metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1291-m1292

Aqua­[4-(hy­dr­oxy­imino­meth­yl)pyridine-κN1](imino­di­acetato-κ3O,N,O′)copper(II)

aCollege of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China, and bDepartment of Chemistry, Key Laboratory of Advanced Textile Materials and, Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: wxchai_cm@yahoo.com.cn

(Received 4 August 2011; accepted 17 August 2011; online 27 August 2011)

In the title complex, [Cu(C4H5NO4)(C6H6N2O)(H2O)], conventionally abbreviated Cu(IDA)(4-OXPy)(H2O), where IDA is imino­diacetate and 4-OXPy is 4-(hy­droxy­imino­meth­yl)pyridine, the CuII atom exhibits a distorted square-pyramidal coordination geometry, which is constructed from two O atoms and one N atom from a IDA ligand, one N atom from 4-OXPy ligand and one O atom from water. This mol­ecule looks like a space shuttle, the IDA ligand is its empennage (tail), and the 4-OXPy ligand is its airframe. The complexes are linked into two-dimensional supra­molecular layers parallel to (100) by three pairs of O—H⋯O hydrogen bonds. Two pairs of N—H⋯O hydrogen bonds further connect these supra­molecular layers, forming a three-dimensional supra­molecular network.

Related literature

For related ternary complexes of copper(II), IDA and an N-heterocyclic ligand, see: Roman-Alpiste et al. (1999[Roman-Alpiste, M. J., Martin-Ramos, J. D., Castineiras-Campos, A., Bugella-Altamirano, E., Sicilia-Zafra, A. G., Gonzalez-Perez, J. M. & Niclos-Gutierrez, J. (1999). Polyhedron, 18, 3341-3351.]); Kundu et al. (2005[Kundu, N., Chatterjee, P. B., Chaudhury, M. & Tiekink, E. R. T. (2005). Acta Cryst. E61, m1583-m1585.]); Chen et al. (1990[Chen, D., Liu, Z., Tang, W., Dai, A., Liu, W., Wang, B., Wang, M. & Zheng, P. (1990). Acta Cryst. C46, 1426-1429.]); Zhang et al. (2008[Zhang, W. J., Li, Y. T., Wu, Z. Y., Liu, Z. Q. & Zheng, Z. C. (2008). J. Chem. Crystallogr. 38, 655-658.]); Selvakumar et al. (2006[Selvakumar, B., Rajendiran, V., Maheswari, P. U., Stoeckli-Evans, H. & Palaniandavar, M. (2006). J. Inorg. Biochem. 100, 316-330.]); Siddiqi et al. (2009[Siddiqi, Z. A., Shahid, M., Khalid, M. & Kumar, S. (2009). Eur. J. Med. Chem. 44, 2517-2522.]); Setha et al. (2010[Setha, S. K., Dey, B., Kara, T. & Mukhopadhyay, S. (2010). J. Mol. Struct. 973, 81-88.]); Campos et al. (1996[Campos, A. C., Zafra, A. G. S., Perez, J. M. G., Gutierrez, J. N., Chinea, E. & Mederos, A. (1996). Inorg. Chim. Acta, 241, 39-45.]); Castineiras et al. (1995[Castineiras, A., Tercero, J. M., Matilla, A., Gonzalez, J. M., Sicilia, A. G. & Niclos, J. (1995). J. Coord. Chem. 35, 61-72.]); Brandi-Blanco et al. (2003[Brandi-Blanco, M. P., Gonzalez-Perez, J. M., Choquesillo-Lazarte, D., Carballo, R., Castineiras, A. & Niclos-Gutierrez, J. (2003). Inorg. Chem. Commun. 6, 270-273.]); Craven et al. (2003[Craven, E., Zhang, C. G., Janiak, C., Rheinwald, G. & Lang, H. (2003). Z. Anorg. Allg. Chem. 629, 2282-2290.]). For hydrogen bonding, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, pp. 86-89. Oxford University Press.]). For the PLATON program, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C4H5NO4)(C6H6N2O)(H2O)]

  • Mr = 334.78

  • Triclinic, [P \overline 1]

  • a = 5.520 (7) Å

  • b = 6.715 (9) Å

  • c = 17.21 (2) Å

  • α = 93.41 (2)°

  • β = 93.952 (13)°

  • γ = 106.52 (2)°

  • V = 608.1 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.83 mm−1

  • T = 293 K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.838, Tmax = 0.838

  • 4742 measured reflections

  • 2739 independent reflections

  • 2269 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.095

  • S = 1.04

  • 2739 reflections

  • 229 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O2i 0.82 (2) 1.99 (2) 2.771 (4) 159 (3)
O6—H6A⋯O3ii 0.82 (2) 1.97 (3) 2.694 (4) 147 (3)
O5—H5B⋯O3iii 0.82 (2) 1.99 (2) 2.796 (4) 172 (4)
N1—H1⋯O1iv 0.83 (3) 2.59 (4) 3.214 (5) 133 (3)
N1—H1⋯O2iv 0.83 (3) 2.42 (3) 3.026 (4) 130 (3)
Symmetry codes: (i) -x-1, -y-1, -z; (ii) -x-1, -y-1, -z-1; (iii) x-1, y-1, z; (iv) x+1, y, z; (v) -x-3, -y-2, -z-1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Due to the tridentate chelating function of the iminodiacetate anion and the plasticity of the copper(ii) coordination stereochemistry, an important research has been devoted to the structure of [Cu(IDA)(H2)2]n (Roman-Alpiste et al., 1999) and a variety of mixed-ligand complexes of copper(ii), IDA and N-heterocyclic donor (auxiliary). These ternary complexes are a source of inorganic structural corelations and bioinorganic model compounds for mono- or di-nuclear copper proteins. Here, we report one of those ternary complexes Cu(IDA)(4-OXPy)(H2O) (I), composed from copper(ii), IDA and 4-OXPy ligand.

In compound (I), the copper(ii) exhibits distorted square pyramid coordination geometry, which is constructed from two O atoms and one N atom from a IDA ligand, one N atom from 4-OXPy ligand and other one O atom from water. In this CuO3N2 square pyramid, the Cu1—O1 = 1.998 (3) Å, Cu1—O4 = 1.969 (3) Å, Cu1—O5 = 2.326 (4) Å, Cu1—N1 = 1.998 (3) Å, Cu1—N2 = 1.968 (3) Å. All bond lengths are within commonly accepted values in the literature (Roman-Alpiste et al., 1999; Kundu et al., 2005; Chen et al., 1990; Zhang et al., 2008). This molecule looks like a space shuttle, the IDA ligand just as its empennage, and the 4-OXPy ligand as its airframe. And by virtue of three pairs of O—H···O and two pairs of N—H···O hydrogen bonds, the complexes are linked into a three-dimensional supramolecular network. The hydrogen bonding data are in the range of standard examples (Desiraju et al., 1999) and have been examined by the PLATON program (Spek, 2009). Firstly, along the crystal plane group of {1 - 1 0}, the adjacent molecules connect each other through three pairs of O—H···O hydrogen bonds [O5—H5A···O2, O5—H5B···O3 and O6—H6A···O3] (details listed in Table 2) to form supramolecular layers. And then, the neighbouring layers fuse one by one via other two pairs of N—H···O hydrogen bonds [N1—H1···O1 and N1—H1···O2] (details listed in Table 2) to give out a 3-D supramolecular network.

Related literature top

For related ternary complexes of copper(II), IDA andan N-heterocyclic ligand, see: Roman-Alpiste et al. (1999); Kundu et al. (2005); Chen et al. (1990); Zhang et al. (2008); Selvakumar et al. (2006); Siddiqi et al. (2009); Setha et al. (2010); Campos et al. (1996); Castineiras et al. (1995); Brandi-Blanco et al. (2003); Craven et al. (2003). For hydrogen bonding, see: Desiraju & Steiner (1999). For the PLATON program, see: Spek (2009);.

Experimental top

The title compound (I) was synthesized by solution reaction of Cu2(OH)2CO3 (23 mg, 0.1 mmol), H2IDA (27 mg, 0.2 mmol), and 4-AOXPy (25 mg, 0.2 mmol) in 15 ml water at room temperature. The subsequent solution was filtered and placed for evaperation. After several days, the blue crystals of (I) were obtained in a yield of 91% (61 mg). Anal.Calc. for C10H13CuN3O6 (%): C, 35.88; H, 3.91; N, 12.55; O, 28.67. Found: C, 35.53; H, 3.66; N, 12.87; O, 28.98. Crystals of (I) suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared.

Refinement top

A suitable single-crystal of (I) was selected and mounted on a thin glass fiber with the aid of an epoxy resin. The XRD data were collected with Ω scan mode at 293 (2) K on a Rigaku RAXIS-RAPID CCD diffractometer (Mo Kα, λ = 0.71075 Å). The structure was solved using direct methods and refined by full-matrix least-squares techniques. All non-hydrogen atoms were assigned anisotropic displacement parameters in the refinement. All hydrogen atoms were picked out from difference Fourier peaks and restrained the distances as 0.82 (2) Å on the O—H bonds. The structure was refined on F2 using SHELXTL97 software package (Sheldrick et al., 2008) without any unusual events.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of I, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probabilithy level.
[Figure 2] Fig. 2. The supramolecular organic-inorganic hybrid layer constructed by hydrogen bonds, viewed along the a-direction.
[Figure 3] Fig. 3. The packing diagram of I, viewed along the c-direction.
Aqua[4-(hydroxyiminomethyl)pyridine-κN1](iminodiacetato- κ3O,N,O')copper(II) top
Crystal data top
[Cu(C4H5NO4)(C6H6N2O)(H2O)]V = 608.1 (13) Å3
Mr = 334.78Z = 2
Triclinic, P1F(000) = 342
Hall symbol: -P 1Dx = 1.829 Mg m3
a = 5.520 (7) ÅMo Kα radiation, λ = 0.71075 Å
b = 6.715 (9) ŵ = 1.83 mm1
c = 17.21 (2) ÅT = 293 K
α = 93.41 (2)°Prism, blue
β = 93.952 (13)°0.10 × 0.10 × 0.10 mm
γ = 106.52 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2739 independent reflections
Radiation source: fine-focus sealed tube2269 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD_Profile_fitting scansh = 67
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 86
Tmin = 0.838, Tmax = 0.838l = 2222
4742 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0435P)2]
where P = (Fo2 + 2Fc2)/3
2739 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.57 e Å3
3 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Cu(C4H5NO4)(C6H6N2O)(H2O)]γ = 106.52 (2)°
Mr = 334.78V = 608.1 (13) Å3
Triclinic, P1Z = 2
a = 5.520 (7) ÅMo Kα radiation
b = 6.715 (9) ŵ = 1.83 mm1
c = 17.21 (2) ÅT = 293 K
α = 93.41 (2)°0.10 × 0.10 × 0.10 mm
β = 93.952 (13)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2739 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2269 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 0.838Rint = 0.036
4742 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0413 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.57 e Å3
2739 reflectionsΔρmin = 0.50 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.37748 (7)0.42758 (6)0.194474 (19)0.01297 (13)
N10.1348 (5)0.2773 (4)0.10405 (14)0.0125 (5)
O10.6388 (4)0.4320 (3)0.11931 (11)0.0145 (4)
O20.6897 (4)0.3155 (3)0.00069 (12)0.0169 (5)
O30.2937 (4)0.0787 (3)0.24552 (12)0.0178 (5)
O40.0910 (4)0.3095 (3)0.25623 (11)0.0154 (5)
O50.3355 (4)0.7481 (3)0.16195 (12)0.0165 (5)
N20.6174 (5)0.5564 (4)0.28578 (13)0.0113 (5)
C70.9679 (6)0.7319 (5)0.41322 (16)0.0146 (6)
O61.3312 (5)0.8857 (4)0.59936 (13)0.0241 (5)
C10.5549 (6)0.3314 (4)0.05274 (16)0.0133 (6)
C40.0914 (6)0.1689 (4)0.21843 (16)0.0131 (6)
N31.1134 (5)0.7984 (4)0.54871 (15)0.0181 (6)
C30.0505 (6)0.1025 (5)0.13563 (17)0.0126 (6)
C50.5516 (6)0.5396 (5)0.35971 (17)0.0154 (6)
C90.8561 (6)0.6636 (5)0.27556 (17)0.0146 (6)
C20.2717 (6)0.2199 (5)0.03983 (16)0.0127 (6)
C60.7194 (6)0.6254 (5)0.42368 (17)0.0176 (7)
C81.0364 (6)0.7541 (5)0.33692 (17)0.0149 (6)
C101.1658 (6)0.8162 (5)0.47803 (18)0.0191 (7)
H2B0.253 (7)0.070 (6)0.038 (2)0.026 (5)*
H90.894 (6)0.675 (5)0.2254 (19)0.013 (8)*
H60.668 (7)0.608 (6)0.475 (2)0.029 (10)*
H3B0.201 (7)0.051 (6)0.102 (2)0.026 (5)*
H50.393 (7)0.473 (5)0.3613 (18)0.012 (8)*
H3A0.027 (6)0.015 (5)0.1426 (19)0.020 (9)*
H81.188 (7)0.826 (5)0.3240 (19)0.023 (10)*
H101.331 (7)0.874 (5)0.4651 (19)0.023 (9)*
H2A0.204 (6)0.249 (5)0.0091 (19)0.015 (8)*
H10.062 (6)0.363 (5)0.0895 (19)0.014 (9)*
H5A0.347 (7)0.761 (6)0.1154 (11)0.026 (5)*
H5B0.439 (6)0.853 (4)0.1834 (19)0.026 (5)*
H6A1.267 (6)0.858 (6)0.6405 (14)0.026 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0110 (2)0.0155 (2)0.00976 (18)0.00041 (15)0.00023 (13)0.00174 (13)
N10.0124 (13)0.0124 (12)0.0122 (12)0.0029 (11)0.0000 (10)0.0005 (10)
O10.0120 (11)0.0191 (11)0.0104 (9)0.0021 (9)0.0006 (8)0.0005 (8)
O20.0117 (11)0.0267 (12)0.0123 (10)0.0058 (9)0.0020 (8)0.0007 (9)
O30.0161 (12)0.0192 (11)0.0139 (10)0.0022 (9)0.0037 (9)0.0010 (9)
O40.0123 (11)0.0178 (11)0.0123 (10)0.0011 (9)0.0006 (8)0.0020 (8)
O50.0169 (12)0.0153 (11)0.0138 (10)0.0002 (9)0.0007 (9)0.0006 (9)
N20.0088 (12)0.0129 (12)0.0115 (11)0.0025 (10)0.0004 (9)0.0007 (9)
C70.0210 (17)0.0124 (14)0.0092 (13)0.0049 (12)0.0040 (12)0.0020 (11)
O60.0184 (13)0.0336 (14)0.0139 (11)0.0012 (11)0.0008 (9)0.0020 (10)
C10.0140 (16)0.0145 (15)0.0123 (13)0.0055 (12)0.0009 (11)0.0039 (11)
C40.0138 (15)0.0130 (14)0.0132 (13)0.0052 (12)0.0003 (11)0.0018 (11)
N30.0179 (14)0.0198 (14)0.0161 (12)0.0074 (11)0.0063 (11)0.0022 (11)
C30.0127 (15)0.0127 (14)0.0097 (13)0.0002 (12)0.0002 (11)0.0024 (11)
C50.0105 (16)0.0176 (15)0.0158 (14)0.0002 (13)0.0001 (12)0.0028 (12)
C90.0154 (16)0.0147 (15)0.0122 (14)0.0015 (12)0.0043 (12)0.0005 (11)
C20.0123 (15)0.0134 (15)0.0108 (13)0.0021 (12)0.0012 (11)0.0022 (11)
C60.0192 (17)0.0204 (16)0.0115 (14)0.0030 (13)0.0027 (12)0.0005 (12)
C80.0113 (16)0.0159 (15)0.0157 (14)0.0017 (13)0.0007 (12)0.0009 (12)
C100.0123 (17)0.0252 (17)0.0157 (15)0.0002 (14)0.0005 (12)0.0014 (13)
Geometric parameters (Å, º) top
Cu1—N21.968 (3)C7—C101.471 (4)
Cu1—O41.969 (3)O6—N31.394 (4)
Cu1—O11.998 (3)O6—H6A0.822 (18)
Cu1—N11.998 (3)C1—C21.523 (4)
Cu1—O52.326 (4)C4—C31.519 (4)
N1—C21.474 (4)N3—C101.274 (4)
N1—C31.479 (4)C3—H3B0.94 (4)
N1—H10.83 (3)C3—H3A1.01 (4)
O1—C11.281 (4)C5—C61.372 (4)
O2—C11.241 (4)C5—H50.87 (3)
O3—C41.246 (4)C9—C81.382 (4)
O4—C41.274 (4)C9—H90.90 (3)
O5—H5A0.816 (18)C2—H2B0.98 (4)
O5—H5B0.816 (18)C2—H2A0.95 (3)
N2—C91.339 (4)C6—H60.95 (4)
N2—C51.349 (4)C8—H80.89 (4)
C7—C61.385 (5)C10—H100.93 (4)
C7—C81.396 (4)
N2—Cu1—O494.86 (12)O3—C4—O4124.7 (3)
N2—Cu1—O196.38 (13)O3—C4—C3118.6 (3)
O4—Cu1—O1158.10 (9)O4—C4—C3116.6 (3)
N2—Cu1—N1175.97 (10)C10—N3—O6110.1 (3)
O4—Cu1—N183.76 (13)N1—C3—C4109.0 (2)
O1—Cu1—N183.72 (13)N1—C3—H3B112 (2)
N2—Cu1—O592.19 (11)C4—C3—H3B114 (2)
O4—Cu1—O5105.52 (10)N1—C3—H3A109 (2)
O1—Cu1—O592.77 (9)C4—C3—H3A103.5 (19)
N1—Cu1—O591.83 (11)H3B—C3—H3A108 (3)
C2—N1—C3115.9 (2)N2—C5—C6122.7 (3)
C2—N1—Cu1110.8 (2)N2—C5—H5112 (2)
C3—N1—Cu1106.36 (19)C6—C5—H5125 (2)
C2—N1—H1109 (2)N2—C9—C8123.0 (3)
C3—N1—H1109 (2)N2—C9—H9116 (2)
Cu1—N1—H1105 (2)C8—C9—H9121 (2)
C1—O1—Cu1115.4 (2)N1—C2—C1111.4 (2)
C4—O4—Cu1114.2 (2)N1—C2—H2B110 (2)
Cu1—O5—H5A111 (3)C1—C2—H2B107 (2)
Cu1—O5—H5B117 (3)N1—C2—H2A111 (2)
H5A—O5—H5B104 (4)C1—C2—H2A110 (2)
C9—N2—C5117.8 (3)H2B—C2—H2A108 (3)
C9—N2—Cu1119.8 (2)C5—C6—C7119.6 (3)
C5—N2—Cu1122.4 (2)C5—C6—H6121 (2)
C6—C7—C8118.2 (3)C7—C6—H6120 (2)
C6—C7—C10123.6 (3)C9—C8—C7118.7 (3)
C8—C7—C10118.2 (3)C9—C8—H8116 (2)
N3—O6—H6A97 (3)C7—C8—H8125 (2)
O2—C1—O1124.3 (3)N3—C10—C7120.6 (3)
O2—C1—C2118.4 (3)N3—C10—H10122 (2)
O1—C1—C2117.3 (3)C7—C10—H10117 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O40.87 (3)2.36 (3)2.973 (4)128 (3)
C9—H9···O10.90 (3)2.44 (3)3.014 (4)121 (3)
O5—H5A···O2i0.82 (2)1.99 (2)2.771 (4)159 (3)
O6—H6A···O3ii0.82 (2)1.97 (3)2.694 (4)147 (3)
O5—H5B···O3iii0.82 (2)1.99 (2)2.796 (4)172 (4)
N1—H1···O1iv0.83 (3)2.59 (4)3.214 (5)133 (3)
N1—H1···O2iv0.83 (3)2.42 (3)3.026 (4)130 (3)
C10—H10···O6v0.93 (4)2.47 (4)3.340 (5)156 (3)
Symmetry codes: (i) x1, y1, z; (ii) x1, y1, z1; (iii) x1, y1, z; (iv) x+1, y, z; (v) x3, y2, z1.

Experimental details

Crystal data
Chemical formula[Cu(C4H5NO4)(C6H6N2O)(H2O)]
Mr334.78
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.520 (7), 6.715 (9), 17.21 (2)
α, β, γ (°)93.41 (2), 93.952 (13), 106.52 (2)
V3)608.1 (13)
Z2
Radiation typeMo Kα
µ (mm1)1.83
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.838, 0.838
No. of measured, independent and
observed [I > 2σ(I)] reflections
4742, 2739, 2269
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.095, 1.04
No. of reflections2739
No. of parameters229
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.50

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O40.87 (3)2.36 (3)2.973 (4)128 (3)
C9—H9···O10.90 (3)2.44 (3)3.014 (4)121 (3)
O5—H5A···O2i0.816 (18)1.99 (2)2.771 (4)159 (3)
O6—H6A···O3ii0.822 (18)1.97 (3)2.694 (4)147 (3)
O5—H5B···O3iii0.816 (18)1.986 (19)2.796 (4)172 (4)
N1—H1···O1iv0.83 (3)2.59 (4)3.214 (5)133 (3)
N1—H1···O2iv0.83 (3)2.42 (3)3.026 (4)130 (3)
C10—H10···O6v0.93 (4)2.47 (4)3.340 (5)156 (3)
Symmetry codes: (i) x1, y1, z; (ii) x1, y1, z1; (iii) x1, y1, z; (iv) x+1, y, z; (v) x3, y2, z1.
 

Acknowledgements

We are grateful for financial support from the National Natural Science Foundation of China (project 20803070) and the Natural Science Foundation of Zhejiang Province (project Y4100610).

References

First citationBrandi-Blanco, M. P., Gonzalez-Perez, J. M., Choquesillo-Lazarte, D., Carballo, R., Castineiras, A. & Niclos-Gutierrez, J. (2003). Inorg. Chem. Commun. 6, 270–273.  Google Scholar
First citationCampos, A. C., Zafra, A. G. S., Perez, J. M. G., Gutierrez, J. N., Chinea, E. & Mederos, A. (1996). Inorg. Chim. Acta, 241, 39–45.  Google Scholar
First citationCastineiras, A., Tercero, J. M., Matilla, A., Gonzalez, J. M., Sicilia, A. G. & Niclos, J. (1995). J. Coord. Chem. 35, 61–72.  Google Scholar
First citationChen, D., Liu, Z., Tang, W., Dai, A., Liu, W., Wang, B., Wang, M. & Zheng, P. (1990). Acta Cryst. C46, 1426–1429.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCraven, E., Zhang, C. G., Janiak, C., Rheinwald, G. & Lang, H. (2003). Z. Anorg. Allg. Chem. 629, 2282–2290.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, pp. 86-89. Oxford University Press.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKundu, N., Chatterjee, P. B., Chaudhury, M. & Tiekink, E. R. T. (2005). Acta Cryst. E61, m1583–m1585.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRoman-Alpiste, M. J., Martin-Ramos, J. D., Castineiras-Campos, A., Bugella-Altamirano, E., Sicilia-Zafra, A. G., Gonzalez-Perez, J. M. & Niclos-Gutierrez, J. (1999). Polyhedron, 18, 3341–3351.  CAS Google Scholar
First citationSelvakumar, B., Rajendiran, V., Maheswari, P. U., Stoeckli-Evans, H. & Palaniandavar, M. (2006). J. Inorg. Biochem. 100, 316–330.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSetha, S. K., Dey, B., Kara, T. & Mukhopadhyay, S. (2010). J. Mol. Struct. 973, 81–88.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqi, Z. A., Shahid, M., Khalid, M. & Kumar, S. (2009). Eur. J. Med. Chem. 44, 2517–2522.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W. J., Li, Y. T., Wu, Z. Y., Liu, Z. Q. & Zheng, Z. C. (2008). J. Chem. Crystallogr. 38, 655–658.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1291-m1292
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds