organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(E)-4-(Phenyl­diazen­yl)phen­yl]-3-pyrroline-2,5-dione

aInstitute of Macromolecular Chemistry `Petru Poni', Polymer Physics and Structure Department, 41A Grigore Ghica Voda Alley, Iasi-700487, Romania, and bInstitute of Applied Physics of the Academy of Science of Moldova, 5 Academiei Street, Chisinau MD-2028, Moldova
*Correspondence e-mail: shova@usm.md

(Received 20 May 2011; accepted 7 August 2011; online 11 August 2011)

The title compound, C16H11N3O2, displays a trans configuration with respect to the azo group. The mol­ecule is non-planar; the maleimide ring forms a dihedral angle of 42.35 (4)° with the benzene ring bonded to its N atom and the mean plane of this benzene ring is rotated by 21.46 (8)° with respect to the azo group mean plane, which, in turn, forms a dihedral angle of 24.48 (7)° with the `terminal' benzene ring. Mol­ecules in the crystal are ππ stacked along the [100] direction with a mean inter­planar distance of 3.857 (1) Å. In addition, C—H⋯O inter­actions link them into double layers parallel to the ac plane.

Related literature

For studies of photo- and thermal isomerization of aromatic azo compounds, see: Serra & Terentjev (2008[Serra, F. & Terentjev, E. M. (2008). Macromolecules, 41, 981-986.]). For azocompounds based on maleimides, see: Mohammed & Mustapha (2010[Mohammed, I. A. & Mustapha, A. (2010). Molecules, 15, 7498-7508.]); Oishi et al. (2011[Oishi, T., Azechi, M., Kamei, K., Isobe, Y. & Onimura, K. (2011). Polymer J. 43, 147-154.]). For the reactivity of the maleimide group, see: Knauf et al. (2004[Knauf, P. A., Law, F.-Y., Leung, T.-W. V. & Atherton, S. J. (2004). Biochemistry, 43, 11917-11931.]); Durmaz et al. (2006[Durmaz, H., Colakoglu, B., Tunca, U. & Hizal, G. (2006). J. Polym. Sci. Part A Polym. Chem. 44, 1667-1675.]); Pounder et al. (2008[Pounder, R. J., Stanford, M. J., Brooks, P., Richards, S. P. & Dove, A. P. (2008). Chem. Commun. 7, 5158-60.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11N3O2

  • Mr = 277.28

  • Triclinic, [P \overline 1]

  • a = 3.8571 (2) Å

  • b = 10.9189 (7) Å

  • c = 15.784 (1) Å

  • α = 78.297 (5)°

  • β = 87.301 (5)°

  • γ = 88.809 (5)°

  • V = 650.18 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.20 × 0.15 × 0.15 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.981, Tmax = 0.986

  • 8689 measured reflections

  • 2556 independent reflections

  • 2189 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.107

  • S = 1.03

  • 2556 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.93 2.54 3.3841 (18) 152
C10—H10⋯O1ii 0.93 2.54 3.2464 (16) 133
C13—H13⋯O2iii 0.93 2.54 3.4248 (18) 160
Symmetry codes: (i) -x, -y+1, -z; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our research study of the photosensitive compounds, we report the synthesis and crystal structure of the title compound, C16H11N3O2, which contains azobenzene and maleimide moieties. The importance of azobenzene chromophore in pure and applied chemistry as well as in nature is due to its photoswitchable properties and possibility to tune synthetically the wavelengths effecting the transformation of azocompounds (Serra & Terentjev, 2008; Mohammed & Mustapha, 2010; Oishi et al., 2011). On the other hand, the presence of the electron-deficient double bond in the structure of maleimides determines the photoreactivity of these derivatives, i.e. photocycloaddition, polymerization, crosslinking, Diels-Alder, Michael-addition, click reactions (Knauf et al., 2004; Durmaz et al., 2006; Pounder et al., 2008).

The molecular structure of the title compound is shown in Fig. 1. The configuration of this molecule in the crystal is trans with respect to azo bridge. The molecule is non-planar: the maleimide ring forms dihedral angle of 42.35 (4)° with the benzene ring C5—C10; the mean plane of this benzene ring is rotated by 12.46 (8)° with respect to the azo group mean plane, which, in its turn, forms the dihedral angle of 24.48 (7)° with the second benzene ring C11—C16.

The molecules form stacks along [100] due to π-π interactions. In addition, the weak C—H···O interactions contribute to self assembling of stacked molecules through the short contacts O2···C13i = 3.425 (2) Å [symmetry code (i): 3 - x, 1 - y, 1 - z], O2···C2ii = 3.384 (2) Å [symmetry code (ii): 2 - x, 1 - y, -z] and O1···C10iii = 3.247 (2) Å [symmetry code (iii): x - 1, y, z] (Fig. 2). Thanks to the above mentioned interactions, molecules in crystal are linked into double layers parallel to the ac-plane.

Related literature top

For studies of photo- and thermal isomerization of aromatic azo compounds, see: Serra & Terentjev (2008). For azocompounds based on maleimides, see: Mohammed & Mustapha (2010); Oishi et al. (2011). For the reactivity of the maleimide group, see: Knauf et al. (2004); Durmaz et al. (2006); Pounder et al. (2008).

Experimental top

Maleic anhydride (15 mmol, 1.47 g) was dissolved in dry acetone (15 ml) and a cold solution of 4-aminobenzoic acid (15 mmol, 2.96 g) in acetone (15 ml) was added under stirring to it at ice bath temperature. This mixture was stirred at room temperature for 3 h resulting in a white precipitate which was separated by filtration, washed several times with acetone and recrystallized from water to give maleamic acid of analytical purity. Then it was added to a solution of sodium acetate in acetic anhydride (30 ml, 0.025 M) in order to cyclize to the corresponding maleimide. The reaction was conducted under nitrogen at 80°C for 4 h. The mixture was poured into a saturated aqueous solution of NaHCO3 and then the precipitate was washed three times with water and dried at 50°C under vacuum. Pure (E)-4-(N-maleimido)azobenzene was obtained as a light orange crystalline solid after recrystalization from chloroform; yield 85%. The expected formula of C16H11N3O2 was confirmed; m.p.= 442 K; nitrogen analysis calculated for C16H11N3O2: N, 15.15%. Found: N, 15.10%, 1H NMR (DMSO-d6)δ (p.p.m.): 7.25 (s, 2H, CHCH), 7.6–7.7 (m, 5H, Ar), 7.95 (d, 2H, Ar, adjacent to azo), 8.05 (d, 2H, Ar, adjacent to imide).

Refinement top

The H atoms were positioned geometrically and refined using a riding model approximation with C—H = 0.93 Å and Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound; thermal ellipsoids are drawn at 40% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound viewed along the a axis; the C—H···O interactions are shown as dashed lines.
1-[(E)-4-(Phenyldiazenyl)phenyl]-3-pyrroline-2,5-dione top
Crystal data top
C16H11N3O2Z = 2
Mr = 277.28F(000) = 288
Triclinic, P1Dx = 1.416 Mg m3
Hall symbol: -P 1Melting point: 442 K
a = 3.8571 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9189 (7) ÅCell parameters from 2982 reflections
c = 15.784 (1) Åθ = 2.9–29.3°
α = 78.297 (5)°µ = 0.10 mm1
β = 87.301 (5)°T = 200 K
γ = 88.809 (5)°Prism, orange
V = 650.18 (7) Å30.20 × 0.15 × 0.15 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2556 independent reflections
Radiation source: Enhance (Mo) X-ray Source2189 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 16.1593 pixels mm-1θmax = 26.0°, θmin = 2.9°
ω scansh = 44
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1313
Tmin = 0.981, Tmax = 0.986l = 1919
8689 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0625P)2 + 0.1268P]
where P = (Fo2 + 2Fc2)/3
2556 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C16H11N3O2γ = 88.809 (5)°
Mr = 277.28V = 650.18 (7) Å3
Triclinic, P1Z = 2
a = 3.8571 (2) ÅMo Kα radiation
b = 10.9189 (7) ŵ = 0.10 mm1
c = 15.784 (1) ÅT = 200 K
α = 78.297 (5)°0.20 × 0.15 × 0.15 mm
β = 87.301 (5)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2556 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2189 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.986Rint = 0.023
8689 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
2556 reflectionsΔρmin = 0.21 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.2043 (3)0.69925 (10)0.48218 (7)0.0266 (3)
N10.0181 (3)0.74413 (10)0.12701 (7)0.0268 (3)
O10.2299 (3)0.94847 (8)0.09406 (6)0.0328 (3)
C60.0493 (3)0.62500 (12)0.27614 (8)0.0262 (3)
H60.15150.55940.25740.031*
N30.2360 (3)0.80091 (10)0.50624 (7)0.0273 (3)
C90.2492 (3)0.82310 (12)0.33156 (9)0.0256 (3)
H90.34770.88940.35040.031*
C100.1985 (3)0.83144 (12)0.24472 (8)0.0259 (3)
H100.26620.90270.20480.031*
C70.0096 (3)0.61594 (12)0.36306 (9)0.0269 (3)
H70.04710.54300.40260.032*
C50.0458 (3)0.73313 (12)0.21706 (8)0.0240 (3)
C110.3041 (3)0.78708 (12)0.59567 (8)0.0251 (3)
O20.1582 (3)0.54706 (9)0.10682 (7)0.0440 (3)
C160.2175 (4)0.88877 (13)0.63313 (9)0.0297 (3)
H160.12620.96130.59980.036*
C120.4561 (4)0.68014 (13)0.64430 (9)0.0287 (3)
H120.51990.61300.61860.034*
C80.1530 (3)0.71524 (12)0.39132 (8)0.0243 (3)
C130.5111 (4)0.67469 (14)0.73067 (9)0.0334 (3)
H130.61390.60400.76340.040*
C40.1609 (3)0.84996 (12)0.07348 (8)0.0260 (3)
C30.0284 (4)0.64799 (13)0.08024 (9)0.0306 (3)
C10.2072 (4)0.81469 (13)0.01158 (9)0.0318 (3)
H10.29620.86670.06000.038*
C150.2678 (4)0.88172 (14)0.72036 (9)0.0334 (3)
H150.20430.94860.74630.040*
C20.1022 (4)0.69835 (13)0.00739 (9)0.0339 (3)
H20.10850.65460.05200.041*
C140.4132 (4)0.77460 (14)0.76871 (9)0.0345 (3)
H140.44540.76960.82730.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0303 (6)0.0253 (6)0.0246 (6)0.0005 (4)0.0026 (5)0.0062 (5)
N10.0366 (6)0.0216 (6)0.0225 (6)0.0040 (5)0.0046 (5)0.0052 (4)
O10.0456 (6)0.0215 (5)0.0303 (5)0.0056 (4)0.0011 (4)0.0038 (4)
C60.0319 (7)0.0201 (6)0.0276 (7)0.0005 (5)0.0036 (5)0.0070 (5)
N30.0327 (6)0.0253 (6)0.0242 (6)0.0025 (5)0.0027 (5)0.0056 (5)
C90.0281 (7)0.0222 (7)0.0277 (7)0.0009 (5)0.0005 (5)0.0079 (5)
C100.0292 (7)0.0218 (7)0.0257 (7)0.0001 (5)0.0016 (5)0.0031 (5)
C70.0330 (7)0.0201 (6)0.0263 (7)0.0012 (5)0.0006 (5)0.0019 (5)
C50.0272 (7)0.0231 (7)0.0218 (6)0.0057 (5)0.0017 (5)0.0055 (5)
C110.0263 (6)0.0254 (7)0.0238 (7)0.0025 (5)0.0023 (5)0.0049 (5)
O20.0742 (8)0.0275 (6)0.0324 (6)0.0184 (5)0.0128 (5)0.0105 (4)
C160.0344 (7)0.0245 (7)0.0304 (7)0.0009 (5)0.0034 (6)0.0060 (6)
C120.0317 (7)0.0238 (7)0.0315 (7)0.0005 (5)0.0048 (6)0.0065 (6)
C80.0250 (6)0.0245 (7)0.0232 (7)0.0033 (5)0.0017 (5)0.0048 (5)
C130.0360 (8)0.0311 (8)0.0313 (8)0.0013 (6)0.0109 (6)0.0002 (6)
C40.0288 (7)0.0229 (7)0.0250 (7)0.0000 (5)0.0011 (5)0.0021 (5)
C30.0424 (8)0.0247 (7)0.0258 (7)0.0038 (6)0.0046 (6)0.0076 (5)
C10.0404 (8)0.0289 (7)0.0254 (7)0.0006 (6)0.0083 (6)0.0023 (6)
C150.0366 (8)0.0341 (8)0.0328 (8)0.0014 (6)0.0009 (6)0.0148 (6)
C20.0484 (9)0.0303 (8)0.0248 (7)0.0001 (6)0.0070 (6)0.0085 (6)
C140.0371 (8)0.0430 (9)0.0246 (7)0.0071 (6)0.0062 (6)0.0080 (6)
Geometric parameters (Å, º) top
N2—N31.2539 (15)C11—C161.3879 (19)
N2—C81.4320 (16)C11—C121.3952 (19)
N1—C31.4046 (17)O2—C31.2044 (17)
N1—C41.4049 (17)C16—C151.3860 (19)
N1—C51.4346 (16)C16—H160.9300
O1—C41.2062 (16)C12—C131.3786 (19)
C6—C71.3845 (18)C12—H120.9300
C6—C51.3918 (18)C13—C141.386 (2)
C6—H60.9300C13—H130.9300
N3—C111.4252 (16)C4—C11.4893 (19)
C9—C101.3781 (18)C3—C21.4882 (19)
C9—C81.3960 (18)C1—C21.315 (2)
C9—H90.9300C1—H10.9300
C10—C51.3893 (18)C15—C141.384 (2)
C10—H100.9300C15—H150.9300
C7—C81.3874 (18)C2—H20.9300
C7—H70.9300C14—H140.9300
N3—N2—C8112.96 (11)C13—C12—H12120.2
C3—N1—C4109.32 (10)C11—C12—H12120.2
C3—N1—C5125.35 (11)C7—C8—C9119.91 (12)
C4—N1—C5125.18 (11)C7—C8—N2117.05 (11)
C7—C6—C5119.44 (12)C9—C8—N2123.01 (11)
C7—C6—H6120.3C12—C13—C14119.98 (13)
C5—C6—H6120.3C12—C13—H13120.0
N2—N3—C11113.94 (11)C14—C13—H13120.0
C10—C9—C8120.04 (12)O1—C4—N1125.76 (12)
C10—C9—H9120.0O1—C4—C1128.12 (12)
C8—C9—H9120.0N1—C4—C1106.12 (11)
C9—C10—C5119.80 (12)O2—C3—N1125.56 (12)
C9—C10—H10120.1O2—C3—C2128.17 (13)
C5—C10—H10120.1N1—C3—C2106.24 (11)
C6—C7—C8120.25 (12)C2—C1—C4109.21 (12)
C6—C7—H7119.9C2—C1—H1125.4
C8—C7—H7119.9C4—C1—H1125.4
C10—C5—C6120.52 (12)C14—C15—C16119.64 (13)
C10—C5—N1119.59 (11)C14—C15—H15120.2
C6—C5—N1119.88 (11)C16—C15—H15120.2
C16—C11—C12120.39 (12)C1—C2—C3109.09 (12)
C16—C11—N3116.13 (11)C1—C2—H2125.5
C12—C11—N3123.46 (12)C3—C2—H2125.5
C15—C16—C11119.71 (13)C15—C14—C13120.69 (13)
C15—C16—H16120.1C15—C14—H14119.7
C11—C16—H16120.1C13—C14—H14119.7
C13—C12—C11119.52 (13)
C8—N2—N3—C11177.11 (10)C10—C9—C8—N2178.76 (11)
C8—C9—C10—C51.12 (19)N3—N2—C8—C7160.38 (12)
C5—C6—C7—C81.8 (2)N3—N2—C8—C921.50 (18)
C9—C10—C5—C61.5 (2)C11—C12—C13—C140.5 (2)
C9—C10—C5—N1177.72 (11)C3—N1—C4—O1179.48 (13)
C7—C6—C5—C100.0 (2)C5—N1—C4—O14.7 (2)
C7—C6—C5—N1179.20 (11)C3—N1—C4—C10.59 (15)
C3—N1—C5—C10140.32 (14)C5—N1—C4—C1175.19 (12)
C4—N1—C5—C1044.57 (18)C4—N1—C3—O2176.90 (15)
C3—N1—C5—C640.51 (19)C5—N1—C3—O27.3 (2)
C4—N1—C5—C6134.60 (14)C4—N1—C3—C21.19 (16)
N2—N3—C11—C16157.20 (12)C5—N1—C3—C2174.57 (12)
N2—N3—C11—C1224.26 (18)O1—C4—C1—C2179.59 (14)
C12—C11—C16—C153.0 (2)N1—C4—C1—C20.34 (16)
N3—C11—C16—C15178.44 (12)C11—C16—C15—C141.8 (2)
C16—C11—C12—C131.8 (2)C4—C1—C2—C31.07 (17)
N3—C11—C12—C13179.72 (12)O2—C3—C2—C1176.60 (16)
C6—C7—C8—C92.2 (2)N1—C3—C2—C11.43 (17)
C6—C7—C8—N2179.63 (11)C16—C15—C14—C130.5 (2)
C10—C9—C8—C70.7 (2)C12—C13—C14—C151.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.543.3841 (18)152
C10—H10···O1ii0.932.543.2464 (16)133
C13—H13···O2iii0.932.543.4248 (18)160
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H11N3O2
Mr277.28
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)3.8571 (2), 10.9189 (7), 15.784 (1)
α, β, γ (°)78.297 (5), 87.301 (5), 88.809 (5)
V3)650.18 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.15 × 0.15
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.981, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
8689, 2556, 2189
Rint0.023
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.107, 1.03
No. of reflections2556
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.21

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.543.3841 (18)152
C10—H10···O1ii0.932.543.2464 (16)133
C13—H13···O2iii0.932.543.4248 (18)160
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

This research was supported financially by the European Regional Development Fund, Sectoral Operational Programme "Increase of Economic Competitiveness", Priority Axis 2 (SOP IEC-A2—O2.1.2–2009-2, ID 570, COD SMIS-CSNR: 12473, Contract 129/2010-POLISILMET).

References

First citationDurmaz, H., Colakoglu, B., Tunca, U. & Hizal, G. (2006). J. Polym. Sci. Part A Polym. Chem. 44, 1667–1675.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKnauf, P. A., Law, F.-Y., Leung, T.-W. V. & Atherton, S. J. (2004). Biochemistry, 43, 11917–11931.  CrossRef CAS Google Scholar
First citationMohammed, I. A. & Mustapha, A. (2010). Molecules, 15, 7498–7508.  CrossRef CAS Google Scholar
First citationOishi, T., Azechi, M., Kamei, K., Isobe, Y. & Onimura, K. (2011). Polymer J. 43, 147–154.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPounder, R. J., Stanford, M. J., Brooks, P., Richards, S. P. & Dove, A. P. (2008). Chem. Commun. 7, 5158–60.  CrossRef Google Scholar
First citationSerra, F. & Terentjev, E. M. (2008). Macromolecules, 41, 981–986.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds