metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(2,9-di­methyl-1,10-phenanthroline-κ2N,N′)diformato-κ2O,O′;κO-nickel(II) monohydrate

aDepartment of Chemistry, Huzhou Teachers College, Huzhou, Zhejiang 313000, People's Republic of China, and bCenter of Applied Solid State Chemistry Research, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: shengliangni@163.com

(Received 17 July 2011; accepted 29 July 2011; online 2 August 2011)

The asymmetric unit of the title compound, [Ni(HCO2)2(C14H12N2)(H2O)]·H2O, contains a mononuclear complex mol­ecule hydrogen bonded to a lattice water mol­ecule. The NiII atom exhibits a distorted octa­hedral coordination geometry formed by the N atoms from a 2,9-dimethyl-1,10-phenanthroline ligand, two O atoms of a chelating formate anion, one aqua O atom and one O atom of a coordinating formate anion. The mol­ecules are assembled into chains extending along [100] through by O—H⋯O hydrogen bonds. The supra­molecular chains are further linked into layers parallel to (011) by weak ππ packing inter­actions [centroid–centroid separation = 3.768 (2) Å]. The resulting layers are stacked to meet the requirement of close-packing patterns.

Related literature

For general background to supra­molecular architectures, see: Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Aakeroy & Seddon (1993[Aakeroy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397-407.]). For related structures, see: Go et al. (2004[Go, Y., Wang, X., Anokhina, E. V. & Jacobson, A. J. (2004). Inorg. Chem. 43, 5360-5367.]); Wang et al. (2006)[Wang, H.-Y., Gao, S., Huo, L.-H. & Zhao, J.-G. (2006). Acta Cryst. E62, m3395-m3397.]; Ni et al. (2011[Ni, S.-L., Xia, P. & Cao, F. (2011). Acta Cryst. E67, m39-m40.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(HCO2)2(C14H12N2)(H2O)]·H2O

  • Mr = 393.03

  • Triclinic, [P \overline 1]

  • a = 7.3992 (15) Å

  • b = 10.373 (2) Å

  • c = 11.442 (2) Å

  • α = 82.42 (3)°

  • β = 81.77 (3)°

  • γ = 76.10 (3)°

  • V = 839.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.19 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.750, Tmax = 0.821

  • 8265 measured reflections

  • 3785 independent reflections

  • 3214 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.118

  • S = 1.22

  • 3785 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯O4i 0.86 1.85 2.703 (3) 173.3
O5—H52⋯O6ii 0.84 2.03 2.808 (4) 154.2
O6—H61⋯O2iii 0.85 1.98 2.830 (4) 179.3
O6—H62⋯O3iv 0.85 2.43 3.077 (4) 133.4
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y, -z+1; (iii) x, y, z-1; (iv) -x+1, -y, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past decade, a variety of supramolecular architectures based on non–covalent intermolecular interactions such as hydrogen bonding, van der Walls forces and ππ interactions have been achieved by using transition metal centers and organic ligands due to their possible intriguing structural topologies and potential applications in optics, catalysis, ion exchange, gas storage, and the molecular–based magnetic materials (Aakeroy & Seddon, 1993). Carboxylate ligands have been actively utilized as construction units to obtain lots of supramolecular complexes (Moulton & Zaworotko, 2001). In the paper, we are interested in self–assemblies of NiII ions and 2,9'–dimethyl–1,10'–phenanthroline with formic acid, leading to successful preparation of a complex [Ni(HCO2)2(C14H12N2)(H2O)].H2O. The asymmetric unit of the title compound consists of one NiII ion, one H2O molecule, one 2,9'–dimethyl–1,10'–phenanthroline molecule, one O,O'–chelated formate anion and another coordinated formate anion, and one lattice H2O molecule(Fig. 1). It's worth to mention, the tetragonal plane is built up by a pair of bidentate formate anions using carboxyl oxygen atoms (Ni–O1 = 2.148 (3) Å, Ni–O2 = 2.150 (3) Å) and by a neutral 2,9'–dimethyl–1,10'–phenanthroline molecule using nitrogen atoms(Ni–N1 = 2.087 (3) Å, Ni–N2 = 2.076 (3) Å).(Table.1). The four atoms around NiII are almost coplanar and show deviations from -0.093 (2) to 0.092 (2) Å with the average plane, the axial positions are occupied by a pair of oxygen originating from H2O (Ni–O5 = 2.067 (3) Å) and formate anion (Ni–O3 = 2.046 (2) Å), significantly shorter than the Ni–O1 or Ni–O2 bond distance, which are similar to those observed in related complexes with carboxylate complexes(Go et al., 2004; Wang et al., 2006; Ni et al., 2011). The selected bond angles of O1–Ni–O2, N1–Ni–N2, O3–Ni–O5 are 81.5 (1) °, 61.0 (1) °, and 175.9 (1) °, respectively. For two formate anions, the angle (O1–C1–O2, 122.0 (3) °) of chelated formate is smaller than coordinated (O3–C2–O4, 127.6 (3) Å). The 2,9'–dimethyl–1, 10'–phenanthroline ligand are almost coplanar with the mean square deviations 0.0158 Å, the water molecule is not coordinated to Ni atom and the distance between nickel and water oxygen atom of 7.146 (2) Å.

The molecules are assembled into one-dimensional chains extending along the [100] direction through O5–H51···O4#1, O5–H52···O6#2, O6–H61···O2#3 and O6–H61···O3#4 hydrogen bonds(#1 = x + 1, y, z; #2 = -x + 2, -y, -z + 1; #3 = x, y, z - 1; #4 = -x + 1, -y, -z + 1)(Table.2), the double chains are further linked into two-dimensional layers which parallel to (011) by weak ππ packing interaction(ring centroid separation, 3.768 (2) Å).(Fig. 2). The resulting layers are stacked to meet the requirement of close–packing patterns.

Related literature top

For general background to supramolecular architectures, see: Moulton & Zaworotko (2001); Aakeroy & Seddon (1993). For related structures, see: Go et al. (2004); Wang et al. (2006); Ni et al. (2011).

Experimental top

Dropwise addition of 2.0 ml of 1.0 mol.l-1 aqueous Na2CO3 to a stirred aqueous solation of NiSO4.7H2O (0.2876 g, 1.0 mmol) in 5.0 ml H2O produced a green precipitate, Ni(OH)2–2x(CO3)x.yH2O, which was centrifuged and washed with water until no SO42- anions were detected in the supernatant. The precipitate was added to a stirred aqueous ethanolic solution of 2,9'–dimethyl–1,10'–phenanthroline in 15 ml EtOH–H2O (2:1,v/v). And then, 2.0 ml of 1.0 mol.l-1aqueous formalic acid was dropwise added to above mixture and stirred continuously until dissolved of the green precipitate. The green solution (pH = 3.37) was allowed to stand at room temperature. Slow evaporation during two weeks afforded green block crystals(yield:42%).

Refinement top

All H–atoms bonded to C were positioned geometrically and refined using a riding model with d(C–H) = 0.093 Å calculated positionand were refined using a riding, Uiso(H) = 1.2 Ueq(C) for aromatic, 0.93 Å, Uiso(H) = 1.2 Ueq(C) for CH and 0.96 Å, Uiso(H) = 1.5 Ueq(C) for CH3 atoms. H atoms attached to O atoms were found in a difference Fourier synthesisand were refined using a riding model, with the O–H distances fixed as initially found and with Uiso(H) values set at 1.2 Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound. The dispalcement ellipsoids are drawn at 45% probability level.
[Figure 2] Fig. 2. two-dimensional layer structure link through hydrogen bonds and ππ packing interactions of the title compound
Aqua(2,9'-dimethyl-1,10'-phenanthroline-κ2N,N')diformato- κ2O,O';κO-nickel(II) monohydrate top
Crystal data top
[Ni(HCO2)2(C14H12N2)(H2O)]·H2OZ = 2
Mr = 393.03F(000) = 408
Triclinic, P1Dx = 1.555 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3992 (15) ÅCell parameters from 25 reflections
b = 10.373 (2) Åθ = 3.1–27.4°
c = 11.442 (2) ŵ = 1.19 mm1
α = 82.42 (3)°T = 298 K
β = 81.77 (3)°Block, green
γ = 76.10 (3)°0.30 × 0.20 × 0.15 mm
V = 839.3 (3) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3785 independent reflections
Radiation source: fine-focus sealed tube3214 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 98
Tmin = 0.750, Tmax = 0.821k = 1313
8265 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0328P)2 + 1.2744P]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max = 0.001
3785 reflectionsΔρmax = 0.69 e Å3
226 parametersΔρmin = 0.67 e Å3
0 restraintsExtinction correction: SHELXL
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0015 (3)
Crystal data top
[Ni(HCO2)2(C14H12N2)(H2O)]·H2Oγ = 76.10 (3)°
Mr = 393.03V = 839.3 (3) Å3
Triclinic, P1Z = 2
a = 7.3992 (15) ÅMo Kα radiation
b = 10.373 (2) ŵ = 1.19 mm1
c = 11.442 (2) ÅT = 298 K
α = 82.42 (3)°0.30 × 0.20 × 0.15 mm
β = 81.77 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3785 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3214 reflections with I > 2σ(I)
Tmin = 0.750, Tmax = 0.821Rint = 0.025
8265 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.22Δρmax = 0.69 e Å3
3785 reflectionsΔρmin = 0.67 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.77473 (5)0.18268 (4)0.77154 (3)0.02776 (13)
O10.8178 (4)0.0310 (2)0.7920 (3)0.0540 (7)
O20.7827 (4)0.0786 (3)0.9468 (2)0.0494 (6)
C10.8093 (6)0.0283 (4)0.9011 (4)0.0535 (10)
H1A0.82320.10820.95000.064*
O30.4915 (3)0.1977 (2)0.7917 (2)0.0395 (5)
O40.2105 (3)0.3030 (3)0.8671 (2)0.0485 (6)
C20.3833 (5)0.2772 (4)0.8554 (3)0.0418 (8)
H2A0.43860.32280.89970.050*
O51.0628 (3)0.1559 (2)0.7442 (2)0.0378 (5)
H521.12560.07730.75810.045*
H511.10240.20250.78760.045*
O60.6484 (4)0.0613 (3)0.1914 (2)0.0544 (7)
H610.68810.06620.11760.065*
H620.58870.00960.23560.065*
N10.7660 (3)0.3828 (2)0.7853 (2)0.0271 (5)
N20.7565 (4)0.2549 (3)0.5945 (2)0.0296 (5)
C30.7791 (6)0.3669 (4)0.9991 (3)0.0460 (9)
H3A0.77390.27660.99240.069*
H3B0.67270.40741.05090.069*
H3C0.89220.36721.03100.069*
C40.7770 (4)0.4441 (3)0.8789 (3)0.0334 (7)
C50.7852 (5)0.5793 (4)0.8660 (4)0.0456 (9)
H5A0.79510.61940.93210.055*
C60.7789 (6)0.6518 (4)0.7588 (4)0.0493 (9)
H6A0.78250.74150.75160.059*
C70.7668 (5)0.5908 (3)0.6584 (3)0.0393 (7)
C80.7604 (6)0.6596 (4)0.5418 (4)0.0530 (10)
H8A0.76290.74960.53050.064*
C90.7509 (6)0.5968 (4)0.4485 (4)0.0527 (10)
H9A0.74580.64410.37360.063*
C100.7485 (5)0.4584 (4)0.4624 (3)0.0412 (8)
C110.7418 (6)0.3871 (5)0.3671 (3)0.0530 (10)
H11A0.73820.43000.29060.064*
C120.7406 (6)0.2557 (5)0.3877 (3)0.0530 (10)
H12A0.73600.20850.32490.064*
C130.7465 (5)0.1901 (4)0.5032 (3)0.0392 (7)
C140.7372 (7)0.0465 (4)0.5273 (4)0.0602 (11)
H14A0.74390.01830.61020.090*
H14B0.84040.00660.48150.090*
H14C0.62140.03580.50570.090*
C150.7550 (4)0.3872 (3)0.5750 (3)0.0306 (6)
C160.7622 (4)0.4551 (3)0.6761 (3)0.0301 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0320 (2)0.0254 (2)0.0280 (2)0.01022 (15)0.00438 (15)0.00207 (14)
O10.078 (2)0.0316 (13)0.0548 (17)0.0161 (13)0.0093 (14)0.0044 (11)
O20.0675 (18)0.0447 (15)0.0364 (13)0.0178 (13)0.0080 (12)0.0058 (11)
C10.070 (3)0.0368 (19)0.052 (2)0.0164 (18)0.0105 (19)0.0139 (17)
O30.0273 (11)0.0512 (14)0.0448 (13)0.0162 (10)0.0022 (10)0.0107 (11)
O40.0317 (13)0.0651 (17)0.0524 (15)0.0129 (12)0.0027 (11)0.0177 (13)
C20.0361 (18)0.056 (2)0.0394 (18)0.0179 (16)0.0018 (14)0.0144 (16)
O50.0293 (11)0.0398 (12)0.0462 (13)0.0070 (9)0.0104 (10)0.0054 (10)
O60.0642 (18)0.0550 (16)0.0460 (15)0.0148 (14)0.0076 (13)0.0080 (12)
N10.0247 (12)0.0272 (12)0.0303 (12)0.0059 (10)0.0023 (9)0.0072 (9)
N20.0316 (13)0.0338 (13)0.0248 (12)0.0104 (11)0.0033 (10)0.0028 (10)
C30.052 (2)0.061 (2)0.0322 (17)0.0201 (18)0.0079 (15)0.0130 (16)
C40.0290 (15)0.0397 (17)0.0350 (16)0.0114 (13)0.0011 (12)0.0147 (13)
C50.045 (2)0.045 (2)0.054 (2)0.0166 (16)0.0011 (16)0.0251 (17)
C60.054 (2)0.0294 (17)0.067 (3)0.0139 (16)0.0035 (19)0.0152 (16)
C70.0356 (17)0.0284 (16)0.053 (2)0.0085 (13)0.0034 (15)0.0005 (14)
C80.057 (2)0.0317 (18)0.066 (3)0.0117 (17)0.005 (2)0.0130 (17)
C90.056 (2)0.052 (2)0.045 (2)0.0155 (19)0.0094 (18)0.0235 (18)
C100.0361 (18)0.050 (2)0.0353 (17)0.0103 (15)0.0067 (14)0.0071 (15)
C110.057 (2)0.075 (3)0.0253 (17)0.014 (2)0.0086 (16)0.0037 (17)
C120.062 (3)0.074 (3)0.0280 (17)0.021 (2)0.0083 (16)0.0125 (17)
C130.0382 (18)0.0484 (19)0.0346 (17)0.0101 (15)0.0039 (13)0.0165 (14)
C140.085 (3)0.057 (2)0.052 (2)0.030 (2)0.009 (2)0.0245 (19)
C150.0275 (15)0.0337 (15)0.0304 (15)0.0087 (12)0.0043 (12)0.0016 (12)
C160.0304 (15)0.0274 (14)0.0335 (15)0.0106 (12)0.0021 (12)0.0006 (11)
Geometric parameters (Å, º) top
Ni—O32.046 (2)C3—H3C0.9600
Ni—O52.066 (2)C4—C51.405 (5)
Ni—N22.076 (2)C5—C61.352 (6)
Ni—N12.087 (2)C5—H5A0.9300
Ni—O12.148 (3)C6—C71.406 (5)
Ni—O22.150 (2)C6—H6A0.9300
Ni—C12.457 (4)C7—C161.403 (4)
O1—C11.244 (5)C7—C81.429 (5)
O2—C11.249 (5)C8—C91.341 (6)
C1—H1A0.9300C8—H8A0.9300
O3—C21.235 (4)C9—C101.428 (5)
O4—C21.233 (4)C9—H9A0.9300
C2—H2A0.9300C10—C151.399 (4)
O5—H520.8426C10—C111.408 (5)
O5—H510.8597C11—C121.354 (6)
O6—H610.8524C11—H11A0.9300
O6—H620.8469C12—C131.406 (5)
N1—C41.337 (4)C12—H12A0.9300
N1—C161.370 (4)C13—C141.495 (5)
N2—C131.334 (4)C14—H14A0.9600
N2—C151.359 (4)C14—H14B0.9600
C3—C41.497 (5)C14—H14C0.9600
C3—H3A0.9600C15—C161.444 (4)
C3—H3B0.9600
O3—Ni—O5175.85 (9)C4—C3—H3C109.5
O3—Ni—N288.19 (10)H3A—C3—H3C109.5
O5—Ni—N290.52 (10)H3B—C3—H3C109.5
O3—Ni—N197.19 (10)N1—C4—C5121.0 (3)
O5—Ni—N186.51 (10)N1—C4—C3119.0 (3)
N2—Ni—N181.48 (10)C5—C4—C3119.9 (3)
O3—Ni—O189.42 (11)C6—C5—C4121.0 (3)
O5—Ni—O187.32 (11)C6—C5—H5A119.5
N2—Ni—O1110.07 (11)C4—C5—H5A119.5
N1—Ni—O1166.96 (10)C5—C6—C7119.6 (3)
O3—Ni—O288.37 (11)C5—C6—H6A120.2
O5—Ni—O292.29 (11)C7—C6—H6A120.2
N2—Ni—O2170.43 (10)C16—C7—C6117.0 (3)
N1—Ni—O2107.82 (10)C16—C7—C8119.6 (3)
O1—Ni—O260.97 (11)C6—C7—C8123.4 (3)
O3—Ni—C188.83 (13)C9—C8—C7121.2 (3)
O5—Ni—C189.66 (13)C9—C8—H8A119.4
N2—Ni—C1140.41 (13)C7—C8—H8A119.4
N1—Ni—C1138.01 (12)C8—C9—C10120.9 (3)
O1—Ni—C130.42 (12)C8—C9—H9A119.6
O2—Ni—C130.54 (12)C10—C9—H9A119.6
C1—O1—Ni88.6 (2)C15—C10—C11117.1 (3)
C1—O2—Ni88.4 (2)C15—C10—C9119.7 (3)
O1—C1—O2122.0 (3)C11—C10—C9123.2 (3)
O1—C1—Ni60.93 (19)C12—C11—C10119.6 (3)
O2—C1—Ni61.03 (18)C12—C11—H11A120.2
O1—C1—H1A119.0C10—C11—H11A120.2
O2—C1—H1A119.0C11—C12—C13120.5 (3)
Ni—C1—H1A179.7C11—C12—H12A119.8
C2—O3—Ni121.6 (2)C13—C12—H12A119.8
O4—C2—O3127.6 (3)N2—C13—C12121.0 (3)
O4—C2—H2A116.2N2—C13—C14118.2 (3)
O3—C2—H2A116.2C12—C13—C14120.8 (3)
Ni—O5—H52116.4C13—C14—H14A109.5
Ni—O5—H51111.9C13—C14—H14B109.5
H52—O5—H51104.9H14A—C14—H14B109.5
H61—O6—H62132.8C13—C14—H14C109.5
C4—N1—C16118.4 (3)H14A—C14—H14C109.5
C4—N1—Ni130.5 (2)H14B—C14—H14C109.5
C16—N1—Ni110.88 (19)N2—C15—C10122.9 (3)
C13—N2—C15118.9 (3)N2—C15—C16117.6 (3)
C13—N2—Ni129.2 (2)C10—C15—C16119.5 (3)
C15—N2—Ni111.95 (19)N1—C16—C7123.0 (3)
C4—C3—H3A109.5N1—C16—C15118.0 (3)
C4—C3—H3B109.5C7—C16—C15119.0 (3)
H3A—C3—H3B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O4i0.861.852.703 (3)173.3
O5—H52···O6ii0.842.032.808 (4)154.2
O6—H61···O2iii0.851.982.830 (4)179.3
O6—H62···O3iv0.852.433.077 (4)133.4
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z+1; (iii) x, y, z1; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Ni(HCO2)2(C14H12N2)(H2O)]·H2O
Mr393.03
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.3992 (15), 10.373 (2), 11.442 (2)
α, β, γ (°)82.42 (3), 81.77 (3), 76.10 (3)
V3)839.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.19
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.750, 0.821
No. of measured, independent and
observed [I > 2σ(I)] reflections
8265, 3785, 3214
Rint0.025
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.118, 1.22
No. of reflections3785
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.67

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O4i0.861.852.703 (3)173.3
O5—H52···O6ii0.842.032.808 (4)154.2
O6—H61···O2iii0.851.982.830 (4)179.3
O6—H62···O3iv0.852.433.077 (4)133.4
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z+1; (iii) x, y, z1; (iv) x+1, y, z+1.
 

Acknowledgements

This work was supported by the Huzhou Municipal Foundation of Science and Technology (2011 GG15) and the Foundation of the Education Department of Zhejiang Province (ZC200805662).

References

First citationAakeroy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397–407.  CrossRef CAS Web of Science Google Scholar
First citationGo, Y., Wang, X., Anokhina, E. V. & Jacobson, A. J. (2004). Inorg. Chem. 43, 5360–5367.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNi, S.-L., Xia, P. & Cao, F. (2011). Acta Cryst. E67, m39–m40.  CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H.-Y., Gao, S., Huo, L.-H. & Zhao, J.-G. (2006). Acta Cryst. E62, m3395–m3397.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds