.6647 (5) | 0.32001 (17) | 0.8733 (4) | 0.0298 (8) | |
C8 | 0.1400 (7) | 0.4564 (2) | 0.3942 (5) | 0.0431 (11) | |
H8 | 0.0665 | 0.4321 | 0.3194 | 0.052* | |
C10 | 0.2807 (6) | 0.55061 (19) | 0.4812 (5) | 0.0383 (10) | |
H10 | 0.3038 | 0.5908 | 0.4647 | 0.046* | |
C6 | 0.8138 (5) | 0.36488 (17) | 0.9409 (4) | 0.0298 (8) | |
O5 | 0.8612 (5) | 0.78443 (16) | 1.0109 (4) | 0.0590 (5) | |
O3 | 0.5941 (5) | 0.82406 (15) | 0.9079 (4) | 0.0590 (5) | |
O4 | 0.6244 (5) | 0.72889 (15) | 0.9025 (4) | 0.0590 (5) | |
C7 | 0.2194 (7) | 0.43374 (19) | 0.5347 (5) | 0.0406 (10) | |
H7 | 0.1992 | 0.3934 | 0.5520 | 0.049* | |
C4 | 0.7013 (7) | 0.25955 (19) | 0.8636 (5) | 0.0402 (10) | |
H4 | 0.8237 | 0.2449 | 0.8987 | 0.048* | |
C3 | 0.5540 (7) | 0.22116 (19) | 0.8011 (5) | 0.0462 (11) | |
H3 | 0.5762 | 0.1803 | 0.7922 | 0.055* | |
C9 | 0.1715 (6) | 0.5154 (2) | 0.3668 (5) | 0.0431 (11) | |
H9 | 0.1203 | 0.5317 | 0.2729 | 0.052* | |
C1 | 0.3466 (6) | 0.30447 (19) | 0.7682 (5) | 0.0380 (10) | |
H1A | 0.2242 | 0.3194 | 0.7389 | 0.046* | |
C2 | 0.3739 (7) | 0.2436 (2) | 0.7522 (5) | 0.0428 (11) | |
H2 | 0.2727 | 0.2184 | 0.7092 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0276 (3) | 0.0250 (3) | 0.0300 (3) | 0.00004 (17) | 0.00468 (19) | −0.00044 (17) |
O2 | 0.0287 (14) | 0.0296 (14) | 0.0315 (14) | −0.0055 (11) | 0.0062 (12) | −0.0041 (11) |
N6 | 0.0281 (16) | 0.0260 (16) | 0.0276 (17) | −0.0017 (13) | 0.0049 (13) | −0.0021 (13) |
O1 | 0.0293 (15) | 0.0309 (15) | 0.0560 (19) | −0.0054 (12) | 0.0003 (14) | −0.0053 (14) |
C12 | 0.030 (2) | 0.0242 (18) | 0.033 (2) | 0.0029 (15) | 0.0079 (17) | −0.0004 (15) |
N3 | 0.0253 (17) | 0.0295 (17) | 0.0394 (19) | −0.0038 (14) | 0.0039 (14) | −0.0009 (14) |
C11 | 0.029 (2) | 0.0298 (19) | 0.032 (2) | 0.0051 (16) | 0.0094 (16) | 0.0001 (16) |
N1 | 0.0302 (17) | 0.0287 (17) | 0.0348 (18) | −0.0006 (14) | 0.0053 (14) | −0.0003 (14) |
N4 | 0.0341 (18) | 0.0279 (16) | 0.0286 (17) | 0.0006 (14) | 0.0048 (14) | −0.0003 (13) |
N5 | 0.061 (3) | 0.0255 (18) | 0.042 (2) | −0.0020 (17) | −0.0027 (19) | 0.0038 (15) |
N7 | 0.0512 (11) | 0.0453 (9) | 0.0727 (13) | −0.0021 (8) | 0.0056 (9) | −0.0090 (9) |
N2 | 0.0279 (18) | 0.0374 (19) | 0.059 (2) | 0.0032 (15) | 0.0050 (17) | −0.0044 (17) |
C5 | 0.033 (2) | 0.0289 (19) | 0.029 (2) | 0.0016 (16) | 0.0098 (16) | 0.0010 (16) |
C8 | 0.045 (3) | 0.046 (3) | 0.033 (2) | −0.002 (2) | 0.0034 (19) | −0.0070 (19) |
C10 | 0.043 (2) | 0.035 (2) | 0.037 (2) | 0.0052 (18) | 0.0099 (19) | 0.0056 (18) |
C6 | 0.029 (2) | 0.030 (2) | 0.029 (2) | 0.0030 (16) | 0.0057 (16) | 0.0052 (16) |
O5 | 0.0512 (11) | 0.0453 (9) | 0.0727 (13) | −0.0021 (8) | 0.0056 (9) | −0.0090 (9) |
O3 | 0.0512 (11) | 0.0453 (9) | 0.0727 (13) | −0.0021 (8) | 0.0056 (9) | −0.0090 (9) |
O4 | 0.0512 (11) | 0.0453 (9) | 0.0727 (13) | −0.0021 (8) | 0.0056 (9) | −0.0090 (9) |
C7 | 0.046 (3) | 0.032 (2) | 0.037 (2) | −0.0053 (18) | 0.002 (2) | −0.0044 (18) |
C4 | 0.044 (2) | 0.033 (2) | 0.043 (3) | 0.0053 (18) | 0.011 (2) | 0.0009 (18) |
C3 | 0.061 (3) | 0.028 (2) | 0.048 (3) | 0.000 (2) | 0.013 (2) | −0.0053 (19) |
C9 | 0.043 (3) | 0.051 (3) | 0.032 (2) | 0.006 (2) | 0.0056 (19) | 0.0050 (19) |
C1 | 0.035 (2) | 0.038 (2) | 0.038 (2) | −0.0052 (18) | 0.0059 (18) | 0.0014 (18) |
C2 | 0.050 (3) | 0.039 (2) | 0.038 (2) | −0.015 (2) | 0.010 (2) | −0.0048 (19) |
Zn1—O2 | 1.981 (3) | N7—O4 | 1.225 (5) |
Zn1—N1 | 2.148 (3) | N7—O5 | 1.244 (5) |
Zn1—N3 | 2.064 (3) | N2—C6 | 1.333 (5) |
Zn1—N4 | 2.128 (3) | N2—H2A | 0.8600 |
Zn1—N6 | 2.099 (3) | N2—H2B | 0.8600 |
O2—N6i | 1.411 (4) | C5—C4 | 1.378 (6) |
N6—C12 | 1.281 (5) | C5—C6 | 1.487 (5) |
N6—O2i | 1.411 (4) | C8—C9 | 1.368 (7) |
O1—N3 | 1.402 (4) | C8—C7 | 1.379 (6) |
O1—H1 | 0.8200 | C8—H8 | 0.9300 |
C12—N5 | 1.341 (5) | C10—C9 | 1.386 (6) |
C12—C11 | 1.489 (5) | C10—H10 | 0.9300 |
N3—C6 | 1.286 (5) | C7—H7 | 0.9300 |
C11—N4 | 1.361 (5) | C4—C3 | 1.376 (6) |
C11—C10 | 1.377 (6) | C4—H4 | 0.9300 |
N1—C1 | 1.332 (5) | C3—C2 | 1.374 (7) |
N1—C5 | 1.357 (5) | C3—H3 | 0.9300 |
N4—C7 | 1.336 (5) | C9—H9 | 0.9300 |
N5—H5A | 0.8600 | C1—C2 | 1.381 (6) |
N5—H5B | 0.8600 | C1—H1A | 0.9300 |
N7—O3 | 1.227 (5) | C2—H2 | 0.9300 |
O2—Zn1—N3 | 110.42 (13) | O4—N7—O5 | 120.8 (4) |
O2—Zn1—N6 | 99.93 (12) | C6—N2—H2A | 120.0 |
N3—Zn1—N6 | 88.39 (13) | C6—N2—H2B | 120.0 |
O2—Zn1—N4 | 117.30 (12) | H2A—N2—H2B | 120.0 |
N3—Zn1—N4 | 131.62 (14) | N1—C5—C4 | 121.9 (4) |
N6—Zn1—N4 | 76.45 (12) | N1—C5—C6 | 115.0 (3) |
O2—Zn1—N1 | 103.55 (12) | C4—C5—C6 | 123.0 (4) |
N3—Zn1—N1 | 75.87 (13) | C9—C8—C7 | 118.8 (4) |
N6—Zn1—N1 | 155.12 (13) | C9—C8—H8 | 120.6 |
N4—Zn1—N1 | 99.58 (13) | C7—C8—H8 | 120.6 |
N6i—O2—Zn1 | 104.3 (2) | C9—C10—C11 | 119.3 (4) |
C12—N6—O2i | 115.4 (3) | C9—C10—H10 | 120.3 |
C12—N6—Zn1 | 118.6 (3) | C11—C10—H10 | 120.3 |
O2i—N6—Zn1 | 125.9 (2) | N3—C6—N2 | 124.3 (4) |
N3—O1—H1 | 109.5 | N3—C6—C5 | 113.8 (3) |
N6—C12—N5 | 124.8 (4) | N2—C6—C5 | 121.9 (4) |
N6—C12—C11 | 115.0 (3) | N4—C7—C8 | 123.3 (4) |
N5—C12—C11 | 120.2 (4) | N4—C7—H7 | 118.3 |
C6—N3—O1 | 112.4 (3) | C8—C7—H7 | 118.3 |
C6—N3—Zn1 | 119.9 (3) | C5—C4—C3 | 119.0 (4) |
O1—N3—Zn1 | 126.2 (2) | C5—C4—H4 | 120.5 |
N4—C11—C10 | 121.8 (4) | C3—C4—H4 | 120.5 |
N4—C11—C12 | 115.3 (3) | C2—C3—C4 | 119.5 (4) |
C10—C11—C12 | 122.9 (4) | C2—C3—H3 | 120.2 |
C1—N1—C5 | 118.0 (3) | C4—C3—H3 | 120.2 |
C1—N1—Zn1 | 127.7 (3) | C8—C9—C10 | 119.1 (4) |
C5—N1—Zn1 | 114.0 (2) | C8—C9—H9 | 120.4 |
C7—N4—C11 | 117.7 (3) | C10—C9—H9 | 120.4 |
C7—N4—Zn1 | 127.8 (3) | N1—C1—C2 | 123.0 (4) |
C11—N4—Zn1 | 114.3 (2) | N1—C1—H1A | 118.5 |
C12—N5—H5A | 120.0 | C2—C1—H1A | 118.5 |
C12—N5—H5B | 120.0 | C3—C2—C1 | 118.5 (4) |
H5A—N5—H5B | 120.0 | C3—C2—H2 | 120.8 |
O3—N7—O4 | 120.3 (4) | C1—C2—H2 | 120.8 |
O3—N7—O5 | 118.9 (4) | ||
N3—Zn1—O2—N6i | 43.2 (2) | C12—C11—N4—C7 | −179.2 (4) |
N6—Zn1—O2—N6i | −48.8 (2) | C10—C11—N4—Zn1 | 175.9 (3) |
N4—Zn1—O2—N6i | −128.6 (2) | C12—C11—N4—Zn1 | −3.6 (4) |
N1—Zn1—O2—N6i | 123.0 (2) | O2—Zn1—N4—C7 | −90.2 (4) |
O2—Zn1—N6—C12 | −112.5 (3) | N3—Zn1—N4—C7 | 100.1 (4) |
N3—Zn1—N6—C12 | 137.0 (3) | N6—Zn1—N4—C7 | 175.4 (4) |
N4—Zn1—N6—C12 | 3.4 (3) | N1—Zn1—N4—C7 | 20.5 (4) |
N1—Zn1—N6—C12 | 86.9 (4) | O2—Zn1—N4—C11 | 94.8 (3) |
O2—Zn1—N6—O2i | 64.1 (3) | N3—Zn1—N4—C11 | −74.9 (3) |
N3—Zn1—N6—O2i | −46.3 (3) | N6—Zn1—N4—C11 | 0.4 (3) |
N4—Zn1—N6—O2i | −180.0 (3) | N1—Zn1—N4—C11 | −154.5 (3) |
N1—Zn1—N6—O2i | −96.5 (4) | C1—N1—C5—C4 | 1.8 (6) |
O2i—N6—C12—N5 | −1.5 (6) | Zn1—N1—C5—C4 | 176.4 (3) |
Zn1—N6—C12—N5 | 175.5 (3) | C1—N1—C5—C6 | −177.0 (4) |
O2i—N6—C12—C11 | 176.8 (3) | Zn1—N1—C5—C6 | −2.4 (4) |
Zn1—N6—C12—C11 | −6.3 (5) | N4—C11—C10—C9 | 0.2 (7) |
O2—Zn1—N3—C6 | 109.2 (3) | C12—C11—C10—C9 | 179.6 (4) |
N6—Zn1—N3—C6 | −150.8 (3) | O1—N3—C6—N2 | 0.3 (6) |
N4—Zn1—N3—C6 | −80.6 (3) | Zn1—N3—C6—N2 | 167.2 (3) |
N1—Zn1—N3—C6 | 9.7 (3) | O1—N3—C6—C5 | 179.5 (3) |
O2—Zn1—N3—O1 | −86.0 (3) | Zn1—N3—C6—C5 | −13.7 (5) |
N6—Zn1—N3—O1 | 14.0 (3) | N1—C5—C6—N3 | 10.2 (5) |
N4—Zn1—N3—O1 | 84.3 (3) | C4—C5—C6—N3 | −168.6 (4) |
N1—Zn1—N3—O1 | 174.6 (3) | N1—C5—C6—N2 | −170.7 (4) |
N6—C12—C11—N4 | 6.5 (5) | C4—C5—C6—N2 | 10.6 (6) |
N5—C12—C11—N4 | −175.1 (4) | C11—N4—C7—C8 | −1.0 (7) |
N6—C12—C11—C10 | −173.0 (4) | Zn1—N4—C7—C8 | −175.8 (4) |
N5—C12—C11—C10 | 5.4 (6) | C9—C8—C7—N4 | 1.1 (8) |
O2—Zn1—N1—C1 | 62.8 (4) | N1—C5—C4—C3 | 0.4 (7) |
N3—Zn1—N1—C1 | 170.8 (4) | C6—C5—C4—C3 | 179.0 (4) |
N6—Zn1—N1—C1 | −136.9 (4) | C5—C4—C3—C2 | −1.1 (7) |
N4—Zn1—N1—C1 | −58.5 (4) | C7—C8—C9—C10 | −0.5 (7) |
O2—Zn1—N1—C5 | −111.2 (3) | C11—C10—C9—C8 | −0.1 (7) |
N3—Zn1—N1—C5 | −3.2 (3) | C5—N1—C1—C2 | −3.3 (6) |
N6—Zn1—N1—C5 | 49.1 (5) | Zn1—N1—C1—C2 | −177.1 (3) |
N4—Zn1—N1—C5 | 127.5 (3) | C4—C3—C2—C1 | −0.4 (7) |
C10—C11—N4—C7 | 0.3 (6) | N1—C1—C2—C3 | 2.6 (7) |
Symmetry code: (i) −x+1, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.82 | 1.98 | 2.767 (4) | 162 |
O1—H1···N6 | 0.82 | 2.43 | 3.018 (4) | 129 |
N2—H2A···O2ii | 0.86 | 2.32 | 3.108 (5) | 152 |
N2—H2B···O5iii | 0.86 | 2.35 | 3.180 (5) | 162 |
N5—H5A···O4 | 0.86 | 2.18 | 2.900 (5) | 142 |
N5—H5B···O5iv | 0.86 | 2.18 | 2.985 (5) | 156 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x+1, y, z; (iii) −x+2, −y+1, −z+2; (iv) x−1/2, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Zn2(C6H6N3O)2(C6H7N3O)2](NO3)2 |
Mr | 801.33 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 7.4125 (14), 22.201 (4), 9.4225 (17) |
β (°) | 106.794 (2) |
V (Å3) | 1484.5 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.70 |
Crystal size (mm) | 0.51 × 0.48 × 0.39 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.478, 0.557 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8302, 2632, 2297 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.117, 1.03 |
No. of reflections | 2632 |
No. of parameters | 209 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.43, −0.97 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).
Zn1—O2 | 1.981 (3) | Zn1—N4 | 2.128 (3) |
Zn1—N1 | 2.148 (3) | Zn1—N6 | 2.099 (3) |
Zn1—N3 | 2.064 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.82 | 1.98 | 2.767 (4) | 161.7 |
O1—H1···N6 | 0.82 | 2.43 | 3.018 (4) | 128.9 |
N2—H2A···O2ii | 0.86 | 2.32 | 3.108 (5) | 152.1 |
N2—H2B···O5iii | 0.86 | 2.35 | 3.180 (5) | 162.3 |
N5—H5A···O4 | 0.86 | 2.18 | 2.900 (5) | 141.5 |
N5—H5B···O5iv | 0.86 | 2.18 | 2.985 (5) | 155.7 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x+1, y, z; (iii) −x+2, −y+1, −z+2; (iv) x−1/2, −y+3/2, z−1/2. |
Acknowledgements
The research was supported by the Natural Science Fund of Hubei Province (project ZRZ0140) and the National Natural Science Foundation of China (Nos. 20877013 and No.20837001). The authors thank Professor S.-M. Qiu of Hubei Academy of Agricultural Science for his valuable suggestions.
References
Bernasek, E. (1957). J. Org. Chem. 22, 1263–1264. Google Scholar
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Papatriantafyllopoulou, C., Jones, L. F., Nguyen, T. D., Matamoros-Salvador, N., Cunha-Silva, L., Paz, F. A. A., Rocha, J., Evangelisti, M., Brechin, E. K. & Perlepes, S. P. (2008). Dalton Trans. pp. 3153–3155. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stamatatos, T. C., Diamantopoulou, E., Tasiopoulos, A., Psycharis, V., Vicente, R., Raptopoulou, C. P., Nastopoulos, V., Escuer, A. & Perlepes, S. P. (2006a). Inorg. Chim. Acta, 359, 4149–4157. Google Scholar
Stamatatos, T. C., Pringouri, K. V., Raptopoulou, C. P., Vicente, R., Psycharis, V., Escuer, A. & Perlepes, S. P. (2006b). Inorg. Chem. Commun. 9, 1178–1182. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Transition metal compounds have been of great interest for many years. They are very important in the development of coordination chemistry. As an extension of work on the structural characterization of Zn compounds, we report here the crystal structure of a new dinuclear zinc(II) compound(I) (Scheme). Compound (I) is a symmetric dinuclear ZnII complex (Fig. 1). The ZnII ion in the compound is five-coordinated by four N and an O atoms from ligands. Each of these ligands chelates one ZnII atom forming a five-membered ZnNCCN chelating ring, while its oximate oxygen atom is terminally bound to the other metal center. The Zn1—N1 and Zn1—N4 bond distances are longer than the Zn1—N3 and Zn1—N6 bond distances. The N3—Zn1—N6 angle is smaller than the N1—Zn1—N4 angle (Table 1). The molecules are stacked along the a axis and display N—H···O and O—H···O hydrogen-bonds interaction (Fig. 2).