organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A second monoclinic polymorph of 1-benzyl-N-methyl-1H-pyrrole-2-carboxamide

aDepartment of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
*Correspondence e-mail: xczeng@126.com, txush@jnu.edu.cn

(Received 8 July 2011; accepted 27 July 2011; online 2 August 2011)

In the title compound, C13H14N2O, the Npyrrole—C(H2)—C—C torsion angle is −7.7 (3)° and the dihedral angle between the pyrrole and benzene rings is 83.6 (2)°. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains extending along the c axis. We have previously reported another polymorphic form of this title compound, which has the same space group with different cell parameters: a = 9.8285 (18) Å, b = 23.588 (4) Å, c = 9.9230 (17) Å, β = 90.107 (3)°, Z = 8 and V = 2300.5 (7) Å3 [Zeng et al. (2010[Zeng, X. C., Li, K. P., Hu, F. & Zheng, L. (2010). Acta Cryst. E66, o2051.]). Acta Cryst. E66, o2051].

Related literature

For details of the synthesis, see: Zeng et al. (2010[Zeng, X. C., Li, K. P., Hu, F. & Zheng, L. (2010). Acta Cryst. E66, o2051.]); For the previously reported polymorph, see: Zeng et al. (2010[Zeng, X. C., Li, K. P., Hu, F. & Zheng, L. (2010). Acta Cryst. E66, o2051.]) and for a related structure, see: Zeng et al. (2007[Zeng, X.-C., Zeng, J., Li, X. & Ling, X. (2007). Acta Cryst. E63, o3424.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14N2O

  • Mr = 214.26

  • Monoclinic, P 21 /c

  • a = 5.4326 (4) Å

  • b = 22.5218 (16) Å

  • c = 9.7358 (5) Å

  • β = 101.676 (6)°

  • V = 1166.55 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.50 × 0.28 × 0.19 mm

Data collection
  • Oxford Gemini S Ultra area-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.962, Tmax = 0.985

  • 5327 measured reflections

  • 2504 independent reflections

  • 1597 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.169

  • S = 1.02

  • 2504 reflections

  • 150 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.86 (3) 2.08 (3) 2.852 (2) 149 (2)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

This study is related to our previous structural investigations of 1-Benzyl-N-methyl-1H-pyrrole-2-carboxamide, I, (Zeng et al., 2010) and methyl 2-(4,5-dibromo-1H-pyrrole-2-carboxamido)propionate (Zeng et al., 2007)

In I (Fig. 1), the bond lengths and angles are almost same as those observed in the previously reported polymorphic form (Zeng et al., 2010). In the crystal structure, the molecules are linked through N—H···O hydrogen bonds, forming chains extending to the c axis (shown in Fig. 2).

It is interesting to note here that the previously reported form was crystallized from an ethanol solution (Zeng et al., 2010), while the present form was crystallized from the solution of ethanol/water (2:1 v/v). Although these two polymorphs have the same space group (P21/c), their unit-cell parameters and melting point are different. For the previous one, the unit-cell parameters are a = 9.8285 (18), b = 23.588 (4), c = 9.9230 (17) Å, beta = 90.107 (3)°, with Z = 8, V = 2300.5 (7) and m.p. = 365 K. For the present one, they are 5.4326 (4), 22.5218 (16), 9.7358 (5) Å, 101.676 (6)°, Z = 4, V = 1166.55 (13) and m.p. = 360 K.

As reported, the previous polymorph structure show that the asymmetric unit of the compound contains two independent molecules, which differ in the twist of the phenyl ring: the Npyrrole—C(H2)—C—C torsion angles are -73.0 (3)° and 17.1 (3)°, respectively. And for the present one, the asymmetric unit contains just one molecule, in this molecule, the Npyrrole—C(H2)—C—C torsion angle is -7.7 (3)°, the dihedral angle between the pyrrole plane and the benzene plane is 83.60 (2)°.

The crystal packings of these two structures are differences also. In the previous polymorph structure, molecules are linked through N—H···O hydrogen bonds, generating chains extending to the a axis (shown in Fig. 3). And for the present one, N—H···O hydrogen bonds link molecules together to forming chains extending to the c axis (shown in Fig. 2).

Related literature top

For details of the synthesis, see: Zeng et al. (2010); For the previously reported polymorph, see: Zeng et al. (2010) and for a related structure, see: Zeng et al. (2007).

Experimental top

The title compound was synthesized according to the literature procedure (Zeng et al., 2010). The product was dissolved in the mixture of ethanol / water (2:1 v/v), colorless crystals suitable for X-ray analysis were obtained over a period of five days by slow evaporation at room temperature of the solution.

Refinement top

All non-H atoms were refined with anisotropic displacement parameters. The H atoms were positioned geometrically [C—H = 0.97Å for CH2, 0.96Å for CH3, 0.93Å for CH(aromatic) and N—H = 0.86 Å] and refined using a riding model, with Uiso = 1.2Ueq (1.5Ueq for the methyl group) of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of (I) showing the chains formed by hydrogen bonds(dashed lines).
[Figure 3] Fig. 3. Crystal packing of the previous polymorph structure showing the chains formed by hydrogen bonds(dashed lines).
1-Benzyl-N-methyl-1H-pyrrole-2-carboxamide top
Crystal data top
C13H14N2ODx = 1.220 Mg m3
Mr = 214.26Melting point: 360 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.4326 (4) ÅCell parameters from 1936 reflections
b = 22.5218 (16) Åθ = 3.5–29.2°
c = 9.7358 (5) ŵ = 0.08 mm1
β = 101.676 (6)°T = 293 K
V = 1166.55 (13) Å3Prism, colorless
Z = 40.50 × 0.28 × 0.19 mm
F(000) = 456
Data collection top
Oxford Gemini S Ultra area-detector
diffractometer
2504 independent reflections
Radiation source: fine-focus sealed tube1597 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 27.0°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 66
Tmin = 0.962, Tmax = 0.985k = 2822
5327 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0629P)2 + 0.3194P]
where P = (Fo2 + 2Fc2)/3
2504 reflections(Δ/σ)max = 0.004
150 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C13H14N2OV = 1166.55 (13) Å3
Mr = 214.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.4326 (4) ŵ = 0.08 mm1
b = 22.5218 (16) ÅT = 293 K
c = 9.7358 (5) Å0.50 × 0.28 × 0.19 mm
β = 101.676 (6)°
Data collection top
Oxford Gemini S Ultra area-detector
diffractometer
2504 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1597 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.985Rint = 0.025
5327 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.17 e Å3
2504 reflectionsΔρmin = 0.16 e Å3
150 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C50.0889 (4)0.28312 (9)0.60936 (19)0.0517 (5)
C40.2716 (4)0.32716 (10)0.6779 (2)0.0543 (5)
N10.4311 (3)0.35726 (9)0.6084 (2)0.0652 (5)
O10.0465 (4)0.27429 (8)0.48276 (15)0.0877 (6)
N20.0360 (4)0.25434 (9)0.6916 (2)0.0688 (6)
C80.2613 (4)0.39425 (10)0.3667 (2)0.0590 (6)
C70.4436 (5)0.35414 (12)0.4599 (2)0.0729 (7)
H7A0.41170.31350.42810.088*
H7B0.61270.36430.45010.088*
C90.0783 (4)0.42544 (11)0.4135 (3)0.0681 (6)
H90.06650.42290.50730.082*
C30.3192 (5)0.34701 (11)0.8140 (2)0.0719 (7)
H30.23980.33420.88480.086*
C10.5712 (5)0.39542 (13)0.6999 (3)0.0870 (8)
H10.69160.42130.67870.104*
C110.0747 (6)0.46500 (12)0.1851 (3)0.0847 (8)
H110.18720.48880.12440.102*
C60.2303 (5)0.21166 (12)0.6402 (3)0.0819 (8)
H6A0.38900.22660.65410.123*
H6B0.19300.17500.69030.123*
H6C0.23850.20500.54200.123*
C120.1055 (6)0.43425 (15)0.1372 (3)0.0962 (9)
H120.11600.43680.04320.115*
C100.0895 (5)0.46073 (12)0.3229 (3)0.0799 (7)
H100.21300.48160.35610.096*
C130.2726 (5)0.39933 (13)0.2273 (3)0.0830 (8)
H130.39600.37870.19330.100*
C20.5084 (5)0.38987 (14)0.8271 (3)0.0911 (9)
H20.57830.41070.90800.109*
H2A0.002 (5)0.2599 (12)0.781 (3)0.092 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C50.0605 (12)0.0601 (13)0.0343 (9)0.0096 (10)0.0092 (8)0.0024 (9)
C40.0544 (12)0.0661 (13)0.0408 (10)0.0075 (10)0.0060 (8)0.0031 (9)
N10.0503 (10)0.0815 (14)0.0631 (11)0.0025 (10)0.0095 (9)0.0076 (10)
O10.1194 (15)0.1092 (14)0.0364 (8)0.0265 (12)0.0205 (8)0.0120 (8)
N20.0875 (15)0.0786 (14)0.0402 (10)0.0144 (11)0.0126 (10)0.0021 (10)
C80.0509 (12)0.0652 (14)0.0648 (13)0.0049 (10)0.0206 (10)0.0075 (11)
C70.0605 (14)0.0972 (19)0.0682 (14)0.0108 (13)0.0297 (11)0.0171 (13)
C90.0659 (14)0.0742 (15)0.0658 (14)0.0021 (12)0.0176 (11)0.0046 (12)
C30.0807 (17)0.0841 (17)0.0457 (12)0.0007 (14)0.0000 (11)0.0033 (11)
C10.0592 (15)0.097 (2)0.096 (2)0.0110 (14)0.0053 (14)0.0067 (17)
C110.091 (2)0.0721 (17)0.0839 (19)0.0001 (15)0.0011 (15)0.0179 (14)
C60.0880 (19)0.0753 (17)0.0811 (17)0.0126 (14)0.0140 (14)0.0068 (13)
C120.107 (2)0.114 (2)0.0689 (17)0.005 (2)0.0211 (16)0.0241 (17)
C100.0772 (17)0.0731 (16)0.0878 (18)0.0086 (14)0.0127 (14)0.0016 (15)
C130.0811 (18)0.103 (2)0.0721 (16)0.0089 (16)0.0330 (14)0.0104 (15)
C20.0860 (19)0.097 (2)0.0756 (18)0.0090 (17)0.0194 (15)0.0136 (16)
Geometric parameters (Å, º) top
C5—O11.223 (2)C3—C21.397 (4)
C5—N21.320 (3)C3—H30.9300
C5—C41.465 (3)C1—C21.355 (4)
C4—C31.372 (3)C1—H10.9300
C4—N11.381 (3)C11—C121.356 (4)
N1—C11.356 (3)C11—C101.363 (4)
N1—C71.462 (3)C11—H110.9300
N2—C61.440 (3)C6—H6A0.9600
N2—H2A0.86 (3)C6—H6B0.9600
C8—C91.369 (3)C6—H6C0.9600
C8—C131.376 (3)C12—C131.374 (4)
C8—C71.502 (3)C12—H120.9300
C7—H7A0.9700C10—H100.9300
C7—H7B0.9700C13—H130.9300
C9—C101.384 (3)C2—H20.9300
C9—H90.9300
O1—C5—N2121.1 (2)C2—C3—H3126.1
O1—C5—C4122.79 (19)C2—C1—N1109.3 (2)
N2—C5—C4116.09 (18)C2—C1—H1125.4
C3—C4—N1107.4 (2)N1—C1—H1125.4
C3—C4—C5129.7 (2)C12—C11—C10119.5 (3)
N1—C4—C5122.89 (17)C12—C11—H11120.3
C1—N1—C4108.3 (2)C10—C11—H11120.3
C1—N1—C7123.2 (2)N2—C6—H6A109.5
C4—N1—C7128.4 (2)N2—C6—H6B109.5
C5—N2—C6123.2 (2)H6A—C6—H6B109.5
C5—N2—H2A119.7 (19)N2—C6—H6C109.5
C6—N2—H2A117.1 (18)H6A—C6—H6C109.5
C9—C8—C13117.8 (2)H6B—C6—H6C109.5
C9—C8—C7122.8 (2)C11—C12—C13120.2 (3)
C13—C8—C7119.4 (2)C11—C12—H12119.9
N1—C7—C8114.28 (19)C13—C12—H12119.9
N1—C7—H7A108.7C11—C10—C9120.4 (3)
C8—C7—H7A108.7C11—C10—H10119.8
N1—C7—H7B108.7C9—C10—H10119.8
C8—C7—H7B108.7C12—C13—C8121.4 (3)
H7A—C7—H7B107.6C12—C13—H13119.3
C8—C9—C10120.8 (2)C8—C13—H13119.3
C8—C9—H9119.6C1—C2—C3107.3 (2)
C10—C9—H9119.6C1—C2—H2126.3
C4—C3—C2107.7 (2)C3—C2—H2126.3
C4—C3—H3126.1
O1—C5—C4—C3171.6 (2)C13—C8—C9—C100.1 (4)
N2—C5—C4—C36.1 (3)C7—C8—C9—C10178.4 (2)
O1—C5—C4—N17.8 (3)N1—C4—C3—C20.4 (3)
N2—C5—C4—N1174.51 (19)C5—C4—C3—C2179.1 (2)
C3—C4—N1—C10.8 (3)C4—N1—C1—C21.0 (3)
C5—C4—N1—C1178.7 (2)C7—N1—C1—C2176.9 (2)
C3—C4—N1—C7176.4 (2)C10—C11—C12—C130.4 (5)
C5—C4—N1—C73.0 (3)C12—C11—C10—C90.2 (4)
O1—C5—N2—C60.7 (4)C8—C9—C10—C110.1 (4)
C4—C5—N2—C6177.0 (2)C11—C12—C13—C80.5 (5)
C1—N1—C7—C890.4 (3)C9—C8—C13—C120.3 (4)
C4—N1—C7—C884.7 (3)C7—C8—C13—C12178.3 (3)
C9—C8—C7—N17.7 (3)N1—C1—C2—C30.7 (3)
C13—C8—C7—N1173.8 (2)C4—C3—C2—C10.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.86 (3)2.08 (3)2.852 (2)149 (2)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H14N2O
Mr214.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.4326 (4), 22.5218 (16), 9.7358 (5)
β (°) 101.676 (6)
V3)1166.55 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.28 × 0.19
Data collection
DiffractometerOxford Gemini S Ultra area-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.962, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
5327, 2504, 1597
Rint0.025
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.169, 1.02
No. of reflections2504
No. of parameters150
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.86 (3)2.08 (3)2.852 (2)149 (2)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

We thank the Natural Science Foundation of Guangdong Province, China (No. 06300581) for generously supporting this study.

References

First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, X. C., Li, K. P., Hu, F. & Zheng, L. (2010). Acta Cryst. E66, o2051.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, X.-C., Zeng, J., Li, X. & Ling, X. (2007). Acta Cryst. E63, o3424.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds