organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2226-o2227

9-Hy­dr­oxy-4,8-di­methyl-12-(pyrrolidin-1-ylmeth­yl)-3,14-dioxatri­cyclo­[9.3.0.02,4]tetra­dec-7-en-13-one

aLaboratoire de Chimie Biomoleculaire, Substances Naturelles et Réactivité, URAC16, Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, bLaboratoire des Matériaux Inorganiques, Université Blaise Pascal, UMR CNRS 6002, 24 Avenue des Landais, 63177 Aubière, France, and cLaboratoire de Chimie Bioorganique et Analytique, URAC 22, BP 146, FSTM, Université Hassan II, Mohammedia–Casablanca 20810 Mohammedia, Morocco
*Correspondence e-mail: mberraho@yahoo.fr

(Received 24 July 2011; accepted 28 July 2011; online 2 August 2011)

The title compound, C19H29O4, was synthesized from 9α-hy­droxy­parthenolide (9α-hy­droxy-4,8-dimethyl-12-methylen-3,14-dioxatricyclo­[9.3.0.02,4]tetra­dec-7-en-13-one), which was isolated from the chloro­form extract of the aerial parts of Anvillea radiata. The mol­ecule is built up from two fused five- and ten-membered rings with the pyrrolidin-1-ylmethyl group as a substituent. The five-membered lactone ring has an envelope conformation, whereas the ten-membered and pyrrolidine rings display approximate chair–chair and twisted conformations, respectively. The dihedral angle between the ten-membered ring and the lactone ring is 18.01 (19)°. An intra­molecular O—H⋯N hydrogen bond occurs. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen-bonding inter­actions.

Related literature

For the isolation and biological activity of 9α-hy­droxy­parthenolide, see: Abdel Sattar et al. (1996[Abdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403-405.]); El Hassany et al. (2004[El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573-576.]). For the reactivity of this sesquiterpene, see: Castaneda-Acosta et al. (1993[Castaneda-Acosta, J., Fisher, N. H. & Varga, D. (1993). J. Nat. Prod. 56, 90-98.]); Neukirch et al. (2003[Neukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & D'Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503-1510.]); Der-Ren et al. (2006[Der-Ren, H., Yu-Shan, W., Chun-Wei, C., Tzu-Wen, L., Wei-Cheng, C., Uan-Kang, T., John, T. A. H. & Hsing-Pang, H. (2006). Bioorg. Med. Chem. Lett. 14, 83-91.]); Neelakantan et al. (2009[Neelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346-4349.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.])

[Scheme 1]

Experimental

Crystal data
  • C19H29NO4

  • Mr = 335.43

  • Orthorhombic, P 21 21 21

  • a = 8.1389 (6) Å

  • b = 10.1788 (7) Å

  • c = 21.7669 (15) Å

  • V = 1803.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.30 × 0.27 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]) Tmin = 0.634, Tmax = 0.746

  • 7656 measured reflections

  • 2110 independent reflections

  • 1220 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.121

  • S = 0.99

  • 2110 reflections

  • 222 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯N 0.82 2.17 2.964 (4) 164
C1—H1⋯O4i 0.98 2.57 3.533 (4) 167
C11—H11⋯O1ii 0.98 2.50 3.403 (4) 154
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The natural sesquiterpene lactone 9α-hydroxypartenolide is the main constituent of the chloroform extract of the aerial parts of Anvillea radiata (El Hassany et al., 2004) and of Anvillea garcini (Abdel Sattar et al., 1996). The reactivity of this sesquiterpene lactone and its derivatives has been the subject of several studies (Castaneda-Acosta et al., 1993; Neukirch et al., 2003; Der-Ren et al., 2006; Neelakantan et al., 2009), with the aim to prepare products with a high added value that can be used in the pharmacological industry. In the same context, we have treated 9α-hydroxyparthenolide with one equivalent of pyrrolidine and obtained 9-hydroxy-4,8-dimethyl-12-pyrrolidin-1-ylmethyl-3, 14-dioxatricyclo[9.3.0.02,4] tetradec -7-en-13-one with a good yield of 84%. The structure of this new derivative of 9α-hydroxypartenolide was determined by its single-crystal X-ray structure. The molecule contains two fused rings which exhibit different conformations with a pyrrolidine ring as a substituent to the lactone ring. The molecular structure of the title compound, Fig.1, shows the lactone ring to adopt an envelope conformation, as indicated by Cremer & Pople (1975) puckering parameters QT = 0.291 (4) Å and ϕ2 = 78.1 (7)°. The ten-membered ring displays an approximate chair-chair conformation, while the pyrrolidine ring has a twisted conformation with QT = 0.377 (4) Å, ϕ2 = 15.0 (8)°. In the crystal structure, molecules are connected through C—H···O hydrogen bonds, forming chains running along the b axis. (Fig.2). In addition an intramolecular O—H···N hydrogen bond is also observed.

Related literature top

For the isolation and biological activity of 9α-hydroxyparthenolide, see: Abdel Sattar et al. (1996); El Hassany et al. (2004). For the reactivity of this sesquiterpene, see: Castaneda-Acosta et al. (1993); Neukirch et al. (2003); Der-Ren et al. (2006); Neelakantan et al. (2009). For conformational analysis, see: Cremer & Pople (1975)

Experimental top

A mixture of 9α-hydoxypartenolide (300 mg, 1.13 mmol) and one equivalent of pyrrolidine in EtOH (20 ml) was stirred for one night at room temperature. The next day the reaction was stopped by adding 10 ml of water and extracted three times with ethyl acetate (3 × 20 ml). The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated under vacuum to give 315 mg (0.94 mmol, 84%) of 9-hydroxy-4,8-dimethyl-12-pyrrolidin- 1-ylmethyl-3,14-dioxatricyclo[9.3.0.02,4]tetradec-7-en-13-one. The title compound was recrystallized in ethyl acetate.

Refinement top

Reflections (1 0 2), (1 0 1), (1 1 0), (0 1 3), (0 1 1), (0 1 2) and (1 1 2) were obstructed by the beam stop and were omitted from the refinement. All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine) and O–H = 0.82 Å with Uiso(H) = 1.2Ueq (methylene, methine) or Uiso(H) = 1.5Ueq (methyl, OH). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and thus 1554 Friedel pairs were merged and any references to the Flack parameter were removed. The choice of enantiomer is assigned arbitrarily.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 and SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. : Packing view showing the C–H···O and O–H···N hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
9-Hydroxy-4,8-dimethyl-12-(pyrrolidin-1-ylmethyl)-3,14- dioxatricyclo[9.3.0.02,4]tetradec-7-en-13-one top
Crystal data top
C19H29NO4F(000) = 728
Mr = 335.43Dx = 1.236 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7656 reflections
a = 8.1389 (6) Åθ = 3.7–26.4°
b = 10.1788 (7) ŵ = 0.09 mm1
c = 21.7669 (15) ÅT = 298 K
V = 1803.3 (2) Å3PRISM, colourless
Z = 40.30 × 0.27 × 0.18 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2110 independent reflections
Radiation source: fine-focus sealed tube1220 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 8.3333 pixels mm-1θmax = 26.4°, θmin = 4.0°
ϕ and ω scansh = 109
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1012
Tmin = 0.634, Tmax = 0.746l = 1627
7656 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0601P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
2110 reflectionsΔρmax = 0.15 e Å3
222 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (3)
Crystal data top
C19H29NO4V = 1803.3 (2) Å3
Mr = 335.43Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.1389 (6) ŵ = 0.09 mm1
b = 10.1788 (7) ÅT = 298 K
c = 21.7669 (15) Å0.30 × 0.27 × 0.18 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2110 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1220 reflections with I > 2σ(I)
Tmin = 0.634, Tmax = 0.746Rint = 0.053
7656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 0.99Δρmax = 0.15 e Å3
2110 reflectionsΔρmin = 0.15 e Å3
222 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2577 (4)1.0264 (3)0.09346 (16)0.0496 (9)
H10.29821.10800.07490.059*
C30.1673 (5)1.0469 (4)0.15028 (16)0.0548 (10)
C40.1500 (5)1.1871 (4)0.16990 (18)0.0673 (11)
H4A0.24811.23460.15780.081*
H4B0.14301.19010.21440.081*
C50.0026 (5)1.2584 (4)0.14249 (19)0.0694 (12)
H5A0.09841.23860.16740.083*
H5B0.01511.35260.14380.083*
C60.0347 (5)1.2170 (3)0.07708 (16)0.0508 (10)
H60.03911.24620.04750.061*
C70.1572 (4)1.1435 (3)0.05791 (15)0.0427 (8)
C80.1582 (4)1.0771 (3)0.00454 (15)0.0462 (9)
H80.27221.05560.01500.055*
C90.0599 (4)0.9476 (3)0.00085 (16)0.0441 (8)
H9A0.08420.90510.03800.053*
H9B0.09680.88970.03340.053*
C100.1272 (4)0.9652 (3)0.00631 (15)0.0428 (8)
H100.14841.05920.01180.051*
C110.2305 (4)0.9192 (3)0.04834 (16)0.0469 (9)
H110.18110.84220.06800.056*
C120.3823 (5)0.8774 (3)0.0393 (2)0.0580 (10)
C130.2083 (4)0.8935 (3)0.05999 (17)0.0519 (10)
H130.15840.80630.06390.062*
C140.1989 (5)0.9619 (4)0.12159 (17)0.0604 (11)
H14A0.24821.04830.11770.072*
H14B0.26350.91260.15110.072*
C150.0436 (6)0.8528 (4)0.1647 (2)0.0802 (14)
H15A0.08270.80380.12930.096*
H15B0.03330.79870.18740.096*
C160.1830 (7)0.8946 (5)0.2044 (3)0.1017 (17)
H16A0.28110.90960.18010.122*
H16B0.20670.82850.23530.122*
C170.1246 (6)1.0221 (5)0.23440 (19)0.0808 (14)
H17A0.10371.00890.27780.097*
H17B0.20651.09070.22980.097*
C180.0303 (6)1.0581 (4)0.20152 (16)0.0690 (12)
H18A0.12531.03980.22700.083*
H18B0.03031.15070.19100.083*
C190.0421 (5)0.9509 (4)0.17490 (18)0.0735 (13)
H19A0.06280.86530.15810.110*
H19B0.06620.97910.16340.110*
H19C0.04990.94740.21890.110*
C200.3045 (5)1.1034 (4)0.09593 (18)0.0682 (12)
H20A0.29221.13610.13700.102*
H20B0.31241.00930.09690.102*
H20C0.40251.13930.07800.102*
N0.0336 (4)0.9768 (3)0.14550 (13)0.0539 (8)
O10.5035 (4)0.8578 (3)0.06984 (15)0.0824 (9)
O20.3922 (3)0.8876 (2)0.02235 (13)0.0600 (7)
O30.3332 (3)0.9963 (3)0.15201 (12)0.0662 (8)
O40.0948 (3)1.1599 (2)0.05115 (11)0.0544 (7)
H40.07411.11610.08180.060 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.040 (2)0.055 (2)0.054 (2)0.0002 (18)0.0123 (19)0.0075 (18)
C30.046 (2)0.071 (3)0.047 (2)0.004 (2)0.0050 (19)0.011 (2)
C40.059 (3)0.088 (3)0.055 (2)0.000 (2)0.009 (2)0.010 (2)
C50.072 (3)0.070 (3)0.066 (3)0.007 (2)0.003 (3)0.012 (2)
C60.050 (2)0.049 (2)0.053 (2)0.0035 (18)0.001 (2)0.0002 (17)
C70.0356 (19)0.0471 (19)0.0454 (19)0.0053 (16)0.0035 (18)0.0030 (17)
C80.038 (2)0.054 (2)0.046 (2)0.0014 (15)0.0027 (18)0.0111 (18)
C90.043 (2)0.0413 (18)0.0484 (19)0.0034 (15)0.0035 (17)0.0050 (17)
C100.041 (2)0.0349 (17)0.052 (2)0.0005 (15)0.0019 (18)0.0044 (16)
C110.038 (2)0.0424 (19)0.060 (2)0.0016 (15)0.0031 (19)0.0104 (17)
C120.055 (3)0.041 (2)0.078 (3)0.0097 (19)0.009 (3)0.0028 (19)
C130.051 (2)0.0458 (19)0.059 (2)0.0019 (17)0.008 (2)0.0038 (18)
C140.062 (3)0.064 (2)0.056 (2)0.004 (2)0.012 (2)0.007 (2)
C150.106 (4)0.065 (3)0.069 (3)0.026 (3)0.011 (3)0.011 (2)
C160.111 (4)0.109 (4)0.085 (3)0.026 (4)0.022 (3)0.012 (3)
C170.091 (4)0.093 (3)0.059 (2)0.003 (3)0.012 (3)0.012 (2)
C180.083 (3)0.079 (3)0.045 (2)0.009 (3)0.006 (2)0.004 (2)
C190.067 (3)0.089 (3)0.065 (2)0.011 (3)0.002 (2)0.026 (2)
C200.046 (2)0.095 (3)0.064 (2)0.002 (2)0.008 (2)0.001 (2)
N0.062 (2)0.0553 (18)0.0444 (16)0.0090 (16)0.0040 (16)0.0051 (15)
O10.068 (2)0.0735 (19)0.106 (2)0.0188 (16)0.0221 (19)0.0043 (18)
O20.0461 (16)0.0548 (15)0.0791 (19)0.0125 (13)0.0057 (14)0.0001 (13)
O30.0478 (16)0.0875 (19)0.0634 (16)0.0074 (14)0.0176 (14)0.0097 (14)
O40.0635 (17)0.0531 (14)0.0466 (14)0.0046 (14)0.0035 (14)0.0102 (13)
Geometric parameters (Å, º) top
C1—O31.448 (4)C12—O11.206 (4)
C1—C31.454 (5)C12—O21.349 (5)
C1—C111.485 (5)C12—C131.495 (5)
C1—H10.9800C13—C141.513 (5)
C3—O31.446 (4)C13—H130.9800
C3—C41.496 (5)C14—N1.450 (4)
C3—C191.510 (5)C14—H14A0.9700
C4—C51.558 (5)C14—H14B0.9700
C4—H4A0.9700C15—N1.470 (5)
C4—H4B0.9700C15—C161.489 (6)
C5—C61.508 (5)C15—H15A0.9700
C5—H5A0.9700C15—H15B0.9700
C5—H5B0.9700C16—C171.529 (6)
C6—C71.315 (4)C16—H16A0.9700
C6—H60.9300C16—H16B0.9700
C7—C201.513 (5)C17—C181.495 (6)
C7—C81.518 (5)C17—H17A0.9700
C8—O41.417 (4)C17—H17B0.9700
C8—C91.544 (5)C18—N1.474 (5)
C8—H80.9800C18—H18A0.9700
C9—C101.538 (4)C18—H18B0.9700
C9—H9A0.9700C19—H19A0.9600
C9—H9B0.9700C19—H19B0.9600
C10—C131.528 (5)C19—H19C0.9600
C10—C111.530 (4)C20—H20A0.9600
C10—H100.9800C20—H20B0.9600
C11—O21.468 (4)C20—H20C0.9600
C11—H110.9800O4—H40.8200
O3—C1—C359.8 (2)O2—C12—C13110.3 (3)
O3—C1—C11119.3 (3)C12—C13—C14111.4 (3)
C3—C1—C11126.3 (3)C12—C13—C10103.4 (3)
O3—C1—H1113.6C14—C13—C10115.8 (3)
C3—C1—H1113.6C12—C13—H13108.6
C11—C1—H1113.6C14—C13—H13108.6
O3—C3—C159.9 (2)C10—C13—H13108.6
O3—C3—C4114.9 (3)N—C14—C13114.4 (3)
C1—C3—C4115.3 (3)N—C14—H14A108.7
O3—C3—C19113.0 (3)C13—C14—H14A108.7
C1—C3—C19123.4 (4)N—C14—H14B108.7
C4—C3—C19116.9 (4)C13—C14—H14B108.7
C3—C4—C5114.2 (3)H14A—C14—H14B107.6
C3—C4—H4A108.7N—C15—C16104.2 (4)
C5—C4—H4A108.7N—C15—H15A110.9
C3—C4—H4B108.7C16—C15—H15A110.9
C5—C4—H4B108.7N—C15—H15B110.9
H4A—C4—H4B107.6C16—C15—H15B110.9
C6—C5—C4111.7 (3)H15A—C15—H15B108.9
C6—C5—H5A109.3C15—C16—C17104.7 (4)
C4—C5—H5A109.3C15—C16—H16A110.8
C6—C5—H5B109.3C17—C16—H16A110.8
C4—C5—H5B109.3C15—C16—H16B110.8
H5A—C5—H5B107.9C17—C16—H16B110.8
C7—C6—C5126.2 (4)H16A—C16—H16B108.9
C7—C6—H6116.9C18—C17—C16105.4 (4)
C5—C6—H6116.9C18—C17—H17A110.7
C6—C7—C20125.5 (3)C16—C17—H17A110.7
C6—C7—C8122.8 (3)C18—C17—H17B110.7
C20—C7—C8111.4 (3)C16—C17—H17B110.7
O4—C8—C7112.0 (3)H17A—C17—H17B108.8
O4—C8—C9110.9 (3)N—C18—C17105.9 (3)
C7—C8—C9109.3 (3)N—C18—H18A110.6
O4—C8—H8108.2C17—C18—H18A110.6
C7—C8—H8108.2N—C18—H18B110.6
C9—C8—H8108.2C17—C18—H18B110.6
C10—C9—C8114.2 (3)H18A—C18—H18B108.7
C10—C9—H9A108.7C3—C19—H19A109.5
C8—C9—H9A108.7C3—C19—H19B109.5
C10—C9—H9B108.7H19A—C19—H19B109.5
C8—C9—H9B108.7C3—C19—H19C109.5
H9A—C9—H9B107.6H19A—C19—H19C109.5
C13—C10—C11102.2 (3)H19B—C19—H19C109.5
C13—C10—C9115.6 (3)C7—C20—H20A109.5
C11—C10—C9116.6 (3)C7—C20—H20B109.5
C13—C10—H10107.3H20A—C20—H20B109.5
C11—C10—H10107.3C7—C20—H20C109.5
C9—C10—H10107.3H20A—C20—H20C109.5
O2—C11—C1106.4 (3)H20B—C20—H20C109.5
O2—C11—C10105.1 (3)C14—N—C15114.1 (3)
C1—C11—C10111.8 (3)C14—N—C18111.9 (3)
O2—C11—H11111.1C15—N—C18103.8 (3)
C1—C11—H11111.1C12—O2—C11110.3 (3)
C10—C11—H11111.1C3—O3—C160.3 (2)
O1—C12—O2120.8 (4)C8—O4—H4109.5
O1—C12—C13128.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N0.822.172.964 (4)164
C1—H1···O4i0.982.573.533 (4)167
C11—H11···O1ii0.982.503.403 (4)154
Symmetry codes: (i) x+1/2, y+5/2, z; (ii) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC19H29NO4
Mr335.43
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)8.1389 (6), 10.1788 (7), 21.7669 (15)
V3)1803.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.27 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.634, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
7656, 2110, 1220
Rint0.053
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.121, 0.99
No. of reflections2110
No. of parameters222
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.15

Computer programs: APEX2 (Bruker, 2005), APEX2 and SAINT (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N0.822.172.964 (4)164
C1—H1···O4i0.982.573.533 (4)167
C11—H11···O1ii0.982.503.403 (4)154
Symmetry codes: (i) x+1/2, y+5/2, z; (ii) x1/2, y+3/2, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAbdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403–405.  CrossRef CAS PubMed Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationCastaneda-Acosta, J., Fisher, N. H. & Varga, D. (1993). J. Nat. Prod. 56, 90–98.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDer-Ren, H., Yu-Shan, W., Chun-Wei, C., Tzu-Wen, L., Wei-Cheng, C., Uan-Kang, T., John, T. A. H. & Hsing-Pang, H. (2006). Bioorg. Med. Chem. Lett. 14, 83–91.  Google Scholar
First citationEl Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573–576.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNeelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346–4349.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNeukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & D'Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503–1510.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2226-o2227
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds