metal-organic compounds
Aqua[4-(hydroxyiminomethyl)pyridine-κN1](iminodiacetato-κ3O,N,O′)copper(II)
aCollege of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China, and bDepartment of Chemistry, Key Laboratory of Advanced Textile Materials and, Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: wxchai_cm@yahoo.com.cn
In the title complex, [Cu(C4H5NO4)(C6H6N2O)(H2O)], conventionally abbreviated Cu(IDA)(4-OXPy)(H2O), where IDA is iminodiacetate and 4-OXPy is 4-(hydroxyiminomethyl)pyridine, the CuII atom exhibits a distorted square-pyramidal coordination geometry, which is constructed from two O atoms and one N atom from a IDA ligand, one N atom from 4-OXPy ligand and one O atom from water. This molecule looks like a space shuttle, the IDA ligand is its empennage (tail), and the 4-OXPy ligand is its airframe. The complexes are linked into two-dimensional supramolecular layers parallel to (100) by three pairs of O—H⋯O hydrogen bonds. Two pairs of N—H⋯O hydrogen bonds further connect these supramolecular layers, forming a three-dimensional supramolecular network.
Related literature
For related ternary complexes of copper(II), IDA and an N-heterocyclic ligand, see: Roman-Alpiste et al. (1999); Kundu et al. (2005); Chen et al. (1990); Zhang et al. (2008); Selvakumar et al. (2006); Siddiqi et al. (2009); Setha et al. (2010); Campos et al. (1996); Castineiras et al. (1995); Brandi-Blanco et al. (2003); Craven et al. (2003). For hydrogen bonding, see: Desiraju & Steiner (1999). For the PLATON program, see: Spek (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811033459/zk2022sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811033459/zk2022Isup2.hkl
The title compound (I) was synthesized by solution reaction of Cu2(OH)2CO3 (23 mg, 0.1 mmol), H2IDA (27 mg, 0.2 mmol), and 4-AOXPy (25 mg, 0.2 mmol) in 15 ml water at room temperature. The subsequent solution was filtered and placed for evaperation. After several days, the blue crystals of (I) were obtained in a yield of 91% (61 mg). Anal.Calc. for C10H13CuN3O6 (%): C, 35.88; H, 3.91; N, 12.55; O, 28.67. Found: C, 35.53; H, 3.66; N, 12.87; O, 28.98. Crystals of (I) suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared.
A suitable single-crystal of (I) was selected and mounted on a thin glass fiber with the aid of an epoxy resin. The XRD data were collected with Ω scan mode at 293 (2) K on a Rigaku RAXIS-RAPID CCD diffractometer (Mo Kα, λ = 0.71075 Å). The structure was solved using and refined by full-matrix least-squares techniques. All non-hydrogen atoms were assigned anisotropic displacement parameters in the All hydrogen atoms were picked out from difference Fourier peaks and restrained the distances as 0.82 (2) Å on the O—H bonds. The structure was refined on F2 using SHELXTL97 software package (Sheldrick et al., 2008) without any unusual events.
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. A view of the structure of I, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probabilithy level. | |
Fig. 2. The supramolecular organic-inorganic hybrid layer constructed by hydrogen bonds, viewed along the a-direction. | |
Fig. 3. The packing diagram of I, viewed along the c-direction. |
[Cu(C4H5NO4)(C6H6N2O)(H2O)] | V = 608.1 (13) Å3 |
Mr = 334.78 | Z = 2 |
Triclinic, P1 | F(000) = 342 |
Hall symbol: -P 1 | Dx = 1.829 Mg m−3 |
a = 5.520 (7) Å | Mo Kα radiation, λ = 0.71075 Å |
b = 6.715 (9) Å | µ = 1.83 mm−1 |
c = 17.21 (2) Å | T = 293 K |
α = 93.41 (2)° | Prism, blue |
β = 93.952 (13)° | 0.10 × 0.10 × 0.10 mm |
γ = 106.52 (2)° |
Rigaku R-AXIS RAPID diffractometer | 2739 independent reflections |
Radiation source: fine-focus sealed tube | 2269 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
Detector resolution: 14.6306 pixels mm-1 | θmax = 27.5°, θmin = 3.2° |
CCD_Profile_fitting scans | h = −6→7 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −8→6 |
Tmin = 0.838, Tmax = 0.838 | l = −22→22 |
4742 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.095 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0435P)2] where P = (Fo2 + 2Fc2)/3 |
2739 reflections | (Δ/σ)max < 0.001 |
229 parameters | Δρmax = 0.57 e Å−3 |
3 restraints | Δρmin = −0.50 e Å−3 |
[Cu(C4H5NO4)(C6H6N2O)(H2O)] | γ = 106.52 (2)° |
Mr = 334.78 | V = 608.1 (13) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.520 (7) Å | Mo Kα radiation |
b = 6.715 (9) Å | µ = 1.83 mm−1 |
c = 17.21 (2) Å | T = 293 K |
α = 93.41 (2)° | 0.10 × 0.10 × 0.10 mm |
β = 93.952 (13)° |
Rigaku R-AXIS RAPID diffractometer | 2739 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2269 reflections with I > 2σ(I) |
Tmin = 0.838, Tmax = 0.838 | Rint = 0.036 |
4742 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 3 restraints |
wR(F2) = 0.095 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.57 e Å−3 |
2739 reflections | Δρmin = −0.50 e Å−3 |
229 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | −0.37748 (7) | −0.42758 (6) | −0.194474 (19) | 0.01297 (13) | |
N1 | −0.1348 (5) | −0.2773 (4) | −0.10405 (14) | 0.0125 (5) | |
O1 | −0.6388 (4) | −0.4320 (3) | −0.11931 (11) | 0.0145 (4) | |
O2 | −0.6897 (4) | −0.3155 (3) | 0.00069 (12) | 0.0169 (5) | |
O3 | 0.2937 (4) | −0.0787 (3) | −0.24552 (12) | 0.0178 (5) | |
O4 | −0.0910 (4) | −0.3095 (3) | −0.25623 (11) | 0.0154 (5) | |
O5 | −0.3355 (4) | −0.7481 (3) | −0.16195 (12) | 0.0165 (5) | |
N2 | −0.6174 (5) | −0.5564 (4) | −0.28578 (13) | 0.0113 (5) | |
C7 | −0.9679 (6) | −0.7319 (5) | −0.41322 (16) | 0.0146 (6) | |
O6 | −1.3312 (5) | −0.8857 (4) | −0.59936 (13) | 0.0241 (5) | |
C1 | −0.5549 (6) | −0.3314 (4) | −0.05274 (16) | 0.0133 (6) | |
C4 | 0.0914 (6) | −0.1689 (4) | −0.21843 (16) | 0.0131 (6) | |
N3 | −1.1134 (5) | −0.7984 (4) | −0.54871 (15) | 0.0181 (6) | |
C3 | 0.0505 (6) | −0.1025 (5) | −0.13563 (17) | 0.0126 (6) | |
C5 | −0.5516 (6) | −0.5396 (5) | −0.35971 (17) | 0.0154 (6) | |
C9 | −0.8561 (6) | −0.6636 (5) | −0.27556 (17) | 0.0146 (6) | |
C2 | −0.2717 (6) | −0.2199 (5) | −0.03983 (16) | 0.0127 (6) | |
C6 | −0.7194 (6) | −0.6254 (5) | −0.42368 (17) | 0.0176 (7) | |
C8 | −1.0364 (6) | −0.7541 (5) | −0.33692 (17) | 0.0149 (6) | |
C10 | −1.1658 (6) | −0.8162 (5) | −0.47803 (18) | 0.0191 (7) | |
H2B | −0.253 (7) | −0.070 (6) | −0.038 (2) | 0.026 (5)* | |
H9 | −0.894 (6) | −0.675 (5) | −0.2254 (19) | 0.013 (8)* | |
H6 | −0.668 (7) | −0.608 (6) | −0.475 (2) | 0.029 (10)* | |
H3B | 0.201 (7) | −0.051 (6) | −0.102 (2) | 0.026 (5)* | |
H5 | −0.393 (7) | −0.473 (5) | −0.3613 (18) | 0.012 (8)* | |
H3A | −0.027 (6) | 0.015 (5) | −0.1426 (19) | 0.020 (9)* | |
H8 | −1.188 (7) | −0.826 (5) | −0.3240 (19) | 0.023 (10)* | |
H10 | −1.331 (7) | −0.874 (5) | −0.4651 (19) | 0.023 (9)* | |
H2A | −0.204 (6) | −0.249 (5) | 0.0091 (19) | 0.015 (8)* | |
H1 | −0.062 (6) | −0.363 (5) | −0.0895 (19) | 0.014 (9)* | |
H5A | −0.347 (7) | −0.761 (6) | −0.1154 (11) | 0.026 (5)* | |
H5B | −0.439 (6) | −0.853 (4) | −0.1834 (19) | 0.026 (5)* | |
H6A | −1.267 (6) | −0.858 (6) | −0.6405 (14) | 0.026 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0110 (2) | 0.0155 (2) | 0.00976 (18) | 0.00041 (15) | −0.00023 (13) | −0.00174 (13) |
N1 | 0.0124 (13) | 0.0124 (12) | 0.0122 (12) | 0.0029 (11) | 0.0000 (10) | 0.0005 (10) |
O1 | 0.0120 (11) | 0.0191 (11) | 0.0104 (9) | 0.0021 (9) | −0.0006 (8) | −0.0005 (8) |
O2 | 0.0117 (11) | 0.0267 (12) | 0.0123 (10) | 0.0058 (9) | 0.0020 (8) | 0.0007 (9) |
O3 | 0.0161 (12) | 0.0192 (11) | 0.0139 (10) | −0.0022 (9) | 0.0037 (9) | 0.0010 (9) |
O4 | 0.0123 (11) | 0.0178 (11) | 0.0123 (10) | −0.0011 (9) | 0.0006 (8) | −0.0020 (8) |
O5 | 0.0169 (12) | 0.0153 (11) | 0.0138 (10) | −0.0002 (9) | 0.0007 (9) | −0.0006 (9) |
N2 | 0.0088 (12) | 0.0129 (12) | 0.0115 (11) | 0.0025 (10) | −0.0004 (9) | −0.0007 (9) |
C7 | 0.0210 (17) | 0.0124 (14) | 0.0092 (13) | 0.0049 (12) | −0.0040 (12) | −0.0020 (11) |
O6 | 0.0184 (13) | 0.0336 (14) | 0.0139 (11) | −0.0012 (11) | −0.0008 (9) | −0.0020 (10) |
C1 | 0.0140 (16) | 0.0145 (15) | 0.0123 (13) | 0.0055 (12) | −0.0009 (11) | 0.0039 (11) |
C4 | 0.0138 (15) | 0.0130 (14) | 0.0132 (13) | 0.0052 (12) | −0.0003 (11) | 0.0018 (11) |
N3 | 0.0179 (14) | 0.0198 (14) | 0.0161 (12) | 0.0074 (11) | −0.0063 (11) | −0.0022 (11) |
C3 | 0.0127 (15) | 0.0127 (14) | 0.0097 (13) | 0.0002 (12) | −0.0002 (11) | −0.0024 (11) |
C5 | 0.0105 (16) | 0.0176 (15) | 0.0158 (14) | 0.0002 (13) | −0.0001 (12) | 0.0028 (12) |
C9 | 0.0154 (16) | 0.0147 (15) | 0.0122 (14) | 0.0015 (12) | 0.0043 (12) | −0.0005 (11) |
C2 | 0.0123 (15) | 0.0134 (15) | 0.0108 (13) | 0.0021 (12) | 0.0012 (11) | −0.0022 (11) |
C6 | 0.0192 (17) | 0.0204 (16) | 0.0115 (14) | 0.0030 (13) | 0.0027 (12) | 0.0005 (12) |
C8 | 0.0113 (16) | 0.0159 (15) | 0.0157 (14) | 0.0017 (13) | 0.0007 (12) | −0.0009 (12) |
C10 | 0.0123 (17) | 0.0252 (17) | 0.0157 (15) | −0.0002 (14) | 0.0005 (12) | −0.0014 (13) |
Cu1—N2 | 1.968 (3) | C7—C10 | 1.471 (4) |
Cu1—O4 | 1.969 (3) | O6—N3 | 1.394 (4) |
Cu1—O1 | 1.998 (3) | O6—H6A | 0.822 (18) |
Cu1—N1 | 1.998 (3) | C1—C2 | 1.523 (4) |
Cu1—O5 | 2.326 (4) | C4—C3 | 1.519 (4) |
N1—C2 | 1.474 (4) | N3—C10 | 1.274 (4) |
N1—C3 | 1.479 (4) | C3—H3B | 0.94 (4) |
N1—H1 | 0.83 (3) | C3—H3A | 1.01 (4) |
O1—C1 | 1.281 (4) | C5—C6 | 1.372 (4) |
O2—C1 | 1.241 (4) | C5—H5 | 0.87 (3) |
O3—C4 | 1.246 (4) | C9—C8 | 1.382 (4) |
O4—C4 | 1.274 (4) | C9—H9 | 0.90 (3) |
O5—H5A | 0.816 (18) | C2—H2B | 0.98 (4) |
O5—H5B | 0.816 (18) | C2—H2A | 0.95 (3) |
N2—C9 | 1.339 (4) | C6—H6 | 0.95 (4) |
N2—C5 | 1.349 (4) | C8—H8 | 0.89 (4) |
C7—C6 | 1.385 (5) | C10—H10 | 0.93 (4) |
C7—C8 | 1.396 (4) | ||
N2—Cu1—O4 | 94.86 (12) | O3—C4—O4 | 124.7 (3) |
N2—Cu1—O1 | 96.38 (13) | O3—C4—C3 | 118.6 (3) |
O4—Cu1—O1 | 158.10 (9) | O4—C4—C3 | 116.6 (3) |
N2—Cu1—N1 | 175.97 (10) | C10—N3—O6 | 110.1 (3) |
O4—Cu1—N1 | 83.76 (13) | N1—C3—C4 | 109.0 (2) |
O1—Cu1—N1 | 83.72 (13) | N1—C3—H3B | 112 (2) |
N2—Cu1—O5 | 92.19 (11) | C4—C3—H3B | 114 (2) |
O4—Cu1—O5 | 105.52 (10) | N1—C3—H3A | 109 (2) |
O1—Cu1—O5 | 92.77 (9) | C4—C3—H3A | 103.5 (19) |
N1—Cu1—O5 | 91.83 (11) | H3B—C3—H3A | 108 (3) |
C2—N1—C3 | 115.9 (2) | N2—C5—C6 | 122.7 (3) |
C2—N1—Cu1 | 110.8 (2) | N2—C5—H5 | 112 (2) |
C3—N1—Cu1 | 106.36 (19) | C6—C5—H5 | 125 (2) |
C2—N1—H1 | 109 (2) | N2—C9—C8 | 123.0 (3) |
C3—N1—H1 | 109 (2) | N2—C9—H9 | 116 (2) |
Cu1—N1—H1 | 105 (2) | C8—C9—H9 | 121 (2) |
C1—O1—Cu1 | 115.4 (2) | N1—C2—C1 | 111.4 (2) |
C4—O4—Cu1 | 114.2 (2) | N1—C2—H2B | 110 (2) |
Cu1—O5—H5A | 111 (3) | C1—C2—H2B | 107 (2) |
Cu1—O5—H5B | 117 (3) | N1—C2—H2A | 111 (2) |
H5A—O5—H5B | 104 (4) | C1—C2—H2A | 110 (2) |
C9—N2—C5 | 117.8 (3) | H2B—C2—H2A | 108 (3) |
C9—N2—Cu1 | 119.8 (2) | C5—C6—C7 | 119.6 (3) |
C5—N2—Cu1 | 122.4 (2) | C5—C6—H6 | 121 (2) |
C6—C7—C8 | 118.2 (3) | C7—C6—H6 | 120 (2) |
C6—C7—C10 | 123.6 (3) | C9—C8—C7 | 118.7 (3) |
C8—C7—C10 | 118.2 (3) | C9—C8—H8 | 116 (2) |
N3—O6—H6A | 97 (3) | C7—C8—H8 | 125 (2) |
O2—C1—O1 | 124.3 (3) | N3—C10—C7 | 120.6 (3) |
O2—C1—C2 | 118.4 (3) | N3—C10—H10 | 122 (2) |
O1—C1—C2 | 117.3 (3) | C7—C10—H10 | 117 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O4 | 0.87 (3) | 2.36 (3) | 2.973 (4) | 128 (3) |
C9—H9···O1 | 0.90 (3) | 2.44 (3) | 3.014 (4) | 121 (3) |
O5—H5A···O2i | 0.82 (2) | 1.99 (2) | 2.771 (4) | 159 (3) |
O6—H6A···O3ii | 0.82 (2) | 1.97 (3) | 2.694 (4) | 147 (3) |
O5—H5B···O3iii | 0.82 (2) | 1.99 (2) | 2.796 (4) | 172 (4) |
N1—H1···O1iv | 0.83 (3) | 2.59 (4) | 3.214 (5) | 133 (3) |
N1—H1···O2iv | 0.83 (3) | 2.42 (3) | 3.026 (4) | 130 (3) |
C10—H10···O6v | 0.93 (4) | 2.47 (4) | 3.340 (5) | 156 (3) |
Symmetry codes: (i) −x−1, −y−1, −z; (ii) −x−1, −y−1, −z−1; (iii) x−1, y−1, z; (iv) x+1, y, z; (v) −x−3, −y−2, −z−1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C4H5NO4)(C6H6N2O)(H2O)] |
Mr | 334.78 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 5.520 (7), 6.715 (9), 17.21 (2) |
α, β, γ (°) | 93.41 (2), 93.952 (13), 106.52 (2) |
V (Å3) | 608.1 (13) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.83 |
Crystal size (mm) | 0.10 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.838, 0.838 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4742, 2739, 2269 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.095, 1.04 |
No. of reflections | 2739 |
No. of parameters | 229 |
No. of restraints | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.57, −0.50 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O4 | 0.87 (3) | 2.36 (3) | 2.973 (4) | 128 (3) |
C9—H9···O1 | 0.90 (3) | 2.44 (3) | 3.014 (4) | 121 (3) |
O5—H5A···O2i | 0.816 (18) | 1.99 (2) | 2.771 (4) | 159 (3) |
O6—H6A···O3ii | 0.822 (18) | 1.97 (3) | 2.694 (4) | 147 (3) |
O5—H5B···O3iii | 0.816 (18) | 1.986 (19) | 2.796 (4) | 172 (4) |
N1—H1···O1iv | 0.83 (3) | 2.59 (4) | 3.214 (5) | 133 (3) |
N1—H1···O2iv | 0.83 (3) | 2.42 (3) | 3.026 (4) | 130 (3) |
C10—H10···O6v | 0.93 (4) | 2.47 (4) | 3.340 (5) | 156 (3) |
Symmetry codes: (i) −x−1, −y−1, −z; (ii) −x−1, −y−1, −z−1; (iii) x−1, y−1, z; (iv) x+1, y, z; (v) −x−3, −y−2, −z−1. |
Acknowledgements
We are grateful for financial support from the National Natural Science Foundation of China (project 20803070) and the Natural Science Foundation of Zhejiang Province (project Y4100610).
References
Brandi-Blanco, M. P., Gonzalez-Perez, J. M., Choquesillo-Lazarte, D., Carballo, R., Castineiras, A. & Niclos-Gutierrez, J. (2003). Inorg. Chem. Commun. 6, 270–273. Google Scholar
Campos, A. C., Zafra, A. G. S., Perez, J. M. G., Gutierrez, J. N., Chinea, E. & Mederos, A. (1996). Inorg. Chim. Acta, 241, 39–45. Google Scholar
Castineiras, A., Tercero, J. M., Matilla, A., Gonzalez, J. M., Sicilia, A. G. & Niclos, J. (1995). J. Coord. Chem. 35, 61–72. Google Scholar
Chen, D., Liu, Z., Tang, W., Dai, A., Liu, W., Wang, B., Wang, M. & Zheng, P. (1990). Acta Cryst. C46, 1426–1429. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Craven, E., Zhang, C. G., Janiak, C., Rheinwald, G. & Lang, H. (2003). Z. Anorg. Allg. Chem. 629, 2282–2290. Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, pp. 86-89. Oxford University Press. Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Kundu, N., Chatterjee, P. B., Chaudhury, M. & Tiekink, E. R. T. (2005). Acta Cryst. E61, m1583–m1585. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Roman-Alpiste, M. J., Martin-Ramos, J. D., Castineiras-Campos, A., Bugella-Altamirano, E., Sicilia-Zafra, A. G., Gonzalez-Perez, J. M. & Niclos-Gutierrez, J. (1999). Polyhedron, 18, 3341–3351. CAS Google Scholar
Selvakumar, B., Rajendiran, V., Maheswari, P. U., Stoeckli-Evans, H. & Palaniandavar, M. (2006). J. Inorg. Biochem. 100, 316–330. Web of Science CSD CrossRef PubMed CAS Google Scholar
Setha, S. K., Dey, B., Kara, T. & Mukhopadhyay, S. (2010). J. Mol. Struct. 973, 81–88. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siddiqi, Z. A., Shahid, M., Khalid, M. & Kumar, S. (2009). Eur. J. Med. Chem. 44, 2517–2522. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, W. J., Li, Y. T., Wu, Z. Y., Liu, Z. Q. & Zheng, Z. C. (2008). J. Chem. Crystallogr. 38, 655–658. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Due to the tridentate chelating function of the iminodiacetate anion and the plasticity of the copper(ii) coordination stereochemistry, an important research has been devoted to the structure of [Cu(IDA)(H2)2]n (Roman-Alpiste et al., 1999) and a variety of mixed-ligand complexes of copper(ii), IDA and N-heterocyclic donor (auxiliary). These ternary complexes are a source of inorganic structural corelations and bioinorganic model compounds for mono- or di-nuclear copper proteins. Here, we report one of those ternary complexes Cu(IDA)(4-OXPy)(H2O) (I), composed from copper(ii), IDA and 4-OXPy ligand.
In compound (I), the copper(ii) exhibits distorted square pyramid coordination geometry, which is constructed from two O atoms and one N atom from a IDA ligand, one N atom from 4-OXPy ligand and other one O atom from water. In this CuO3N2 square pyramid, the Cu1—O1 = 1.998 (3) Å, Cu1—O4 = 1.969 (3) Å, Cu1—O5 = 2.326 (4) Å, Cu1—N1 = 1.998 (3) Å, Cu1—N2 = 1.968 (3) Å. All bond lengths are within commonly accepted values in the literature (Roman-Alpiste et al., 1999; Kundu et al., 2005; Chen et al., 1990; Zhang et al., 2008). This molecule looks like a space shuttle, the IDA ligand just as its empennage, and the 4-OXPy ligand as its airframe. And by virtue of three pairs of O—H···O and two pairs of N—H···O hydrogen bonds, the complexes are linked into a three-dimensional supramolecular network. The hydrogen bonding data are in the range of standard examples (Desiraju et al., 1999) and have been examined by the PLATON program (Spek, 2009). Firstly, along the crystal plane group of {1 - 1 0}, the adjacent molecules connect each other through three pairs of O—H···O hydrogen bonds [O5—H5A···O2, O5—H5B···O3 and O6—H6A···O3] (details listed in Table 2) to form supramolecular layers. And then, the neighbouring layers fuse one by one via other two pairs of N—H···O hydrogen bonds [N1—H1···O1 and N1—H1···O2] (details listed in Table 2) to give out a 3-D supramolecular network.