organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethane-1,2-diaminium bis­­{5-[4-(1H-tetra­zol-5-yl)phen­yl]tetra­zolide} dihydrate

aSchool of Environmental Science and Engineering, Chang'an University, Xi'an 710054, Shaanxi, People's Republic of China, and bCollege of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
*Correspondence e-mail: northwindy@126.com

(Received 22 July 2011; accepted 20 August 2011; online 27 August 2011)

In the two anions of the title salt, C2H10N22+·2C8H5N8·2H2O, the central aromatic rings make dihedral angles of 13.53 (6) and 6.53 (7)° with the deprotonated tetra­zole rings, and 11.39 (6) and 10.41 (9)° with the other tetra­zole groups. In the crystal, the cations, anions and water mol­ecules are linked by an extensive O—H⋯N, N—H⋯O and N—H⋯N hydrogen-bond network into two-dimensional wave-like duplex sheets extending parallel to the bc plane. ππ stacking inter­actions between benzene rings [inter­centroid distances are 3.8482 (4) and 3.9621 (5) Å] and between tetra­zole rings [inter­centroid distances are 3.4350 (4) and 3.7169 (4) Å] further consolidate the crystal structure.

Related literature

For similar structures, see: Tao et al. (2004[Tao, J., Ma, Z. J., Huang, R. B. & Zheng, L. S. (2004). Inorg. Chem. 43, 6133-6135.]); Deng et al. (2010[Deng, J. H., Yuan, X. L. & Mei, G. Q. (2010). Inorg. Chem. Commun. 13, 1585-1589.]); He et al. (2008[He, X., An, B.-L. & Li, M.-X. (2008). Acta Cryst. E64, o40.]). For 5,5′-(1,4-phenyl­ene)bis­(1H-tetra­zole) applied in coordination chemistry, see: Liu et al. (2010[Liu, W. T., Ou, Y. C., Lin, Z. J. & Tong, M. L. (2010). CrystEngComm, 12, 3487-3489.]); Ouellette et al. (2009[Ouellette, W., Prosvirin, A. V., Whitenack, K., Dunbar, K. R. & Zubieta, J. (2009). Angew. Chem. Int. Ed. 48, 2140-2143.]); Dinca et al. (2006[Dinca, M., Yu, A. F. & Long, J. R. (2006). J. Am. Chem. Soc. 128, 8904-8913.]); Qiao et al. (2011[Qiao, C. F., Wie, Q., Xia, Z. Q., Liang, J. H. & Chen, S. P. (2011). Chin. J. Chem. 29, 724-730.]).

[Scheme 1]

Experimental

Crystal data
  • C2H10N22+·2C8H5N8·2H2O

  • Mr = 524.55

  • Triclinic, [P \overline 1]

  • a = 7.3918 (9) Å

  • b = 12.4699 (16) Å

  • c = 13.6367 (17) Å

  • α = 89.774 (2)°

  • β = 78.556 (2)°

  • γ = 74.153 (2)°

  • V = 1183.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.32 × 0.28 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.988

  • 5924 measured reflections

  • 4089 independent reflections

  • 3254 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.122

  • S = 1.02

  • 4089 reflections

  • 345 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯N4Ai 0.82 2.02 2.843 (2) 177
O2—H2A⋯N13A 0.85 2.08 2.919 (2) 173
O1—H1A⋯N4B 0.84 2.02 2.857 (2) 179
O1—H1B⋯N13Bii 0.85 2.10 2.946 (2) 174
N10—H10E⋯N3Aiii 0.89 2.02 2.869 (2) 160
N10—H10D⋯N1Biv 0.89 2.00 2.848 (2) 159
N10—H10C⋯N14Av 0.89 2.08 2.938 (2) 163
N9—H9E⋯N1Avi 0.89 1.98 2.8517 (19) 165
N9—H9D⋯N14Bii 0.89 2.13 2.888 (2) 143
N9—H9C⋯N3B 0.89 2.01 2.856 (2) 159
N11B—H11B⋯O2 0.86 1.86 2.685 (2) 161
N11A—H11A⋯O1 0.86 1.87 2.6903 (19) 160
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z; (iii) -x, -y, -z+1; (iv) -x, -y+1, -z+2; (v) -x, -y+1, -z+1; (vi) x, y, z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, 5,5'-(1,4-phenylene)-bis(1H-tetrazole) has been widely employed in the construction of many useful metal-organic frameworks (Liu et al., 2010; Ouellette et al., 2009; Dinca et al., 2006). This compound attracted our attention and our recent investigation on it (Qiao et al., 2011) has revealed its potential applications in energetic materials as the additives for the propellant. However, reports on its use in the construction of co-crystals are very scarce. Here, in the reaction of ethylenediamine, 5,5'-(1,4-phenylene)bis(1H-tetrazole) and PbCl2 under hydrothermal conditions, we have unexpectedly obtained the title compound, C2H10N22+.2C8H5N8-.2H2O, and determined its crystal structure.

The asymmetric unit of the title salt is composed of one ethylenediaminium cation, two 5-[4-(1H-tetrazol-5-yl)phenyl]tetrazolide monoanions and two water molecules (Fig.1). Both the amine N atoms of the ethylenediaminium cation are protonated. The geometric parameters are within the normal ranges.

In the crystal structure, the two terminal tetrazole rings of the anions are nearly coplanar with the dihedral angles of 5.03 (7) or 6.37 (10)°. It is noteworthy that there are two types of π-π stacking interactions: one occurs between benzene rings with centroid-centroid distances of 3.8482 (4) and 3.9621 (5) Å, the other occurs between tetrazole rings with centroid-centroid distances of 3.4350 (4) and 3.7169 (4) Å. Thus, a wide range of hydrogen bonds (O—H···N, N—H···O and N—H···N) (Table 1) and π-π stacking interactions contribute to the formation of the supramolecular network (Fig. 2).

Related literature top

For similar structures, see: Tao et al. (2004); Deng et al. (2010); He et al. (2008). For 5,5'-(1,4-phenylene)bis(1H-tetrazole) applied in coordination chemistry, see: Liu et al. (2010); Ouellette et al. (2009); Dinca et al. (2006); Qiao et al. (2011).

