metal-organic compounds
trans-Dibromidobis(1-ethyl-3-methylimidazol-2-ylidene)palladium(II)
aDepartment of Chemistry & Center for Materials Crystallography, Aarhus University, Aarhus, Denmark
*Correspondence e-mail: bo@chem.au.dk
The title compound, trans-[PdBr2(C6H10N2)2], was synthesized ionothermally in the ionic liquid solvent 1-ethyl-3-methylimidazolium bromide. In the crystal, the PdII atoms are square-planarly coordinated to two Br atoms and two neutral (C6H10N2) ligands. The PdII atom is located on an inversion centre.
Related literature
The title complex shares many features with a number of known structures, which also contain a PdII atom square-planarly coordinated to two bromide ligands in trans-conformation as well as two equivalent organic ligands (Hahn et al., 2004; Huynh & Wu, 2009). A few of these structures even have the same and in some structures the organic ligand is also an imidazolium derivative (Dash et al., 2010). The title compound was obtained in a attempt to simplify the synthesis of the cis-complex which was described previously (Madsen et al., 2011). For information on the ionothermal synthesis method, see: Welton (1999); Babai & Mudring (2006); Morris (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2011); cell SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811030480/zk2019sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811030480/zk2019Isup2.hkl
The title compound was obtained when palladium(II) acetate and 1-ethyl-3- methylimidazolium bromide were mixed and heated in an autoclave at 100°C for 8 days.
All H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 times Ueq(C).
Data collection: APEX2 (Bruker, 2011); cell
SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of trans-[PdBr2(C6H10N2)2], with atom labels and 50% probability displacement ellipsoids for non-H atoms. |
[PdBr2(C6H10N2)2] | F(000) = 472 |
Mr = 486.54 | Dx = 1.893 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 9872 reflections |
a = 8.3093 (2) Å | θ = 5.5–54.7° |
b = 8.6868 (2) Å | µ = 5.76 mm−1 |
c = 12.0788 (3) Å | T = 296 K |
β = 101.741 (1)° | Square, colourless |
V = 853.62 (4) Å3 | 0.15 × 0.15 × 0.1 mm |
Z = 2 |
Bruker X8 APEXII diffractometer | 2582 independent reflections |
Radiation source: fine-focus sealed tube | 1894 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
Detector resolution: 12.00 pixels mm-1 | θmax = 30.5°, θmin = 2.7° |
Narrow slices collected using ϕ and ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | k = −12→12 |
Tmin = 0.585, Tmax = 0.711 | l = −15→17 |
27485 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.167 | H-atom parameters constrained |
S = 1.63 | w = 1/[σ2(Fo2) + (0.0705P)2] where P = (Fo2 + 2Fc2)/3 |
2582 reflections | (Δ/σ)max = 0.008 |
88 parameters | Δρmax = 1.84 e Å−3 |
0 restraints | Δρmin = −1.02 e Å−3 |
[PdBr2(C6H10N2)2] | V = 853.62 (4) Å3 |
Mr = 486.54 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.3093 (2) Å | µ = 5.76 mm−1 |
b = 8.6868 (2) Å | T = 296 K |
c = 12.0788 (3) Å | 0.15 × 0.15 × 0.1 mm |
β = 101.741 (1)° |
Bruker X8 APEXII diffractometer | 2582 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | 1894 reflections with I > 2σ(I) |
Tmin = 0.585, Tmax = 0.711 | Rint = 0.022 |
27485 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.167 | H-atom parameters constrained |
S = 1.63 | Δρmax = 1.84 e Å−3 |
2582 reflections | Δρmin = −1.02 e Å−3 |
88 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N2 | 0.8710 (5) | 0.9917 (3) | 0.7471 (3) | 0.0598 (9) | |
C1 | 0.9896 (5) | 0.9475 (5) | 0.8355 (3) | 0.0570 (8) | |
C3 | 0.9059 (7) | 0.9436 (6) | 0.6478 (4) | 0.0735 (11) | |
H3 | 0.8411 | 0.9594 | 0.5763 | 0.088* | |
C5 | 1.2461 (7) | 0.7839 (10) | 0.8505 (6) | 0.118 (2) | |
H5A | 1.2269 | 0.747 | 0.9225 | 0.142* | |
H5B | 1.2675 | 0.6958 | 0.8062 | 0.142* | |
C2 | 1.0451 (6) | 0.8718 (7) | 0.6700 (4) | 0.0852 (14) | |
H2 | 1.1002 | 0.8294 | 0.6176 | 0.102* | |
C6 | 1.3777 (13) | 0.8815 (14) | 0.8675 (10) | 0.197 (5) | |
H6A | 1.473 | 0.8289 | 0.9084 | 0.295* | |
H6B | 1.3548 | 0.9691 | 0.9104 | 0.295* | |
H6C | 1.3977 | 0.9152 | 0.7959 | 0.295* | |
C4 | 0.7242 (7) | 1.0768 (7) | 0.7604 (5) | 0.0953 (17) | |
H4A | 0.6572 | 1.0973 | 0.6873 | 0.143* | |
H4B | 0.7563 | 1.1723 | 0.7986 | 0.143* | |
H4C | 0.6629 | 1.0166 | 0.8041 | 0.143* | |
Br1 | 1.09068 (7) | 1.25854 (6) | 0.96387 (4) | 0.0893 (2) | |
N1 | 1.0978 (4) | 0.8699 (5) | 0.7886 (3) | 0.0772 (10) | |
Pd1 | 1 | 1 | 1 | 0.0555 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N2 | 0.075 (2) | 0.060 (2) | 0.0438 (19) | 0.0033 (13) | 0.0110 (16) | 0.0020 (13) |
C1 | 0.064 (2) | 0.063 (2) | 0.047 (2) | −0.0089 (17) | 0.0168 (16) | −0.0047 (18) |
C3 | 0.104 (4) | 0.073 (3) | 0.044 (2) | −0.009 (3) | 0.016 (2) | −0.002 (2) |
C5 | 0.080 (3) | 0.189 (7) | 0.088 (4) | 0.017 (4) | 0.023 (3) | −0.011 (4) |
C2 | 0.100 (4) | 0.104 (4) | 0.059 (3) | −0.001 (3) | 0.033 (3) | −0.006 (3) |
C6 | 0.136 (7) | 0.207 (12) | 0.231 (13) | −0.009 (9) | 0.000 (7) | 0.036 (9) |
C4 | 0.104 (4) | 0.114 (4) | 0.064 (3) | 0.052 (4) | 0.010 (3) | 0.006 (3) |
Br1 | 0.1261 (5) | 0.0831 (4) | 0.0624 (4) | −0.0312 (3) | 0.0278 (3) | −0.0070 (2) |
N1 | 0.0732 (19) | 0.108 (3) | 0.0529 (19) | 0.008 (2) | 0.0181 (16) | −0.0060 (19) |
Pd1 | 0.0597 (3) | 0.0696 (4) | 0.0386 (3) | −0.00208 (16) | 0.01357 (18) | −0.00364 (15) |
N2—C1 | 1.353 (6) | C2—N1 | 1.410 (6) |
N2—C3 | 1.356 (6) | C2—H2 | 0.93 |
N2—C4 | 1.463 (6) | C6—H6A | 0.96 |
C1—N1 | 1.338 (5) | C6—H6B | 0.96 |
C1—Pd1 | 2.023 (4) | C6—H6C | 0.96 |
C3—C2 | 1.293 (7) | C4—H4A | 0.96 |
C3—H3 | 0.93 | C4—H4B | 0.96 |
C5—C6 | 1.366 (12) | C4—H4C | 0.96 |
C5—N1 | 1.503 (7) | Br1—Pd1 | 2.4364 (5) |
C5—H5A | 0.97 | Pd1—C1i | 2.023 (4) |
C5—H5B | 0.97 | Pd1—Br1i | 2.4364 (5) |
C1—N2—C3 | 111.0 (4) | H6A—C6—H6B | 109.5 |
C1—N2—C4 | 123.1 (4) | C5—C6—H6C | 109.5 |
C3—N2—C4 | 125.9 (4) | H6A—C6—H6C | 109.5 |
N1—C1—N2 | 104.7 (3) | H6B—C6—H6C | 109.5 |
N1—C1—Pd1 | 129.1 (3) | N2—C4—H4A | 109.5 |
N2—C1—Pd1 | 126.2 (3) | N2—C4—H4B | 109.5 |
C2—C3—N2 | 107.9 (4) | H4A—C4—H4B | 109.5 |
C2—C3—H3 | 126 | N2—C4—H4C | 109.5 |
N2—C3—H3 | 126 | H4A—C4—H4C | 109.5 |
C6—C5—N1 | 108.5 (8) | H4B—C4—H4C | 109.5 |
C6—C5—H5A | 110 | C1—N1—C2 | 109.1 (4) |
N1—C5—H5A | 110 | C1—N1—C5 | 126.4 (4) |
C6—C5—H5B | 110 | C2—N1—C5 | 124.3 (4) |
N1—C5—H5B | 110 | C1—Pd1—C1i | 180.000 (2) |
H5A—C5—H5B | 108.4 | C1—Pd1—Br1 | 89.14 (12) |
C3—C2—N1 | 107.2 (4) | C1i—Pd1—Br1 | 90.86 (12) |
C3—C2—H2 | 126.4 | C1—Pd1—Br1i | 90.86 (12) |
N1—C2—H2 | 126.4 | C1i—Pd1—Br1i | 89.14 (12) |
C5—C6—H6A | 109.5 | Br1—Pd1—Br1i | 180 |
C5—C6—H6B | 109.5 | ||
C3—N2—C1—N1 | −0.5 (5) | Pd1—C1—N1—C5 | 8.6 (7) |
C4—N2—C1—N1 | 178.1 (4) | C3—C2—N1—C1 | −2.4 (6) |
C3—N2—C1—Pd1 | 176.8 (3) | C3—C2—N1—C5 | 173.7 (5) |
C4—N2—C1—Pd1 | −4.7 (6) | C6—C5—N1—C1 | −91.6 (8) |
C1—N2—C3—C2 | −1.1 (6) | C6—C5—N1—C2 | 93.0 (8) |
C4—N2—C3—C2 | −179.6 (5) | N1—C1—Pd1—Br1 | 100.3 (4) |
N2—C3—C2—N1 | 2.1 (6) | N2—C1—Pd1—Br1 | −76.2 (4) |
N2—C1—N1—C2 | 1.7 (5) | N1—C1—Pd1—Br1i | −79.7 (4) |
Pd1—C1—N1—C2 | −175.4 (3) | N2—C1—Pd1—Br1i | 103.8 (4) |
N2—C1—N1—C5 | −174.3 (5) |
Symmetry code: (i) −x+2, −y+2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [PdBr2(C6H10N2)2] |
Mr | 486.54 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 8.3093 (2), 8.6868 (2), 12.0788 (3) |
β (°) | 101.741 (1) |
V (Å3) | 853.62 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 5.76 |
Crystal size (mm) | 0.15 × 0.15 × 0.1 |
Data collection | |
Diffractometer | Bruker X8 APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008a) |
Tmin, Tmax | 0.585, 0.711 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27485, 2582, 1894 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.714 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.167, 1.63 |
No. of reflections | 2582 |
No. of parameters | 88 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.84, −1.02 |
Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2011), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).
C1—Pd1 | 2.023 (4) | Br1—Pd1 | 2.4364 (5) |
C1—Pd1—C1i | 180.000 (2) | C1i—Pd1—Br1 | 90.86 (12) |
C1—Pd1—Br1 | 89.14 (12) | Br1—Pd1—Br1i | 180 |
Symmetry code: (i) −x+2, −y+2, −z+2. |
Acknowledgements
The authors thank the Center for Materials Crystallography (CMC) for financial support.
References
Babai, A. & Mudring, A. (2006). Inorg. Chem. 45, 4874–4876. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dash, C., Shaikh, M. M., Butcher, R. J. & Ghosh, P. (2010). Dalton Trans. 39, 2515–2524. CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hahn, F. E., Heidrich, B., Lugger, T. & Pape, T. (2004). Z. Naturforsch. Teil B, 59, 1519. Google Scholar
Huynh, H. V. & Wu, J. (2009). J. Organomet. Chem. 694, 323–331. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Mol. Struct. 609, 97–108. Google Scholar
Madsen, S. R., Lock, N., Overgaard, J. & Iversen, B. B. (2011). In preparation. Google Scholar
Morris, R. E. (2009). Chem. Commun. pp. 2990–2998. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Welton, T. (1999). Chem. Rev. 99, 2071–2083. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.