metal-organic compounds
Aqua(2,9-dimethyl-1,10-phenanthroline-κ2N,N′)diformato-κ2O,O′;κO-nickel(II) monohydrate
aDepartment of Chemistry, Huzhou Teachers College, Huzhou, Zhejiang 313000, People's Republic of China, and bCenter of Applied Solid State Chemistry Research, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: shengliangni@163.com
The 2)2(C14H12N2)(H2O)]·H2O, contains a mononuclear complex molecule hydrogen bonded to a lattice water molecule. The NiII atom exhibits a distorted octahedral coordination geometry formed by the N atoms from a 2,9-dimethyl-1,10-phenanthroline ligand, two O atoms of a chelating formate anion, one aqua O atom and one O atom of a coordinating formate anion. The molecules are assembled into chains extending along [100] through by O—H⋯O hydrogen bonds. The supramolecular chains are further linked into layers parallel to (011) by weak π–π packing interactions [centroid–centroid separation = 3.768 (2) Å]. The resulting layers are stacked to meet the requirement of close-packing patterns.
of the title compound, [Ni(HCORelated literature
For general background to supramolecular architectures, see: Moulton & Zaworotko (2001); Aakeroy & Seddon (1993). For related structures, see: Go et al. (2004); Wang et al. (2006); Ni et al. (2011).
Experimental
Crystal data
|
Refinement
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811030558/zk2016sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811030558/zk2016Isup2.hkl
Dropwise addition of 2.0 ml of 1.0 mol.l-1 aqueous Na2CO3 to a stirred aqueous solation of NiSO4.7H2O (0.2876 g, 1.0 mmol) in 5.0 ml H2O produced a green precipitate, Ni(OH)2–2x(CO3)x.yH2O, which was centrifuged and washed with water until no SO42- anions were detected in the supernatant. The precipitate was added to a stirred aqueous ethanolic solution of 2,9'–dimethyl–1,10'–phenanthroline in 15 ml EtOH–H2O (2:1,v/v). And then, 2.0 ml of 1.0 mol.l-1aqueous formalic acid was dropwise added to above mixture and stirred continuously until dissolved of the green precipitate. The green solution (pH = 3.37) was allowed to stand at room temperature. Slow evaporation during two weeks afforded green block crystals(yield:42%).
All H–atoms bonded to C were positioned geometrically and refined using a riding model with d(C–H) = 0.093 Å calculated positionand were refined using a riding, Uiso(H) = 1.2 Ueq(C) for aromatic, 0.93 Å, Uiso(H) = 1.2 Ueq(C) for CH and 0.96 Å, Uiso(H) = 1.5 Ueq(C) for CH3 atoms. H atoms attached to O atoms were found in a difference Fourier synthesisand were refined using a riding model, with the O–H distances fixed as initially found and with Uiso(H) values set at 1.2 Ueq(O).
Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Ni(HCO2)2(C14H12N2)(H2O)]·H2O | Z = 2 |
Mr = 393.03 | F(000) = 408 |
Triclinic, P1 | Dx = 1.555 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.3992 (15) Å | Cell parameters from 25 reflections |
b = 10.373 (2) Å | θ = 3.1–27.4° |
c = 11.442 (2) Å | µ = 1.19 mm−1 |
α = 82.42 (3)° | T = 298 K |
β = 81.77 (3)° | Block, green |
γ = 76.10 (3)° | 0.30 × 0.20 × 0.15 mm |
V = 839.3 (3) Å3 |
Rigaku R-AXIS RAPID diffractometer | 3785 independent reflections |
Radiation source: fine-focus sealed tube | 3214 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ω scans | θmax = 27.4°, θmin = 3.1° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −9→8 |
Tmin = 0.750, Tmax = 0.821 | k = −13→13 |
8265 measured reflections | l = −14→14 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.118 | w = 1/[σ2(Fo2) + (0.0328P)2 + 1.2744P] where P = (Fo2 + 2Fc2)/3 |
S = 1.22 | (Δ/σ)max = 0.001 |
3785 reflections | Δρmax = 0.69 e Å−3 |
226 parameters | Δρmin = −0.67 e Å−3 |
0 restraints | Extinction correction: SHELXL |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0015 (3) |
[Ni(HCO2)2(C14H12N2)(H2O)]·H2O | γ = 76.10 (3)° |
Mr = 393.03 | V = 839.3 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.3992 (15) Å | Mo Kα radiation |
b = 10.373 (2) Å | µ = 1.19 mm−1 |
c = 11.442 (2) Å | T = 298 K |
α = 82.42 (3)° | 0.30 × 0.20 × 0.15 mm |
β = 81.77 (3)° |
Rigaku R-AXIS RAPID diffractometer | 3785 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 3214 reflections with I > 2σ(I) |
Tmin = 0.750, Tmax = 0.821 | Rint = 0.025 |
8265 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.22 | Δρmax = 0.69 e Å−3 |
3785 reflections | Δρmin = −0.67 e Å−3 |
226 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni | 0.77473 (5) | 0.18268 (4) | 0.77154 (3) | 0.02776 (13) | |
O1 | 0.8178 (4) | −0.0310 (2) | 0.7920 (3) | 0.0540 (7) | |
O2 | 0.7827 (4) | 0.0786 (3) | 0.9468 (2) | 0.0494 (6) | |
C1 | 0.8093 (6) | −0.0283 (4) | 0.9011 (4) | 0.0535 (10) | |
H1A | 0.8232 | −0.1082 | 0.9500 | 0.064* | |
O3 | 0.4915 (3) | 0.1977 (2) | 0.7917 (2) | 0.0395 (5) | |
O4 | 0.2105 (3) | 0.3030 (3) | 0.8671 (2) | 0.0485 (6) | |
C2 | 0.3833 (5) | 0.2772 (4) | 0.8554 (3) | 0.0418 (8) | |
H2A | 0.4386 | 0.3228 | 0.8997 | 0.050* | |
O5 | 1.0628 (3) | 0.1559 (2) | 0.7442 (2) | 0.0378 (5) | |
H52 | 1.1256 | 0.0773 | 0.7581 | 0.045* | |
H51 | 1.1024 | 0.2025 | 0.7876 | 0.045* | |
O6 | 0.6484 (4) | 0.0613 (3) | 0.1914 (2) | 0.0544 (7) | |
H61 | 0.6881 | 0.0662 | 0.1176 | 0.065* | |
H62 | 0.5887 | 0.0096 | 0.2356 | 0.065* | |
N1 | 0.7660 (3) | 0.3828 (2) | 0.7853 (2) | 0.0271 (5) | |
N2 | 0.7565 (4) | 0.2549 (3) | 0.5945 (2) | 0.0296 (5) | |
C3 | 0.7791 (6) | 0.3669 (4) | 0.9991 (3) | 0.0460 (9) | |
H3A | 0.7739 | 0.2766 | 0.9924 | 0.069* | |
H3B | 0.6727 | 0.4074 | 1.0509 | 0.069* | |
H3C | 0.8922 | 0.3672 | 1.0310 | 0.069* | |
C4 | 0.7770 (4) | 0.4441 (3) | 0.8789 (3) | 0.0334 (7) | |
C5 | 0.7852 (5) | 0.5793 (4) | 0.8660 (4) | 0.0456 (9) | |
H5A | 0.7951 | 0.6194 | 0.9321 | 0.055* | |
C6 | 0.7789 (6) | 0.6518 (4) | 0.7588 (4) | 0.0493 (9) | |
H6A | 0.7825 | 0.7415 | 0.7516 | 0.059* | |
C7 | 0.7668 (5) | 0.5908 (3) | 0.6584 (3) | 0.0393 (7) | |
C8 | 0.7604 (6) | 0.6596 (4) | 0.5418 (4) | 0.0530 (10) | |
H8A | 0.7629 | 0.7496 | 0.5305 | 0.064* | |
C9 | 0.7509 (6) | 0.5968 (4) | 0.4485 (4) | 0.0527 (10) | |
H9A | 0.7458 | 0.6441 | 0.3736 | 0.063* | |
C10 | 0.7485 (5) | 0.4584 (4) | 0.4624 (3) | 0.0412 (8) | |
C11 | 0.7418 (6) | 0.3871 (5) | 0.3671 (3) | 0.0530 (10) | |
H11A | 0.7382 | 0.4300 | 0.2906 | 0.064* | |
C12 | 0.7406 (6) | 0.2557 (5) | 0.3877 (3) | 0.0530 (10) | |
H12A | 0.7360 | 0.2085 | 0.3249 | 0.064* | |
C13 | 0.7465 (5) | 0.1901 (4) | 0.5032 (3) | 0.0392 (7) | |
C14 | 0.7372 (7) | 0.0465 (4) | 0.5273 (4) | 0.0602 (11) | |
H14A | 0.7439 | 0.0183 | 0.6102 | 0.090* | |
H14B | 0.8404 | −0.0066 | 0.4815 | 0.090* | |
H14C | 0.6214 | 0.0358 | 0.5057 | 0.090* | |
C15 | 0.7550 (4) | 0.3872 (3) | 0.5750 (3) | 0.0306 (6) | |
C16 | 0.7622 (4) | 0.4551 (3) | 0.6761 (3) | 0.0301 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni | 0.0320 (2) | 0.0254 (2) | 0.0280 (2) | −0.01022 (15) | −0.00438 (15) | −0.00207 (14) |
O1 | 0.078 (2) | 0.0316 (13) | 0.0548 (17) | −0.0161 (13) | −0.0093 (14) | −0.0044 (11) |
O2 | 0.0675 (18) | 0.0447 (15) | 0.0364 (13) | −0.0178 (13) | −0.0080 (12) | 0.0058 (11) |
C1 | 0.070 (3) | 0.0368 (19) | 0.052 (2) | −0.0164 (18) | −0.0105 (19) | 0.0139 (17) |
O3 | 0.0273 (11) | 0.0512 (14) | 0.0448 (13) | −0.0162 (10) | −0.0022 (10) | −0.0107 (11) |
O4 | 0.0317 (13) | 0.0651 (17) | 0.0524 (15) | −0.0129 (12) | −0.0027 (11) | −0.0177 (13) |
C2 | 0.0361 (18) | 0.056 (2) | 0.0394 (18) | −0.0179 (16) | −0.0018 (14) | −0.0144 (16) |
O5 | 0.0293 (11) | 0.0398 (12) | 0.0462 (13) | −0.0070 (9) | −0.0104 (10) | −0.0054 (10) |
O6 | 0.0642 (18) | 0.0550 (16) | 0.0460 (15) | −0.0148 (14) | −0.0076 (13) | −0.0080 (12) |
N1 | 0.0247 (12) | 0.0272 (12) | 0.0303 (12) | −0.0059 (10) | −0.0023 (9) | −0.0072 (9) |
N2 | 0.0316 (13) | 0.0338 (13) | 0.0248 (12) | −0.0104 (11) | −0.0033 (10) | −0.0028 (10) |
C3 | 0.052 (2) | 0.061 (2) | 0.0322 (17) | −0.0201 (18) | −0.0079 (15) | −0.0130 (16) |
C4 | 0.0290 (15) | 0.0397 (17) | 0.0350 (16) | −0.0114 (13) | 0.0011 (12) | −0.0147 (13) |
C5 | 0.045 (2) | 0.045 (2) | 0.054 (2) | −0.0166 (16) | 0.0011 (16) | −0.0251 (17) |
C6 | 0.054 (2) | 0.0294 (17) | 0.067 (3) | −0.0139 (16) | 0.0035 (19) | −0.0152 (16) |
C7 | 0.0356 (17) | 0.0284 (16) | 0.053 (2) | −0.0085 (13) | −0.0034 (15) | −0.0005 (14) |
C8 | 0.057 (2) | 0.0317 (18) | 0.066 (3) | −0.0117 (17) | −0.005 (2) | 0.0130 (17) |
C9 | 0.056 (2) | 0.052 (2) | 0.045 (2) | −0.0155 (19) | −0.0094 (18) | 0.0235 (18) |
C10 | 0.0361 (18) | 0.050 (2) | 0.0353 (17) | −0.0103 (15) | −0.0067 (14) | 0.0071 (15) |
C11 | 0.057 (2) | 0.075 (3) | 0.0253 (17) | −0.014 (2) | −0.0086 (16) | 0.0037 (17) |
C12 | 0.062 (3) | 0.074 (3) | 0.0280 (17) | −0.021 (2) | −0.0083 (16) | −0.0125 (17) |
C13 | 0.0382 (18) | 0.0484 (19) | 0.0346 (17) | −0.0101 (15) | −0.0039 (13) | −0.0165 (14) |
C14 | 0.085 (3) | 0.057 (2) | 0.052 (2) | −0.030 (2) | −0.009 (2) | −0.0245 (19) |
C15 | 0.0275 (15) | 0.0337 (15) | 0.0304 (15) | −0.0087 (12) | −0.0043 (12) | 0.0016 (12) |
C16 | 0.0304 (15) | 0.0274 (14) | 0.0335 (15) | −0.0106 (12) | −0.0021 (12) | −0.0006 (11) |
Ni—O3 | 2.046 (2) | C3—H3C | 0.9600 |
Ni—O5 | 2.066 (2) | C4—C5 | 1.405 (5) |
Ni—N2 | 2.076 (2) | C5—C6 | 1.352 (6) |
Ni—N1 | 2.087 (2) | C5—H5A | 0.9300 |
Ni—O1 | 2.148 (3) | C6—C7 | 1.406 (5) |
Ni—O2 | 2.150 (2) | C6—H6A | 0.9300 |
Ni—C1 | 2.457 (4) | C7—C16 | 1.403 (4) |
O1—C1 | 1.244 (5) | C7—C8 | 1.429 (5) |
O2—C1 | 1.249 (5) | C8—C9 | 1.341 (6) |
C1—H1A | 0.9300 | C8—H8A | 0.9300 |
O3—C2 | 1.235 (4) | C9—C10 | 1.428 (5) |
O4—C2 | 1.233 (4) | C9—H9A | 0.9300 |
C2—H2A | 0.9300 | C10—C15 | 1.399 (4) |
O5—H52 | 0.8426 | C10—C11 | 1.408 (5) |
O5—H51 | 0.8597 | C11—C12 | 1.354 (6) |
O6—H61 | 0.8524 | C11—H11A | 0.9300 |
O6—H62 | 0.8469 | C12—C13 | 1.406 (5) |
N1—C4 | 1.337 (4) | C12—H12A | 0.9300 |
N1—C16 | 1.370 (4) | C13—C14 | 1.495 (5) |
N2—C13 | 1.334 (4) | C14—H14A | 0.9600 |
N2—C15 | 1.359 (4) | C14—H14B | 0.9600 |
C3—C4 | 1.497 (5) | C14—H14C | 0.9600 |
C3—H3A | 0.9600 | C15—C16 | 1.444 (4) |
C3—H3B | 0.9600 | ||
O3—Ni—O5 | 175.85 (9) | C4—C3—H3C | 109.5 |
O3—Ni—N2 | 88.19 (10) | H3A—C3—H3C | 109.5 |
O5—Ni—N2 | 90.52 (10) | H3B—C3—H3C | 109.5 |
O3—Ni—N1 | 97.19 (10) | N1—C4—C5 | 121.0 (3) |
O5—Ni—N1 | 86.51 (10) | N1—C4—C3 | 119.0 (3) |
N2—Ni—N1 | 81.48 (10) | C5—C4—C3 | 119.9 (3) |
O3—Ni—O1 | 89.42 (11) | C6—C5—C4 | 121.0 (3) |
O5—Ni—O1 | 87.32 (11) | C6—C5—H5A | 119.5 |
N2—Ni—O1 | 110.07 (11) | C4—C5—H5A | 119.5 |
N1—Ni—O1 | 166.96 (10) | C5—C6—C7 | 119.6 (3) |
O3—Ni—O2 | 88.37 (11) | C5—C6—H6A | 120.2 |
O5—Ni—O2 | 92.29 (11) | C7—C6—H6A | 120.2 |
N2—Ni—O2 | 170.43 (10) | C16—C7—C6 | 117.0 (3) |
N1—Ni—O2 | 107.82 (10) | C16—C7—C8 | 119.6 (3) |
O1—Ni—O2 | 60.97 (11) | C6—C7—C8 | 123.4 (3) |
O3—Ni—C1 | 88.83 (13) | C9—C8—C7 | 121.2 (3) |
O5—Ni—C1 | 89.66 (13) | C9—C8—H8A | 119.4 |
N2—Ni—C1 | 140.41 (13) | C7—C8—H8A | 119.4 |
N1—Ni—C1 | 138.01 (12) | C8—C9—C10 | 120.9 (3) |
O1—Ni—C1 | 30.42 (12) | C8—C9—H9A | 119.6 |
O2—Ni—C1 | 30.54 (12) | C10—C9—H9A | 119.6 |
C1—O1—Ni | 88.6 (2) | C15—C10—C11 | 117.1 (3) |
C1—O2—Ni | 88.4 (2) | C15—C10—C9 | 119.7 (3) |
O1—C1—O2 | 122.0 (3) | C11—C10—C9 | 123.2 (3) |
O1—C1—Ni | 60.93 (19) | C12—C11—C10 | 119.6 (3) |
O2—C1—Ni | 61.03 (18) | C12—C11—H11A | 120.2 |
O1—C1—H1A | 119.0 | C10—C11—H11A | 120.2 |
O2—C1—H1A | 119.0 | C11—C12—C13 | 120.5 (3) |
Ni—C1—H1A | 179.7 | C11—C12—H12A | 119.8 |
C2—O3—Ni | 121.6 (2) | C13—C12—H12A | 119.8 |
O4—C2—O3 | 127.6 (3) | N2—C13—C12 | 121.0 (3) |
O4—C2—H2A | 116.2 | N2—C13—C14 | 118.2 (3) |
O3—C2—H2A | 116.2 | C12—C13—C14 | 120.8 (3) |
Ni—O5—H52 | 116.4 | C13—C14—H14A | 109.5 |
Ni—O5—H51 | 111.9 | C13—C14—H14B | 109.5 |
H52—O5—H51 | 104.9 | H14A—C14—H14B | 109.5 |
H61—O6—H62 | 132.8 | C13—C14—H14C | 109.5 |
C4—N1—C16 | 118.4 (3) | H14A—C14—H14C | 109.5 |
C4—N1—Ni | 130.5 (2) | H14B—C14—H14C | 109.5 |
C16—N1—Ni | 110.88 (19) | N2—C15—C10 | 122.9 (3) |
C13—N2—C15 | 118.9 (3) | N2—C15—C16 | 117.6 (3) |
C13—N2—Ni | 129.2 (2) | C10—C15—C16 | 119.5 (3) |
C15—N2—Ni | 111.95 (19) | N1—C16—C7 | 123.0 (3) |
C4—C3—H3A | 109.5 | N1—C16—C15 | 118.0 (3) |
C4—C3—H3B | 109.5 | C7—C16—C15 | 119.0 (3) |
H3A—C3—H3B | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H51···O4i | 0.86 | 1.85 | 2.703 (3) | 173.3 |
O5—H52···O6ii | 0.84 | 2.03 | 2.808 (4) | 154.2 |
O6—H61···O2iii | 0.85 | 1.98 | 2.830 (4) | 179.3 |
O6—H62···O3iv | 0.85 | 2.43 | 3.077 (4) | 133.4 |
Symmetry codes: (i) x+1, y, z; (ii) −x+2, −y, −z+1; (iii) x, y, z−1; (iv) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ni(HCO2)2(C14H12N2)(H2O)]·H2O |
Mr | 393.03 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 7.3992 (15), 10.373 (2), 11.442 (2) |
α, β, γ (°) | 82.42 (3), 81.77 (3), 76.10 (3) |
V (Å3) | 839.3 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.19 |
Crystal size (mm) | 0.30 × 0.20 × 0.15 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.750, 0.821 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8265, 3785, 3214 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.118, 1.22 |
No. of reflections | 3785 |
No. of parameters | 226 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.69, −0.67 |
Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H51···O4i | 0.86 | 1.85 | 2.703 (3) | 173.3 |
O5—H52···O6ii | 0.84 | 2.03 | 2.808 (4) | 154.2 |
O6—H61···O2iii | 0.85 | 1.98 | 2.830 (4) | 179.3 |
O6—H62···O3iv | 0.85 | 2.43 | 3.077 (4) | 133.4 |
Symmetry codes: (i) x+1, y, z; (ii) −x+2, −y, −z+1; (iii) x, y, z−1; (iv) −x+1, −y, −z+1. |
Acknowledgements
This work was supported by the Huzhou Municipal Foundation of Science and Technology (2011 GG15) and the Foundation of the Education Department of Zhejiang Province (ZC200805662).
References
Aakeroy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397–407. CrossRef CAS Web of Science Google Scholar
Go, Y., Wang, X., Anokhina, E. V. & Jacobson, A. J. (2004). Inorg. Chem. 43, 5360–5367. Web of Science CSD CrossRef PubMed CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658. Web of Science CrossRef PubMed CAS Google Scholar
Ni, S.-L., Xia, P. & Cao, F. (2011). Acta Cryst. E67, m39–m40. CrossRef IUCr Journals Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, H.-Y., Gao, S., Huo, L.-H. & Zhao, J.-G. (2006). Acta Cryst. E62, m3395–m3397. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the past decade, a variety of supramolecular architectures based on non–covalent intermolecular interactions such as hydrogen bonding, van der Walls forces and π–π interactions have been achieved by using transition metal centers and organic ligands due to their possible intriguing structural topologies and potential applications in optics, catalysis, ion exchange, gas storage, and the molecular–based magnetic materials (Aakeroy & Seddon, 1993). Carboxylate ligands have been actively utilized as construction units to obtain lots of supramolecular complexes (Moulton & Zaworotko, 2001). In the paper, we are interested in self–assemblies of NiII ions and 2,9'–dimethyl–1,10'–phenanthroline with formic acid, leading to successful preparation of a complex [Ni(HCO2)2(C14H12N2)(H2O)].H2O. The asymmetric unit of the title compound consists of one NiII ion, one H2O molecule, one 2,9'–dimethyl–1,10'–phenanthroline molecule, one O,O'–chelated formate anion and another coordinated formate anion, and one lattice H2O molecule(Fig. 1). It's worth to mention, the tetragonal plane is built up by a pair of bidentate formate anions using carboxyl oxygen atoms (Ni–O1 = 2.148 (3) Å, Ni–O2 = 2.150 (3) Å) and by a neutral 2,9'–dimethyl–1,10'–phenanthroline molecule using nitrogen atoms(Ni–N1 = 2.087 (3) Å, Ni–N2 = 2.076 (3) Å).(Table.1). The four atoms around NiII are almost coplanar and show deviations from -0.093 (2) to 0.092 (2) Å with the average plane, the axial positions are occupied by a pair of oxygen originating from H2O (Ni–O5 = 2.067 (3) Å) and formate anion (Ni–O3 = 2.046 (2) Å), significantly shorter than the Ni–O1 or Ni–O2 bond distance, which are similar to those observed in related complexes with carboxylate complexes(Go et al., 2004; Wang et al., 2006; Ni et al., 2011). The selected bond angles of O1–Ni–O2, N1–Ni–N2, O3–Ni–O5 are 81.5 (1) °, 61.0 (1) °, and 175.9 (1) °, respectively. For two formate anions, the angle (O1–C1–O2, 122.0 (3) °) of chelated formate is smaller than coordinated (O3–C2–O4, 127.6 (3) Å). The 2,9'–dimethyl–1, 10'–phenanthroline ligand are almost coplanar with the mean square deviations 0.0158 Å, the water molecule is not coordinated to Ni atom and the distance between nickel and water oxygen atom of 7.146 (2) Å.
The molecules are assembled into one-dimensional chains extending along the [100] direction through O5–H51···O4#1, O5–H52···O6#2, O6–H61···O2#3 and O6–H61···O3#4 hydrogen bonds(#1 = x + 1, y, z; #2 = -x + 2, -y, -z + 1; #3 = x, y, z - 1; #4 = -x + 1, -y, -z + 1)(Table.2), the double chains are further linked into two-dimensional layers which parallel to (011) by weak π–π packing interaction(ring centroid separation, 3.768 (2) Å).(Fig. 2). The resulting layers are stacked to meet the requirement of close–packing patterns.