Experimental top

Lead chloride (0.0278 g, 0.1 mmol) and 5,5'-(1,4-phenylene)-bis(1H-tetrazole) (0.0215 g, 0.1 mmol) were added to water (6 ml). The pH of this solution was adjusted to neutral with ethylenediamine solution. The solution was sealed in a 10-ml Teflon-lined stainless reactor at 393 K for 3 days. After the sample was cooled to room temperature at a rate of 5 K/h, the colorless block crystals suitable for X-ray analysis were obtained.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.97 (methylene) and 0.93 Å (aromatic), Uiso(H) = 1.2Ueq(C). The H atoms bonded to N atoms were placed in calculated positions and refined in riding mode with N—H = 0.86 (tetrazole) and 0.89 Å (amine), Uiso(H) = 1.2Ueq(N of tetrazole), Uiso(H) = 1.5Ueq(N of amine). The water H atoms were located in difference Fourier maps, with distance restraints of O—H = 0.84±0.02 Å, and then refined with isotropic thermal parameters 1.5 times those of O atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme and displacement ellipsoids drawn at the 30% probalility level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound, showing the O—H···N, N—H···O and N—H···N hydrogen bonds interactions. Symmetry operators: i x, y + 1, z; ii x, y - 1, z; iii -x, -y, -z + 1; iv -x, -y + 1, -z + 2; v -x, -y + 1, -z + 1; vi x, y, z + 1.
Ethane-1,2-diaminium bis{5-[4-(1H-tetrazol-5-yl)phenyl]tetrazolide} dihydrate top
Crystal data top
C2H10N22+·2C8H5N8·2H2OZ = 2
Mr = 524.55F(000) = 548
Triclinic, P1Dx = 1.472 Mg m3
Dm = 1.472 Mg m3
Dm measured by not measured
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3918 (9) ÅCell parameters from 2314 reflections
b = 12.4699 (16) Åθ = 2.9–25.8°
c = 13.6367 (17) ŵ = 0.11 mm1
α = 89.774 (2)°T = 296 K
β = 78.556 (2)°Block, colorless
γ = 74.153 (2)°0.32 × 0.28 × 0.11 mm
V = 1183.5 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4089 independent reflections
Radiation source: fine-focus sealed tube3254 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 88
Tmin = 0.966, Tmax = 0.988k = 1411
5924 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.2582P]
where P = (Fo2 + 2Fc2)/3
4089 reflections(Δ/σ)max < 0.001
345 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C2H10N22+·2C8H5N8·2H2Oγ = 74.153 (2)°
Mr = 524.55V = 1183.5 (3) Å3
Triclinic, P1Z = 2
a = 7.3918 (9) ÅMo Kα radiation
b = 12.4699 (16) ŵ = 0.11 mm1
c = 13.6367 (17) ÅT = 296 K
α = 89.774 (2)°0.32 × 0.28 × 0.11 mm
β = 78.556 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4089 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3254 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.988Rint = 0.017
5924 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.02Δρmax = 0.19 e Å3
4089 reflectionsΔρmin = 0.23 e Å3
345 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11A0.2135 (2)0.47786 (13)0.31175 (12)0.0301 (4)
C12A0.2209 (2)0.37261 (13)0.26227 (12)0.0297 (4)
C13A0.2551 (3)0.36244 (14)0.15792 (12)0.0333 (4)
H13A0.26710.42370.12070.040*
C14A0.2017 (3)0.28026 (14)0.31627 (13)0.0367 (4)
H14A0.17900.28570.38590.044*
C11B0.2752 (3)0.96745 (14)0.60365 (12)0.0333 (4)
C12B0.2807 (3)0.86208 (14)0.65171 (12)0.0321 (4)
C13B0.2756 (3)0.85759 (14)0.75418 (13)0.0352 (4)
H13B0.26640.92190.79140.042*
C14B0.2936 (3)0.76531 (15)0.59755 (13)0.0394 (5)
H14B0.29690.76720.52900.047*
C90.0711 (3)0.20961 (15)0.83423 (13)0.0378 (4)
H9A0.01830.14670.83230.045*
H9B0.05230.25120.77510.045*
C100.0329 (3)0.28374 (15)0.92698 (13)0.0370 (4)
H10A0.01480.24210.98620.044*
H10B0.02010.34660.92900.044*
C1A0.2689 (2)0.06357 (13)0.11169 (12)0.0285 (4)
C2A0.2516 (2)0.16970 (13)0.16380 (12)0.0289 (4)
C3A0.2159 (3)0.18057 (14)0.26764 (13)0.0357 (4)
H3A0.20120.11980.30500.043*
C4A0.2713 (3)0.26267 (14)0.10956 (12)0.0325 (4)
H4A0.29560.25700.03990.039*
C1B0.3137 (2)0.55566 (14)0.79614 (12)0.0294 (4)
C2B0.2975 (2)0.66181 (14)0.74691 (12)0.0308 (4)
C3B0.3016 (3)0.66656 (15)0.64432 (13)0.0391 (4)
H3B0.30990.60240.60710.047*
C4B0.2841 (3)0.75917 (14)0.80075 (12)0.0343 (4)
H4B0.28080.75750.86930.041*
N11A0.2160 (2)0.49535 (11)0.40801 (10)0.0373 (4)
H11A0.22040.44570.45210.045*
N12A0.2104 (3)0.60166 (12)0.42518 (11)0.0446 (4)
N13A0.2043 (3)0.64840 (12)0.34094 (11)0.0426 (4)
N14A0.2065 (2)0.57367 (12)0.26830 (10)0.0355 (4)
N11B0.2501 (3)0.98954 (12)0.51052 (11)0.0436 (4)
H11B0.23680.94310.46790.052*
N12B0.2491 (3)1.09568 (13)0.49410 (12)0.0527 (5)
N13B0.2731 (3)1.13653 (13)0.57554 (12)0.0506 (5)
N14B0.2906 (3)1.05895 (12)0.64532 (11)0.0417 (4)
N90.2778 (2)0.16876 (11)0.83363 (10)0.0322 (3)
H9C0.32860.22610.82900.048*
H9D0.33530.12060.78150.048*
H9E0.29450.13500.89010.048*
N100.2399 (2)0.32474 (11)0.92681 (10)0.0315 (3)
H10C0.25620.36310.87260.047*
H10D0.29940.36880.98140.047*
H10E0.28880.26700.92630.047*
N1A0.2669 (2)0.05241 (11)0.01421 (10)0.0339 (4)
N2A0.2887 (2)0.05668 (12)0.00421 (11)0.0381 (4)
N3A0.3040 (2)0.10827 (12)0.07894 (11)0.0392 (4)
N4A0.2908 (2)0.03469 (12)0.15402 (10)0.0351 (4)
N1B0.3320 (2)0.54178 (11)0.89155 (10)0.0346 (4)
N2B0.3495 (2)0.43315 (12)0.90616 (11)0.0385 (4)
N3B0.3432 (2)0.38426 (12)0.82212 (11)0.0404 (4)
N4B0.3198 (2)0.45938 (12)0.75156 (11)0.0376 (4)
O10.2556 (2)0.37535 (11)0.57068 (10)0.0567 (4)
H1B0.26610.30620.57500.085*
H1A0.27660.40000.62340.085*
O20.2347 (3)0.87668 (13)0.34653 (11)0.0842 (7)
H2A0.23030.81010.33990.126*
H2B0.25370.90380.29150.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C11A0.0383 (10)0.0262 (9)0.0257 (8)0.0075 (7)0.0084 (7)0.0014 (7)
C12A0.0370 (10)0.0251 (9)0.0269 (9)0.0077 (7)0.0081 (7)0.0007 (7)
C13A0.0496 (11)0.0261 (9)0.0284 (9)0.0146 (8)0.0120 (8)0.0040 (7)
C14A0.0569 (12)0.0319 (10)0.0227 (8)0.0146 (8)0.0084 (8)0.0012 (7)
C11B0.0463 (11)0.0281 (9)0.0252 (9)0.0100 (8)0.0069 (7)0.0005 (7)
C12B0.0423 (11)0.0261 (9)0.0287 (9)0.0099 (7)0.0087 (7)0.0024 (7)
C13B0.0513 (12)0.0265 (9)0.0292 (9)0.0122 (8)0.0096 (8)0.0003 (7)
C14B0.0643 (13)0.0319 (10)0.0253 (9)0.0141 (9)0.0157 (8)0.0038 (7)
C90.0398 (11)0.0394 (10)0.0331 (10)0.0069 (8)0.0104 (8)0.0061 (8)
C100.0381 (11)0.0406 (10)0.0323 (9)0.0104 (8)0.0083 (8)0.0046 (8)
C1A0.0347 (10)0.0261 (9)0.0266 (8)0.0115 (7)0.0069 (7)0.0029 (7)
C2A0.0351 (10)0.0244 (8)0.0292 (9)0.0092 (7)0.0099 (7)0.0010 (7)
C3A0.0563 (12)0.0252 (9)0.0284 (9)0.0167 (8)0.0077 (8)0.0050 (7)
C4A0.0459 (11)0.0307 (9)0.0240 (8)0.0135 (8)0.0103 (7)0.0029 (7)
C1B0.0352 (10)0.0272 (9)0.0279 (9)0.0107 (7)0.0083 (7)0.0014 (7)
C2B0.0368 (10)0.0292 (9)0.0279 (9)0.0109 (7)0.0081 (7)0.0020 (7)
C3B0.0630 (13)0.0266 (9)0.0304 (9)0.0137 (9)0.0142 (9)0.0006 (7)
C4B0.0496 (11)0.0312 (9)0.0230 (8)0.0126 (8)0.0074 (8)0.0014 (7)
N11A0.0625 (11)0.0240 (8)0.0287 (8)0.0130 (7)0.0160 (7)0.0025 (6)
N12A0.0762 (12)0.0290 (8)0.0331 (8)0.0175 (8)0.0179 (8)0.0004 (7)
N13A0.0665 (12)0.0287 (8)0.0354 (9)0.0157 (7)0.0134 (8)0.0017 (7)
N14A0.0526 (10)0.0267 (8)0.0292 (8)0.0123 (7)0.0116 (7)0.0017 (6)
N11B0.0780 (13)0.0284 (8)0.0289 (8)0.0186 (8)0.0163 (8)0.0032 (6)
N12B0.0961 (15)0.0315 (9)0.0346 (9)0.0219 (9)0.0170 (9)0.0077 (7)
N13B0.0888 (14)0.0299 (9)0.0341 (9)0.0189 (9)0.0116 (9)0.0036 (7)
N14B0.0689 (12)0.0283 (8)0.0296 (8)0.0165 (7)0.0098 (7)0.0032 (6)
N90.0397 (9)0.0283 (8)0.0284 (7)0.0087 (6)0.0074 (6)0.0002 (6)
N100.0387 (9)0.0260 (7)0.0297 (8)0.0083 (6)0.0078 (6)0.0008 (6)
N1A0.0479 (9)0.0276 (8)0.0287 (8)0.0122 (7)0.0111 (7)0.0003 (6)
N2A0.0535 (10)0.0304 (8)0.0324 (8)0.0151 (7)0.0086 (7)0.0019 (6)
N3A0.0553 (10)0.0283 (8)0.0365 (9)0.0177 (7)0.0064 (7)0.0013 (7)
N4A0.0505 (10)0.0274 (8)0.0303 (8)0.0153 (7)0.0083 (7)0.0024 (6)
N1B0.0485 (10)0.0287 (8)0.0281 (8)0.0123 (7)0.0092 (7)0.0045 (6)
N2B0.0539 (10)0.0309 (8)0.0347 (8)0.0161 (7)0.0122 (7)0.0074 (6)
N3B0.0562 (10)0.0301 (8)0.0379 (9)0.0161 (7)0.0106 (7)0.0042 (7)
N4B0.0576 (10)0.0281 (8)0.0320 (8)0.0170 (7)0.0135 (7)0.0039 (6)
O10.1072 (13)0.0371 (8)0.0373 (7)0.0283 (8)0.0303 (8)0.0085 (6)
O20.190 (2)0.0513 (10)0.0361 (8)0.0628 (12)0.0398 (11)0.0109 (7)
Geometric parameters (Å, º) top
C11A—N14A1.324 (2)C1B—N4B1.334 (2)
C11A—N11A1.336 (2)C1B—N1B1.340 (2)
C11A—C12A1.461 (2)C1B—C2B1.468 (2)
C12A—C14A1.389 (2)C2B—C4B1.391 (2)
C12A—C13A1.395 (2)C2B—C3B1.395 (2)
C13A—C4A1.375 (2)C3B—H3B0.9300
C13A—H13A0.9300C4B—H4B0.9300
C14A—C3A1.380 (2)N11A—N12A1.335 (2)
C14A—H14A0.9300N11A—H11A0.8600
C11B—N14B1.319 (2)N12A—N13A1.289 (2)
C11B—N11B1.336 (2)N13A—N14A1.3574 (19)
C11B—C12B1.460 (2)N11B—N12B1.340 (2)
C12B—C14B1.388 (2)N11B—H11B0.8600
C12B—C13B1.392 (2)N12B—N13B1.287 (2)
C13B—C4B1.372 (2)N13B—N14B1.353 (2)
C13B—H13B0.9300N9—H9C0.8900
C14B—C3B1.377 (2)N9—H9D0.8900
C14B—H14B0.9300N9—H9E0.8900
C9—N91.471 (2)N10—H10C0.8900
C9—C101.510 (2)N10—H10D0.8900
C9—H9A0.9700N10—H10E0.8900
C9—H9B0.9700N1A—N2A1.3440 (19)
C10—N101.475 (2)N2A—N3A1.311 (2)
C10—H10A0.9700N3A—N4A1.349 (2)
C10—H10B0.9700N1B—N2B1.3430 (19)
C1A—N4A1.336 (2)N2B—N3B1.315 (2)
C1A—N1A1.340 (2)N3B—N4B1.3431 (19)
C1A—C2A1.467 (2)O1—H1B0.8477
C2A—C3A1.388 (2)O1—H1A0.8408
C2A—C4A1.398 (2)O2—H2A0.8464
C3A—H3A0.9300O2—H2B0.8243
C4A—H4A0.9300
N14A—C11A—N11A107.27 (14)C2A—C4A—H4A119.6
N14A—C11A—C12A125.89 (14)N4B—C1B—N1B110.77 (14)
N11A—C11A—C12A126.82 (15)N4B—C1B—C2B124.99 (14)
C14A—C12A—C13A118.65 (15)N1B—C1B—C2B124.19 (15)
C14A—C12A—C11A121.72 (15)C4B—C2B—C3B118.44 (15)
C13A—C12A—C11A119.58 (14)C4B—C2B—C1B120.84 (15)
C4A—C13A—C12A120.61 (15)C3B—C2B—C1B120.68 (15)
C4A—C13A—H13A119.7C14B—C3B—C2B120.64 (16)
C12A—C13A—H13A119.7C14B—C3B—H3B119.7
C3A—C14A—C12A120.65 (16)C2B—C3B—H3B119.7
C3A—C14A—H14A119.7C13B—C4B—C2B120.90 (15)
C12A—C14A—H14A119.7C13B—C4B—H4B119.5
N14B—C11B—N11B107.58 (15)C2B—C4B—H4B119.5
N14B—C11B—C12B125.96 (15)N12A—N11A—C11A109.55 (14)
N11B—C11B—C12B126.46 (15)N12A—N11A—H11A125.2
C14B—C12B—C13B118.83 (15)C11A—N11A—H11A125.2
C14B—C12B—C11B121.69 (15)N13A—N12A—N11A106.35 (14)
C13B—C12B—C11B119.47 (15)N12A—N13A—N14A110.58 (14)
C4B—C13B—C12B120.58 (16)C11A—N14A—N13A106.25 (13)
C4B—C13B—H13B119.7C11B—N11B—N12B109.11 (14)
C12B—C13B—H13B119.7C11B—N11B—H11B125.4
C3B—C14B—C12B120.60 (16)N12B—N11B—H11B125.4
C3B—C14B—H14B119.7N13B—N12B—N11B106.27 (14)
C12B—C14B—H14B119.7N12B—N13B—N14B110.78 (14)
N9—C9—C10110.58 (14)C11B—N14B—N13B106.26 (14)
N9—C9—H9A109.5C9—N9—H9C109.5
C10—C9—H9A109.5C9—N9—H9D109.5
N9—C9—H9B109.5H9C—N9—H9D109.5
C10—C9—H9B109.5C9—N9—H9E109.5
H9A—C9—H9B108.1H9C—N9—H9E109.5
N10—C10—C9110.26 (14)H9D—N9—H9E109.5
N10—C10—H10A109.6C10—N10—H10C109.5
C9—C10—H10A109.6C10—N10—H10D109.5
N10—C10—H10B109.6H10C—N10—H10D109.5
C9—C10—H10B109.6C10—N10—H10E109.5
H10A—C10—H10B108.1H10C—N10—H10E109.5
N4A—C1A—N1A110.91 (14)H10D—N10—H10E109.5
N4A—C1A—C2A124.96 (14)C1A—N1A—N2A105.64 (13)
N1A—C1A—C2A124.13 (14)N3A—N2A—N1A108.65 (13)
C3A—C2A—C4A118.34 (15)N2A—N3A—N4A110.11 (13)
C3A—C2A—C1A121.17 (14)C1A—N4A—N3A104.69 (13)
C4A—C2A—C1A120.49 (15)C1B—N1B—N2B105.69 (13)
C14A—C3A—C2A120.94 (16)N3B—N2B—N1B108.54 (13)
C14A—C3A—H3A119.5N2B—N3B—N4B109.96 (13)
C2A—C3A—H3A119.5C1B—N4B—N3B105.03 (13)
C13A—C4A—C2A120.80 (15)H1B—O1—H1A108.9
C13A—C4A—H4A119.6H2A—O2—H2B110.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···N4Ai0.822.022.843 (2)177
O2—H2A···N13A0.852.082.919 (2)173
O1—H1A···N4B0.842.022.857 (2)179
O1—H1B···N13Bii0.852.102.946 (2)174
N10—H10E···N3Aiii0.892.022.869 (2)160
N10—H10D···N1Biv0.892.002.848 (2)159
N10—H10C···N14Av0.892.082.938 (2)163
N9—H9E···N1Avi0.891.982.8517 (19)165
N9—H9D···N14Bii0.892.132.888 (2)143
N9—H9C···N3B0.892.012.856 (2)159
N11B—H11B···O20.861.862.685 (2)161
N11A—H11A···O10.861.872.6903 (19)160
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x, y, z+1; (iv) x, y+1, z+2; (v) x, y+1, z+1; (vi) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC2H10N22+·2C8H5N8·2H2O
Mr524.55
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.3918 (9), 12.4699 (16), 13.6367 (17)
α, β, γ (°)89.774 (2), 78.556 (2), 74.153 (2)
V3)1183.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.32 × 0.28 × 0.11
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.966, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
5924, 4089, 3254
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.122, 1.02
No. of reflections4089
No. of parameters345
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.23

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···N4Ai0.822.022.843 (2)176.8
O2—H2A···N13A0.852.082.919 (2)173.4
O1—H1A···N4B0.842.022.857 (2)178.5
O1—H1B···N13Bii0.852.102.946 (2)174.3
N10—H10E···N3Aiii0.892.022.869 (2)160.3
N10—H10D···N1Biv0.892.002.848 (2)158.7
N10—H10C···N14Av0.892.082.938 (2)162.5
N9—H9E···N1Avi0.891.982.8517 (19)165.0
N9—H9D···N14Bii0.892.132.888 (2)142.5
N9—H9C···N3B0.892.012.856 (2)159.3
N11B—H11B···O20.861.862.685 (2)160.6
N11A—H11A···O10.861.872.6903 (19)160.0
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x, y, z+1; (iv) x, y+1, z+2; (v) x, y+1, z+1; (vi) x, y, z+1.
 

Acknowledgements

We gratefully acknowledge the National Science Foundation of China (grant No. 20873100) and Natural Science Foundation of Shaanxi Province (grant No. FF10091).

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, J. H., Yuan, X. L. & Mei, G. Q. (2010). Inorg. Chem. Commun. 13, 1585–1589.  CrossRef CAS Google Scholar
First citationDinca, M., Yu, A. F. & Long, J. R. (2006). J. Am. Chem. Soc. 128, 8904–8913.  Web of Science PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHe, X., An, B.-L. & Li, M.-X. (2008). Acta Cryst. E64, o40.  CrossRef IUCr Journals Google Scholar
First citationLiu, W. T., Ou, Y. C., Lin, Z. J. & Tong, M. L. (2010). CrystEngComm, 12, 3487–3489.  CrossRef CAS Google Scholar
First citationOuellette, W., Prosvirin, A. V., Whitenack, K., Dunbar, K. R. & Zubieta, J. (2009). Angew. Chem. Int. Ed. 48, 2140–2143.  Web of Science CSD CrossRef CAS Google Scholar
First citationQiao, C. F., Wie, Q., Xia, Z. Q., Liang, J. H. & Chen, S. P. (2011). Chin. J. Chem. 29, 724–730.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, J., Ma, Z. J., Huang, R. B. & Zheng, L. S. (2004). Inorg. Chem. 43, 6133–6135.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds