metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1286-m1287

trans-Carbonyl­chloridobis[di­cyclo­hex­yl(4-iso­propyl­phen­yl)phosphane]rhodium(I) acetone monosolvate

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: mullera@uj.ac.za

(Received 26 July 2011; accepted 17 August 2011; online 27 August 2011)

The title rhodium Vaska-type complex, trans-[RhCl{P(C6H11)2(C6H4-4-C3H7)2}2(CO)], crystallizes with an accompanying acetone solvent mol­ecule. The metal atom shows a distorted square-planar coordination environment with selected important geometrical parameters of Rh—P = 2.3237 (6) and 2.3253 (6) Å, Rh—Cl = 2.3724 (6) Å, Rh—C = 1.802 (2) Å, P—Rh—P = 173.42 (2)° and Cl—Rh—C = 179.13 (7)°. Effective cone angles for the two P atoms are 165 and 161°, respectively. Both isopropyl groups and the acetone mol­ecule are disordered with occupancy values of 0.523 (5):0.477 (5), 0.554 (8):0.446 (8) and 0.735 (4):0.265 (4), respectively. The crystal packing is stabilized by weak C—H⋯O and C—H⋯Cl contacts.

Related literature

For examples of the packing disorder observed in Vaska-type complexes of Rh, Ir, Pd and Pt, see: Chen et al. (1991[Chen, Y.-J., Wang, J.-C. & Wang, Yu (1991). Acta Cryst. C47, 2441-2442.]), Kuwabara & Bau (1994[Kuwabara, E. & Bau, R. (1994). Acta Cryst. C50, 1409-1411.]), Otto et al. (2000[Otto, S., Roodt, A. & Smith, J. (2000). Inorg. Chim. Acta, 303, 295-299.]) and Otto (2001[Otto, S. (2001). Acta Cryst. C57, 793-795.]), respectively. For background to our investigation of the steric and electronic effects of group 15 ligands, see: Roodt et al. (2003[Roodt, A., Otto, S. & Steyl, G. J. (2003). Coord. Chem. Rev. 245, 121-137.]); Muller et al. (2006[Muller, A., Meijboom, R. & Roodt, A. (2006). J. Organomet. Chem. 691, 5794-5801.], 2008[Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650-657.]). For the related synthesis of the trans-[IrCl(CO)(PPh3)2] complex, see: Collman et al. (1990[Collman, J. P., Sears, C. T. Jr & Kubota, M. (1990). Inorg. Synth. 28, 92-94.]). For background to cone angles, see Tolman (1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]); Otto et al. (2000[Otto, S., Roodt, A. & Smith, J. (2000). Inorg. Chim. Acta, 303, 295-299.]); Otto (2001[Otto, S. (2001). Acta Cryst. C57, 793-795.]). For background to the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [RhCl(C21H33P)2(CO)]·C3H6O

  • Mr = 857.34

  • Tetragonal, P 43 21 2

  • a = 16.0130 (15) Å

  • c = 35.557 (3) Å

  • V = 9117.4 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 100 K

  • 0.34 × 0.24 × 0.14 mm

Data collection
  • Bruker APEX DUO 4K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.838, Tmax = 0.929

  • 245346 measured reflections

  • 11404 independent reflections

  • 10089 reflections with I > 2σ(I)

  • Rint = 0.105

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.059

  • S = 1.04

  • 11404 reflections

  • 544 parameters

  • 31 restraints

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4954 Friedel pairs

  • Flack parameter: −0.029 (17)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C131—H131⋯Cl 1.00 2.76 3.332 (2) 117
C221—H221⋯Cl 1.00 2.67 3.324 (2) 123
C224—H22E⋯O1i 0.99 2.70 3.359 (3) 124
Symmetry code: (i) [-y+{\script{1\over 2}}, x-{\script{1\over 2}}, z-{\script{1\over 4}}].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Metal complexes with the general formula trans-[M(X)(Y)(L)2] (M = Ir(I), Rh(I), Pd(II), Pt(II); X = halogen or pseudo halogen; Y = carbonyl or halogen; L = tertiary group 15 ligand) often crystallize with the transition metal lying on a crystallographic centre of inversion resulting in a packing disorder of the X and Y moieties (Otto, 2001; Otto et al., 2000; Chen et al., 1991; Kuwabara & Bau, 1994). These Vaska type complexes are useful model complexes and provide several probing methods, e.g. NMR and IR, to investigate the steric and electronic effects of novel group 15 ligands (Roodt et al., 2003; Muller et al., 2006; Muller et al., 2008). Presented here is the trans-[RhCl(CO){PCy2(C6H4-4-C3H7}2] complex, containing the first reported structure of this tertiary phosphane ligand (Allen, 2002; Cambridge Structural Database search, database accessed 10/06/2011).

The title compound (Fig. 1) crystallizes in the tetragonal space group P43212 (Z=8). This results in molecules lying in general positions in the unit cell and hence no packing disorder of the Cl and CO moieties is observed. The asymmetric unit has one molecule of acetone situated centrally near the rhodium complex. The metal coordination environment is distorted. This is observed most prominently for the P2—Rh1—P1 angle of 173.42 (2)° (Rh1 is displaced 0.0698 (7) Å from the plane formed by P1, C01, P2 and Cl respectively; r.m.s. deviation of fitted atoms = 0.0575 Å). The Cl—Rh1—C01 angle of 179.18 (8)° appears unaffected as the chloride and carbonyl ligands are significantly less bulky than the tertiary phosphorus ligands. The distortion could possibly be attributed to packing effects induced by the isopropyl groups.

To determine the phosphorus ligand bulkiness, an adaptation of the well known Tolman cone angle model was used (Tolman, 1977). Instead of using a CPK model, the actual geometry from the crystal structure was taken to determine an 'effective cone angle' (Otto et al., 2001). Two different cone angles of 165° and 161° were obtained for P1 and P2 respectively, indicating some flexibility of the substituents of this group 15 ligand. The difference in cone angles could possibly be attributed to interactions with the acetone solvate or packing effects induced by the isopropyl groups. Weak C—H···Cl/O interactions stabilize the crystal structure (see Table 1).

Related literature top

For examples of the packing disorder observed in Vaska-type complexes of Rh, Ir, Pd and Pt, see: Chen et al. (1991), Kuwabara & Bau (1994), Otto et al. (2000) and Otto (2001), respectively. For background to our investigation of the steric and electronic effects of group 15 ligands, see: Roodt et al. (2003); Muller et al. (2006, 2008). For the related synthesis of the trans-[IrCl(CO)(PPh3)2] complex, see: Collman et al. (1990). For background to cone angles, see Tolman (1977); Otto et al. (2000); Otto (2001). For background to the Cambridge Structural Database, see: Allen (2002).

Experimental top

The synthesis of the Rh-Vaska complex was adapted from the synthesis of the trans-[IrCl(CO)(PPh3)2] complex (see Collman et al., 1990). [RhCl3.xH2O] (50 mg, 0.24 mmol, using the anhydrous basis for the molecular weight calculation) was dissolved in dimethylformamide (DMF) and then heated under reflux for approximately one hour. During this time the colour changed from red to yellow, signalling the formation of the [Rh(µ-Cl)(CO)2]2 dimer. The solution was then allowed to cool to room temperature and dicyclohexyl-4-isopropylphenyl phosphane (159 mg; 0.5 mmol), dissolved in DMF (3 cm3) was added drop wise while stirring. This was followed by the addition of ice to the mixture and a precipitate formed. The solution was then centrifuged and the precipitate collected. This was then worked up by washing with water, extracting with dichloromethane (10 cm3), and drying with MgSO4 (ca. 4 g). The solution was then evaporated to give the Vaska complex in powder form. This powder was then checked for purity (see characterization below) and single crystals suitable for data collection were obtained by slow evaporation from an acetone solution.

Analytical data: IR (CHCl3), ν(CO) = 1965 cm-1. NMR: 31P {H} NMR (CDCl3, 400 MHz) = δ 35.1 (d,1JRh—P = 123 Hz, 2P).

Refinement top

All hydrogen atoms were positioned in geometrically idealized positions with C—H = 1.00 Å, 0.99 Å, 0.98 Å and 0.95 Å for methine, methylene, methyl and aromatic H atoms respectively. All hydrogen atoms were allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq, except for methyl where Uiso(H) = 1.5Ueq was utilized. The initial positions of methyl hydrogen atoms were located from a Fourier difference map and refined as a fixed rotor. The structure refined to a final Flack parameter of -0.029 (17). The highest residual electron density of 0.58 e.Å-3 is 0.65 Å from C6B representing no physical meaning. Initial refinement of the data showed large displacements of isopropyl groups and the acetone solvate. Subsequent refinement cycles involved treatment of these parts to disordered refinement procedures. Geometrical (SADI) restraints were applied to isopropyl groups bonded to the phenyl rings (C114—C1A/B and C214—C4A/B), as well as to 1,2- and some 1,3- bond distances (C1A/B—C2A/B and C1A/B—C3A/B, C4A/B—C5A/B and C4A/B—C6A/B, C5A/B—C6A/B) of the isopropyl moieties. Ellipsoid displacement (EADP) constraints were applied to disordered atom groups C1A/B, C2A/B, C4A/B, C5A/B and O2A/C9B. In the case of C6A/B ISOR had to be utilized. All restraints were applied with the default standard deviations, except for ISOR where 0.005 Å2 was used. In each case a free variable was connected to the disordered parts and refined to add to unity. For both isopropyl moieties, the free variables refined to almost 50:50 ratio's (0.523 (5):0.477 (5) and 0.554 (8):0.446 (8) for isopropyls attached to C114 and C214 respectively). The free variable for the acetone solvate refined to a ratio of 0.735 (4):0.265 (4). The final refined model shows slightly large carbon Ueq(max)/Ueq(min) values, but was retained as these observations are primarily associated with the disordered parts.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the numbering scheme of atoms and displacement ellipsoids (drawn at a 30% probability level). Carbon atoms for the minor components of disordered parts are cyan colored. Hydrogen atoms have been omitted for clarity.
trans-Carbonylchloridobis[dicyclohexyl(4- isopropylphenyl)phosphane]rhodium(I) acetone monosolvate top
Crystal data top
[RhCl(C21H33P)2(CO)]·C3H6ODx = 1.249 Mg m3
Mr = 857.34Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212Cell parameters from 9890 reflections
Hall symbol: P 4nw 2abwθ = 2.3–27.4°
a = 16.0130 (15) ŵ = 0.54 mm1
c = 35.557 (3) ÅT = 100 K
V = 9117.4 (15) Å3Block, yellow
Z = 80.34 × 0.24 × 0.14 mm
F(000) = 3648
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
11404 independent reflections
Graphite monochromator10089 reflections with I > 2σ(I)
Detector resolution: 8.4 pixels mm-1Rint = 0.105
ϕ and ω scansθmax = 28.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2121
Tmin = 0.838, Tmax = 0.929k = 2118
245346 measured reflectionsl = 4746
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0171P)2 + 5.251P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.014
11404 reflectionsΔρmax = 0.58 e Å3
544 parametersΔρmin = 0.36 e Å3
31 restraintsAbsolute structure: Flack (1983), 4954 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.029 (17)
Crystal data top
[RhCl(C21H33P)2(CO)]·C3H6OZ = 8
Mr = 857.34Mo Kα radiation
Tetragonal, P43212µ = 0.54 mm1
a = 16.0130 (15) ÅT = 100 K
c = 35.557 (3) Å0.34 × 0.24 × 0.14 mm
V = 9117.4 (15) Å3
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
11404 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
10089 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 0.929Rint = 0.105
245346 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.059Δρmax = 0.58 e Å3
S = 1.04Δρmin = 0.36 e Å3
11404 reflectionsAbsolute structure: Flack (1983), 4954 Friedel pairs
544 parametersAbsolute structure parameter: 0.029 (17)
31 restraints
Special details top

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 15 s/frame. A total of 3328 frames were collected with a frame width of 0.5° covering up to θ = 28.38° with 99.7% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rh10.296490 (11)0.118541 (11)0.226611 (5)0.01316 (4)
Cl0.32709 (4)0.14074 (4)0.162099 (15)0.02160 (12)
C010.27320 (13)0.10337 (14)0.27571 (7)0.0185 (4)
O10.25881 (11)0.09525 (11)0.30693 (5)0.0270 (4)
P10.19418 (3)0.22135 (3)0.224492 (15)0.01422 (11)
P20.40800 (3)0.02650 (4)0.232680 (15)0.01409 (12)
C1A0.1068 (6)0.1425 (10)0.3267 (3)0.0219 (12)0.523 (5)
H1A0.11690.0810.32460.026*0.523 (5)
C2A0.0880 (4)0.1633 (5)0.36763 (16)0.0478 (13)0.523 (5)
H2A10.03870.13210.37590.072*0.523 (5)
H2A20.1360.14790.38330.072*0.523 (5)
H2A30.07740.22330.37010.072*0.523 (5)
C3A0.1871 (4)0.1884 (6)0.3156 (2)0.063 (3)0.523 (5)
H3A10.17690.24880.31550.094*0.523 (5)
H3A20.23130.17530.33370.094*0.523 (5)
H3A30.20450.17050.29040.094*0.523 (5)
C4A0.3139 (5)0.2813 (5)0.3295 (2)0.0332 (16)0.554 (8)
H4A0.25280.27660.33510.04*0.554 (8)
C5A0.337 (2)0.3567 (14)0.3058 (5)0.052 (2)0.554 (8)
H5A10.39750.35980.30320.078*0.554 (8)
H5A20.31110.35140.28090.078*0.554 (8)
H5A30.31620.40750.31810.078*0.554 (8)
C6A0.3706 (7)0.2919 (5)0.3661 (2)0.081 (3)0.554 (8)
H6A10.3760.23780.37880.122*0.554 (8)
H6A20.4260.3120.35870.122*0.554 (8)
H6A30.34460.33220.38320.122*0.554 (8)
C1B0.1148 (6)0.1476 (11)0.3223 (3)0.0219 (12)0.477 (5)
H1B0.10620.0940.33620.026*0.477 (5)
C2B0.1380 (5)0.2143 (5)0.35103 (18)0.0478 (13)0.477 (5)
H2B10.09070.22410.36790.072*0.477 (5)
H2B20.18630.19540.36570.072*0.477 (5)
H2B30.15210.26630.33790.072*0.477 (5)
C3B0.1887 (3)0.1353 (4)0.29552 (17)0.0281 (14)0.477 (5)
H3B10.19740.18640.28090.042*0.477 (5)
H3B20.23910.12290.31010.042*0.477 (5)
H3B30.17680.08870.27840.042*0.477 (5)
C4B0.3469 (6)0.2804 (7)0.3325 (3)0.0332 (16)0.446 (8)
H4B0.4050.28680.34240.04*0.446 (8)
C5B0.331 (3)0.3593 (17)0.3116 (7)0.052 (2)0.446 (8)
H5B10.37590.36860.29340.078*0.446 (8)
H5B20.27750.35530.29840.078*0.446 (8)
H5B30.32910.40610.32940.078*0.446 (8)
C6B0.2968 (7)0.2656 (5)0.3655 (2)0.062 (3)0.446 (8)
H6B10.29280.31710.38020.093*0.446 (8)
H6B20.24070.24780.35780.093*0.446 (8)
H6B30.32270.22180.38070.093*0.446 (8)
C1110.10397 (13)0.20137 (14)0.25449 (6)0.0155 (4)
C1120.07887 (14)0.11957 (15)0.26091 (6)0.0174 (5)
H1120.10910.07490.24980.021*
C1130.01013 (15)0.10227 (15)0.28339 (6)0.0198 (5)
H1130.0060.04580.28730.024*
C1140.03569 (15)0.16564 (15)0.30036 (6)0.0199 (5)
C1150.01049 (16)0.24773 (16)0.29398 (7)0.0234 (5)
H1150.04030.29220.30550.028*
C1160.05759 (14)0.26562 (14)0.27102 (7)0.0200 (5)
H1160.07270.32210.26650.024*
C1210.23735 (14)0.32196 (14)0.24048 (6)0.0187 (5)
H1210.19260.36530.23860.022*
C1220.26715 (17)0.31755 (16)0.28140 (7)0.0261 (5)
H12A0.30820.27170.28410.031*
H12B0.21910.30520.2980.031*
C1230.30747 (18)0.40018 (16)0.29338 (8)0.0336 (7)
H12C0.26520.44520.29240.04*
H12D0.32740.39540.31960.04*
C1240.38058 (17)0.42277 (16)0.26785 (9)0.0376 (7)
H12E0.40440.47710.27580.045*
H12F0.42480.37990.27020.045*
C1250.35206 (17)0.42832 (16)0.22722 (9)0.0355 (7)
H12G0.40080.43980.21090.043*
H12H0.31230.47530.22450.043*
C1260.30983 (16)0.34720 (16)0.21440 (7)0.0267 (6)
H12I0.35170.30180.21390.032*
H12J0.28830.35460.18850.032*
C1310.14855 (15)0.24185 (14)0.17773 (6)0.0181 (5)
H1310.19610.25280.16020.022*
C1320.10437 (15)0.16316 (15)0.16354 (7)0.0229 (5)
H13A0.14360.11540.16440.027*
H13B0.05660.15010.18020.027*
C1330.07292 (18)0.17503 (18)0.12330 (7)0.0302 (6)
H13C0.12110.1830.10620.036*
H13D0.04260.12420.11520.036*
C1340.01529 (18)0.24991 (19)0.12055 (8)0.0333 (7)
H13E0.0360.23890.13530.04*
H13F0.00120.25820.0940.04*
C1350.05677 (17)0.32905 (18)0.13510 (7)0.0309 (6)
H13G0.01580.37530.13480.037*
H13H0.10350.34440.11820.037*
C1360.09008 (16)0.31768 (16)0.17526 (7)0.0245 (5)
H13I0.04260.30990.19280.029*
H13J0.12070.36860.1830.029*
C2110.38831 (16)0.06260 (14)0.26335 (6)0.0184 (5)
C2120.30787 (17)0.09523 (15)0.26457 (7)0.0251 (5)
H2120.26470.06970.25030.03*
C2130.2901 (2)0.16503 (17)0.28653 (8)0.0369 (7)
H2130.23480.18640.28690.044*
C2140.3509 (2)0.20404 (17)0.30784 (7)0.0388 (8)
C2150.4306 (2)0.17083 (17)0.30673 (7)0.0347 (7)
H2150.47340.1960.32140.042*
C2160.44988 (17)0.10151 (16)0.28472 (7)0.0266 (6)
H2160.50540.08060.28430.032*
C2210.44359 (15)0.02103 (15)0.18819 (6)0.0178 (5)
H2210.44650.02530.16940.021*
C2220.37912 (17)0.08287 (17)0.17341 (7)0.0269 (5)
H22A0.32340.05620.17290.032*
H22B0.37630.13190.19030.032*
C2230.40333 (18)0.1112 (2)0.13367 (7)0.0361 (7)
H22C0.36230.15280.12460.043*
H22D0.40140.06260.11650.043*
C2240.48995 (19)0.14917 (18)0.13265 (8)0.0337 (7)
H22E0.50530.16160.10630.04*
H22F0.48970.20250.14680.04*
C2250.55463 (18)0.09071 (18)0.14967 (7)0.0315 (6)
H22G0.56170.04160.13310.038*
H22H0.6090.120.15110.038*
C2260.52968 (15)0.06103 (16)0.18898 (7)0.0231 (5)
H22I0.52940.10910.20650.028*
H22J0.57110.020.19820.028*
C2310.50106 (14)0.07875 (15)0.25216 (6)0.0177 (4)
H2310.54740.0370.25320.021*
C2320.52855 (15)0.15070 (15)0.22626 (8)0.0233 (5)
H23A0.54180.12820.2010.028*
H23B0.48210.1910.22350.028*
C2330.60515 (16)0.19557 (18)0.24207 (7)0.0302 (6)
H23C0.65340.1570.24190.036*
H23D0.6190.24380.22580.036*
C2340.59008 (17)0.22631 (17)0.28217 (8)0.0320 (6)
H23E0.64180.25190.29210.038*
H23F0.54590.26950.2820.038*
C2350.56370 (17)0.15413 (18)0.30758 (7)0.0292 (6)
H23G0.60970.1130.30930.035*
H23H0.55230.17550.33320.035*
C2360.48589 (15)0.11165 (17)0.29219 (6)0.0236 (5)
H23I0.4390.1520.29190.028*
H23J0.47020.06460.30880.028*
O2A0.1421 (3)0.9423 (2)0.19253 (10)0.0673 (12)0.735 (4)
C7A0.1229 (3)0.9277 (3)0.16044 (16)0.0412 (12)0.735 (4)
C8A0.1729 (5)0.9554 (5)0.12697 (17)0.0396 (14)0.735 (4)
H8A10.21170.99960.13460.059*0.735 (4)
H8A20.13520.97680.10750.059*0.735 (4)
H8A30.20450.90790.1170.059*0.735 (4)
C9A0.0460 (4)0.8777 (4)0.15197 (15)0.0715 (19)0.735 (4)
H9A10.01630.86550.17540.107*0.735 (4)
H9A20.0620.82520.13980.107*0.735 (4)
H9A30.00950.90960.13520.107*0.735 (4)
O2B0.0178 (7)0.9608 (7)0.1191 (4)0.079 (4)0.265 (4)
C7B0.0849 (11)0.9422 (9)0.1305 (4)0.055 (4)0.265 (4)
C8B0.1651 (14)0.9696 (15)0.1112 (6)0.052 (5)0.265 (4)
H8B10.1521.0110.09180.079*0.265 (4)
H8B20.1920.9210.09960.079*0.265 (4)
H8B30.20290.99430.12980.079*0.265 (4)
C9B0.0960 (14)0.8978 (12)0.1642 (5)0.0673 (12)0.265 (4)
H9B10.04610.86430.16930.101*0.265 (4)
H9B20.10520.93720.18490.101*0.265 (4)
H9B30.14460.86090.16180.101*0.265 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01277 (8)0.01424 (8)0.01245 (7)0.00271 (7)0.00052 (7)0.00092 (7)
Cl0.0220 (3)0.0260 (3)0.0169 (2)0.0078 (2)0.0037 (2)0.0048 (2)
C010.0141 (10)0.0176 (11)0.0238 (11)0.0057 (8)0.0006 (9)0.0003 (10)
O10.0280 (10)0.0342 (11)0.0187 (8)0.0082 (8)0.0009 (7)0.0006 (8)
P10.0132 (3)0.0138 (3)0.0156 (2)0.0022 (2)0.0013 (2)0.0018 (2)
P20.0141 (3)0.0144 (3)0.0137 (3)0.0033 (2)0.0001 (2)0.0007 (2)
C1A0.0190 (18)0.0212 (19)0.026 (2)0.0022 (17)0.0063 (16)0.000 (2)
C2A0.053 (3)0.063 (4)0.028 (2)0.029 (2)0.022 (2)0.015 (2)
C3A0.025 (3)0.087 (6)0.076 (5)0.007 (4)0.020 (3)0.040 (5)
C4A0.036 (5)0.0222 (16)0.041 (2)0.002 (4)0.006 (4)0.0106 (15)
C5A0.062 (4)0.023 (2)0.070 (5)0.011 (2)0.035 (6)0.006 (3)
C6A0.120 (5)0.068 (4)0.055 (4)0.028 (4)0.008 (4)0.019 (3)
C1B0.0190 (18)0.0212 (19)0.026 (2)0.0022 (17)0.0063 (16)0.000 (2)
C2B0.053 (3)0.063 (4)0.028 (2)0.029 (2)0.022 (2)0.015 (2)
C3B0.013 (3)0.035 (4)0.036 (3)0.002 (2)0.005 (2)0.009 (3)
C4B0.036 (5)0.0222 (16)0.041 (2)0.002 (4)0.006 (4)0.0106 (15)
C5B0.062 (4)0.023 (2)0.070 (5)0.011 (2)0.035 (6)0.006 (3)
C6B0.098 (5)0.039 (4)0.049 (4)0.022 (4)0.030 (4)0.009 (3)
C1110.0139 (11)0.0161 (10)0.0166 (10)0.0029 (9)0.0000 (8)0.0005 (9)
C1120.0165 (11)0.0163 (11)0.0195 (11)0.0004 (10)0.0016 (8)0.0016 (9)
C1130.0205 (12)0.0178 (12)0.0209 (12)0.0030 (9)0.0013 (9)0.0003 (9)
C1140.0178 (12)0.0238 (13)0.0181 (11)0.0036 (10)0.0007 (9)0.0021 (10)
C1150.0210 (13)0.0206 (13)0.0285 (14)0.0021 (10)0.0080 (11)0.0033 (10)
C1160.0194 (11)0.0141 (10)0.0264 (13)0.0010 (9)0.0048 (10)0.0020 (10)
C1210.0171 (11)0.0159 (11)0.0232 (12)0.0012 (9)0.0003 (9)0.0010 (9)
C1220.0281 (13)0.0241 (14)0.0260 (13)0.0015 (10)0.0024 (11)0.0043 (10)
C1230.0318 (16)0.0271 (15)0.0418 (16)0.0017 (12)0.0069 (13)0.0126 (12)
C1240.0234 (13)0.0213 (13)0.068 (2)0.0011 (11)0.0087 (15)0.0120 (13)
C1250.0264 (14)0.0218 (13)0.0583 (19)0.0069 (11)0.0057 (14)0.0012 (14)
C1260.0235 (13)0.0226 (12)0.0341 (14)0.0026 (11)0.0064 (11)0.0018 (11)
C1310.0185 (11)0.0190 (11)0.0167 (11)0.0043 (9)0.0008 (9)0.0028 (9)
C1320.0218 (13)0.0259 (13)0.0210 (12)0.0001 (10)0.0047 (10)0.0035 (10)
C1330.0333 (15)0.0368 (16)0.0204 (13)0.0020 (12)0.0076 (11)0.0022 (11)
C1340.0254 (14)0.0481 (18)0.0264 (14)0.0014 (13)0.0078 (11)0.0140 (13)
C1350.0285 (14)0.0363 (16)0.0279 (14)0.0082 (12)0.0014 (11)0.0150 (12)
C1360.0241 (13)0.0234 (14)0.0259 (12)0.0075 (10)0.0006 (10)0.0058 (10)
C2110.0259 (12)0.0149 (10)0.0143 (10)0.0046 (10)0.0021 (9)0.0009 (8)
C2120.0321 (14)0.0191 (12)0.0243 (12)0.0009 (10)0.0011 (11)0.0009 (9)
C2130.0509 (18)0.0256 (14)0.0340 (15)0.0116 (14)0.0071 (14)0.0009 (12)
C2140.077 (2)0.0163 (12)0.0235 (13)0.0031 (15)0.0115 (13)0.0024 (11)
C2150.056 (2)0.0269 (15)0.0211 (13)0.0166 (14)0.0005 (13)0.0053 (11)
C2160.0320 (14)0.0267 (14)0.0211 (12)0.0085 (11)0.0013 (10)0.0015 (10)
C2210.0194 (12)0.0201 (12)0.0140 (10)0.0052 (9)0.0001 (9)0.0015 (9)
C2220.0273 (13)0.0334 (14)0.0199 (12)0.0005 (12)0.0009 (11)0.0090 (10)
C2230.0378 (16)0.0497 (18)0.0208 (13)0.0098 (15)0.0035 (11)0.0149 (13)
C2240.0454 (18)0.0352 (16)0.0205 (13)0.0134 (13)0.0011 (12)0.0077 (12)
C2250.0325 (15)0.0374 (16)0.0246 (14)0.0137 (12)0.0034 (11)0.0052 (12)
C2260.0192 (12)0.0284 (14)0.0217 (12)0.0102 (10)0.0003 (10)0.0027 (10)
C2310.0131 (11)0.0222 (13)0.0177 (10)0.0017 (8)0.0026 (9)0.0017 (9)
C2320.0214 (12)0.0223 (12)0.0264 (12)0.0009 (10)0.0015 (11)0.0020 (11)
C2330.0208 (13)0.0290 (14)0.0406 (14)0.0049 (11)0.0043 (11)0.0000 (12)
C2340.0230 (13)0.0268 (14)0.0462 (17)0.0044 (10)0.0034 (12)0.0097 (12)
C2350.0245 (14)0.0349 (16)0.0283 (13)0.0004 (11)0.0063 (11)0.0098 (12)
C2360.0212 (12)0.0289 (13)0.0207 (11)0.0014 (11)0.0007 (9)0.0065 (11)
O2A0.093 (3)0.058 (2)0.050 (2)0.015 (2)0.015 (2)0.0039 (17)
C7A0.038 (3)0.021 (2)0.065 (3)0.0081 (18)0.003 (2)0.006 (2)
C8A0.032 (3)0.035 (3)0.052 (4)0.003 (2)0.006 (3)0.007 (3)
C9A0.069 (4)0.086 (5)0.060 (3)0.048 (3)0.026 (3)0.032 (3)
O2B0.047 (6)0.060 (7)0.129 (11)0.014 (5)0.010 (7)0.008 (7)
C7B0.072 (11)0.040 (8)0.054 (9)0.010 (7)0.010 (8)0.000 (6)
C8B0.040 (9)0.053 (11)0.064 (14)0.001 (8)0.001 (11)0.010 (10)
C9B0.093 (3)0.058 (2)0.050 (2)0.015 (2)0.015 (2)0.0039 (17)
Geometric parameters (Å, º) top
Rh1—C011.802 (2)C131—C1361.536 (3)
Rh1—P12.3237 (6)C131—H1311
Rh1—P22.3253 (6)C132—C1331.529 (3)
Rh1—Cl2.3724 (6)C132—H13A0.99
C01—O11.141 (3)C132—H13B0.99
P1—C1111.824 (2)C133—C1341.516 (4)
P1—C1211.843 (2)C133—H13C0.99
P1—C1311.846 (2)C133—H13D0.99
P2—C2111.823 (2)C134—C1351.521 (4)
P2—C2311.844 (2)C134—H13E0.99
P2—C2211.846 (2)C134—H13F0.99
C1A—C1141.519 (10)C135—C1361.535 (3)
C1A—C2A1.524 (10)C135—H13G0.99
C1A—C3A1.534 (11)C135—H13H0.99
C1A—H1A1C136—H13I0.99
C2A—H2A10.98C136—H13J0.99
C2A—H2A20.98C211—C2121.391 (3)
C2A—H2A30.98C211—C2161.392 (3)
C3A—H3A10.98C212—C2131.393 (3)
C3A—H3A20.98C212—H2120.95
C3A—H3A30.98C213—C2141.383 (4)
C4A—C5A1.517 (12)C213—H2130.95
C4A—C2141.575 (8)C214—C2151.383 (4)
C4A—C6A1.594 (10)C215—C2161.393 (4)
C4A—H4A1C215—H2150.95
C5A—H5A10.98C216—H2160.95
C5A—H5A20.98C221—C2261.520 (3)
C5A—H5A30.98C221—C2221.524 (3)
C6A—H6A10.98C221—H2211
C6A—H6A20.98C222—C2231.534 (3)
C6A—H6A30.98C222—H22A0.99
C1B—C1141.515 (11)C222—H22B0.99
C1B—C2B1.524 (12)C223—C2241.515 (4)
C1B—C3B1.532 (11)C223—H22C0.99
C1B—H1B1C223—H22D0.99
C2B—H2B10.98C224—C2251.522 (4)
C2B—H2B20.98C224—H22E0.99
C2B—H2B30.98C224—H22F0.99
C3B—H3B10.98C225—C2261.529 (3)
C3B—H3B20.98C225—H22G0.99
C3B—H3B30.98C225—H22H0.99
C4B—C6B1.440 (11)C226—H22I0.99
C4B—C5B1.486 (14)C226—H22J0.99
C4B—C2141.506 (10)C231—C2361.537 (3)
C4B—H4B1C231—C2321.539 (3)
C5B—H5B10.98C231—H2311
C5B—H5B20.98C232—C2331.529 (3)
C5B—H5B30.98C232—H23A0.99
C6B—H6B10.98C232—H23B0.99
C6B—H6B20.98C233—C2341.528 (4)
C6B—H6B30.98C233—H23C0.99
C111—C1121.389 (3)C233—H23D0.99
C111—C1161.398 (3)C234—C2351.527 (4)
C112—C1131.388 (3)C234—H23E0.99
C112—H1120.95C234—H23F0.99
C113—C1141.390 (3)C235—C2361.521 (3)
C113—H1130.95C235—H23G0.99
C114—C1151.394 (3)C235—H23H0.99
C115—C1161.392 (3)C236—H23I0.99
C115—H1150.95C236—H23J0.99
C116—H1160.95O2A—C7A1.205 (6)
C121—C1221.533 (3)C7A—C9A1.499 (6)
C121—C1261.540 (3)C7A—C8A1.502 (8)
C121—H1211C8A—H8A10.98
C122—C1231.533 (3)C8A—H8A20.98
C122—H12A0.99C8A—H8A30.98
C122—H12B0.99C9A—H9A10.98
C123—C1241.525 (4)C9A—H9A20.98
C123—H12C0.99C9A—H9A30.98
C123—H12D0.99O2B—C7B1.186 (18)
C124—C1251.518 (4)C7B—C9B1.40 (2)
C124—H12E0.99C7B—C8B1.52 (3)
C124—H12F0.99C8B—H8B10.98
C125—C1261.534 (3)C8B—H8B20.98
C125—H12G0.99C8B—H8B30.98
C125—H12H0.99C9B—H9B10.98
C126—H12I0.99C9B—H9B20.98
C126—H12J0.99C9B—H9B30.98
C131—C1321.531 (3)
C01—Rh1—P188.91 (7)C134—C133—C132111.1 (2)
C01—Rh1—P289.06 (7)C134—C133—H13C109.4
P1—Rh1—P2173.42 (2)C132—C133—H13C109.4
C01—Rh1—Cl179.13 (7)C134—C133—H13D109.4
P1—Rh1—Cl90.47 (2)C132—C133—H13D109.4
P2—Rh1—Cl91.49 (2)H13C—C133—H13D108
O1—C01—Rh1178.8 (2)C133—C134—C135111.8 (2)
C111—P1—C121105.66 (11)C133—C134—H13E109.3
C111—P1—C131104.15 (10)C135—C134—H13E109.3
C121—P1—C131105.72 (10)C133—C134—H13F109.3
C111—P1—Rh1114.53 (7)C135—C134—H13F109.3
C121—P1—Rh1110.17 (8)H13E—C134—H13F107.9
C131—P1—Rh1115.75 (8)C134—C135—C136111.7 (2)
C211—P2—C231105.67 (11)C134—C135—H13G109.3
C211—P2—C221104.08 (10)C136—C135—H13G109.3
C231—P2—C221105.04 (11)C134—C135—H13H109.3
C211—P2—Rh1114.75 (8)C136—C135—H13H109.3
C231—P2—Rh1111.58 (8)H13G—C135—H13H107.9
C221—P2—Rh1114.77 (7)C135—C136—C131111.0 (2)
C114—C1A—C2A112.8 (7)C135—C136—H13I109.4
C114—C1A—C3A110.7 (9)C131—C136—H13I109.4
C2A—C1A—C3A107.8 (8)C135—C136—H13J109.4
C114—C1A—H1A108.5C131—C136—H13J109.4
C2A—C1A—H1A108.5H13I—C136—H13J108
C3A—C1A—H1A108.5C212—C211—C216118.1 (2)
C5A—C4A—C214105.2 (14)C212—C211—P2118.22 (18)
C5A—C4A—C6A103.4 (12)C216—C211—P2123.7 (2)
C214—C4A—C6A105.6 (5)C211—C212—C213120.5 (3)
C5A—C4A—H4A113.9C211—C212—H212119.7
C214—C4A—H4A113.9C213—C212—H212119.7
C6A—C4A—H4A113.9C214—C213—C212121.7 (3)
C114—C1B—C2B114.6 (10)C214—C213—H213119.1
C114—C1B—C3B110.5 (8)C212—C213—H213119.1
C2B—C1B—C3B108.5 (9)C213—C214—C215117.4 (3)
C114—C1B—H1B107.7C213—C214—C4B131.0 (5)
C2B—C1B—H1B107.7C215—C214—C4B111.6 (5)
C3B—C1B—H1B107.7C213—C214—C4A111.0 (4)
C1B—C2B—H2B1109.5C215—C214—C4A131.6 (4)
C1B—C2B—H2B2109.5C214—C215—C216121.8 (3)
H2B1—C2B—H2B2109.5C214—C215—H215119.1
C1B—C2B—H2B3109.5C216—C215—H215119.1
H2B1—C2B—H2B3109.5C211—C216—C215120.4 (3)
H2B2—C2B—H2B3109.5C211—C216—H216119.8
C1B—C3B—H3B1109.5C215—C216—H216119.8
C1B—C3B—H3B2109.5C226—C221—C222110.3 (2)
H3B1—C3B—H3B2109.5C226—C221—P2115.98 (16)
C1B—C3B—H3B3109.5C222—C221—P2110.75 (17)
H3B1—C3B—H3B3109.5C226—C221—H221106.4
H3B2—C3B—H3B3109.5C222—C221—H221106.4
C6B—C4B—C5B116.8 (16)P2—C221—H221106.4
C6B—C4B—C214111.3 (8)C221—C222—C223109.8 (2)
C5B—C4B—C214114.0 (17)C221—C222—H22A109.7
C6B—C4B—H4B104.4C223—C222—H22A109.7
C5B—C4B—H4B104.4C221—C222—H22B109.7
C214—C4B—H4B104.4C223—C222—H22B109.7
C4B—C5B—H5B1109.5H22A—C222—H22B108.2
C4B—C5B—H5B2109.5C224—C223—C222111.8 (2)
H5B1—C5B—H5B2109.5C224—C223—H22C109.2
C4B—C5B—H5B3109.5C222—C223—H22C109.2
H5B1—C5B—H5B3109.5C224—C223—H22D109.2
H5B2—C5B—H5B3109.5C222—C223—H22D109.2
C4B—C6B—H6B1109.5H22C—C223—H22D107.9
C4B—C6B—H6B2109.5C223—C224—C225111.5 (2)
H6B1—C6B—H6B2109.5C223—C224—H22E109.3
C4B—C6B—H6B3109.5C225—C224—H22E109.3
H6B1—C6B—H6B3109.5C223—C224—H22F109.3
H6B2—C6B—H6B3109.5C225—C224—H22F109.3
C112—C111—C116118.1 (2)H22E—C224—H22F108
C112—C111—P1119.38 (17)C224—C225—C226112.1 (2)
C116—C111—P1122.51 (18)C224—C225—H22G109.2
C113—C112—C111120.8 (2)C226—C225—H22G109.2
C113—C112—H112119.6C224—C225—H22H109.2
C111—C112—H112119.6C226—C225—H22H109.2
C112—C113—C114121.5 (2)H22G—C225—H22H107.9
C112—C113—H113119.2C221—C226—C225110.6 (2)
C114—C113—H113119.2C221—C226—H22I109.5
C113—C114—C115117.7 (2)C225—C226—H22I109.5
C113—C114—C1B121.7 (7)C221—C226—H22J109.5
C115—C114—C1B120.4 (7)C225—C226—H22J109.5
C113—C114—C1A119.0 (6)H22I—C226—H22J108.1
C115—C114—C1A123.2 (6)C236—C231—C232110.0 (2)
C116—C115—C114121.1 (2)C236—C231—P2112.07 (16)
C116—C115—H115119.5C232—C231—P2110.24 (15)
C114—C115—H115119.5C236—C231—H231108.1
C115—C116—C111120.7 (2)C232—C231—H231108.1
C115—C116—H116119.6P2—C231—H231108.1
C111—C116—H116119.6C233—C232—C231111.2 (2)
C122—C121—C126110.4 (2)C233—C232—H23A109.4
C122—C121—P1111.67 (16)C231—C232—H23A109.4
C126—C121—P1109.05 (16)C233—C232—H23B109.4
C122—C121—H121108.5C231—C232—H23B109.4
C126—C121—H121108.5H23A—C232—H23B108
P1—C121—H121108.5C234—C233—C232111.6 (2)
C121—C122—C123110.8 (2)C234—C233—H23C109.3
C121—C122—H12A109.5C232—C233—H23C109.3
C123—C122—H12A109.5C234—C233—H23D109.3
C121—C122—H12B109.5C232—C233—H23D109.3
C123—C122—H12B109.5H23C—C233—H23D108
H12A—C122—H12B108.1C235—C234—C233110.6 (2)
C124—C123—C122111.3 (2)C235—C234—H23E109.5
C124—C123—H12C109.4C233—C234—H23E109.5
C122—C123—H12C109.4C235—C234—H23F109.5
C124—C123—H12D109.4C233—C234—H23F109.5
C122—C123—H12D109.4H23E—C234—H23F108.1
H12C—C123—H12D108C236—C235—C234110.6 (2)
C125—C124—C123110.5 (2)C236—C235—H23G109.5
C125—C124—H12E109.6C234—C235—H23G109.5
C123—C124—H12E109.6C236—C235—H23H109.5
C125—C124—H12F109.6C234—C235—H23H109.5
C123—C124—H12F109.6H23G—C235—H23H108.1
H12E—C124—H12F108.1C235—C236—C231110.9 (2)
C124—C125—C126111.5 (2)C235—C236—H23I109.5
C124—C125—H12G109.3C231—C236—H23I109.5
C126—C125—H12G109.3C235—C236—H23J109.5
C124—C125—H12H109.3C231—C236—H23J109.5
C126—C125—H12H109.3H23I—C236—H23J108
H12G—C125—H12H108O2A—C7A—C9A120.3 (5)
C125—C126—C121112.1 (2)O2A—C7A—C8A123.8 (5)
C125—C126—H12I109.2C9A—C7A—C8A115.9 (5)
C121—C126—H12I109.2O2B—C7B—C9B122.3 (17)
C125—C126—H12J109.2O2B—C7B—C8B122.4 (14)
C121—C126—H12J109.2C9B—C7B—C8B115.1 (17)
H12I—C126—H12J107.9C7B—C8B—H8B1109.5
C132—C131—C136110.5 (2)C7B—C8B—H8B2109.5
C132—C131—P1109.49 (15)H8B1—C8B—H8B2109.5
C136—C131—P1115.69 (17)C7B—C8B—H8B3109.5
C132—C131—H131106.9H8B1—C8B—H8B3109.5
C136—C131—H131106.9H8B2—C8B—H8B3109.5
P1—C131—H131106.9C7B—C9B—H9B1109.5
C133—C132—C131111.0 (2)C7B—C9B—H9B2109.5
C133—C132—H13A109.4H9B1—C9B—H9B2109.5
C131—C132—H13A109.4C7B—C9B—H9B3109.5
C133—C132—H13B109.4H9B1—C9B—H9B3109.5
C131—C132—H13B109.4H9B2—C9B—H9B3109.5
H13A—C132—H13B108
C01—Rh1—P1—C11134.86 (11)C131—C132—C133—C13456.8 (3)
Cl—Rh1—P1—C111145.75 (8)C132—C133—C134—C13555.4 (3)
C01—Rh1—P1—C12184.08 (11)C133—C134—C135—C13654.4 (3)
Cl—Rh1—P1—C12195.32 (8)C134—C135—C136—C13154.4 (3)
C01—Rh1—P1—C131156.08 (11)C132—C131—C136—C13555.5 (3)
Cl—Rh1—P1—C13124.52 (9)P1—C131—C136—C135179.40 (18)
C01—Rh1—P2—C21138.16 (11)C231—P2—C211—C212156.74 (18)
Cl—Rh1—P2—C211142.51 (8)C221—P2—C211—C21292.88 (19)
C01—Rh1—P2—C23181.99 (10)Rh1—P2—C211—C21233.4 (2)
Cl—Rh1—P2—C23197.34 (8)C231—P2—C211—C21625.4 (2)
C01—Rh1—P2—C221158.68 (11)C221—P2—C211—C21685.0 (2)
Cl—Rh1—P2—C22121.99 (9)Rh1—P2—C211—C216148.73 (17)
C121—P1—C111—C112153.34 (18)C216—C211—C212—C2130.2 (3)
C131—P1—C111—C11295.51 (18)P2—C211—C212—C213177.77 (19)
Rh1—P1—C111—C11231.89 (19)C211—C212—C213—C2140.3 (4)
C121—P1—C111—C11627.7 (2)C212—C213—C214—C2150.3 (4)
C131—P1—C111—C11683.4 (2)C212—C213—C214—C4B178.1 (6)
Rh1—P1—C111—C116149.18 (17)C212—C213—C214—C4A179.6 (4)
C116—C111—C112—C1130.6 (3)C6B—C4B—C214—C21368.4 (12)
P1—C111—C112—C113179.56 (17)C5B—C4B—C214—C21366 (2)
C111—C112—C113—C1140.3 (3)C6B—C4B—C214—C215113.1 (8)
C112—C113—C114—C1150.2 (4)C5B—C4B—C214—C215112 (2)
C112—C113—C114—C1B175.0 (6)C6B—C4B—C214—C4A64.4 (19)
C112—C113—C114—C1A176.1 (5)C5B—C4B—C214—C4A70 (3)
C2B—C1B—C114—C113157.2 (7)C5A—C4A—C214—C21398.3 (13)
C3B—C1B—C114—C11379.9 (12)C6A—C4A—C214—C213152.7 (6)
C2B—C1B—C114—C11528.2 (12)C5A—C4A—C214—C21581.5 (14)
C3B—C1B—C114—C11594.7 (10)C6A—C4A—C214—C21527.5 (10)
C2B—C1B—C114—C1A84 (7)C5A—C4A—C214—C4B78 (3)
C3B—C1B—C114—C1A153 (9)C6A—C4A—C214—C4B30.5 (19)
C2A—C1A—C114—C113110.5 (9)C213—C214—C215—C2160.8 (4)
C3A—C1A—C114—C113128.6 (8)C4B—C214—C215—C216177.9 (5)
C2A—C1A—C114—C11565.5 (11)C4A—C214—C215—C216179.0 (5)
C3A—C1A—C114—C11555.4 (9)C212—C211—C216—C2150.3 (3)
C2A—C1A—C114—C1B138 (9)P2—C211—C216—C215178.19 (19)
C3A—C1A—C114—C1B17 (7)C214—C215—C216—C2110.8 (4)
C113—C114—C115—C1160.8 (4)C211—P2—C221—C22670.5 (2)
C1B—C114—C115—C116174.1 (6)C231—P2—C221—C22640.3 (2)
C1A—C114—C115—C116176.9 (5)Rh1—P2—C221—C226163.22 (16)
C114—C115—C116—C1111.7 (4)C211—P2—C221—C22256.12 (19)
C112—C111—C116—C1151.5 (3)C231—P2—C221—C222166.96 (17)
P1—C111—C116—C115179.52 (19)Rh1—P2—C221—C22270.12 (18)
C111—P1—C121—C12262.27 (18)C226—C221—C222—C22359.0 (3)
C131—P1—C121—C122172.31 (17)P2—C221—C222—C223171.20 (18)
Rh1—P1—C121—C12261.95 (17)C221—C222—C223—C22456.9 (3)
C111—P1—C121—C126175.40 (16)C222—C223—C224—C22553.6 (3)
C131—P1—C121—C12665.36 (18)C223—C224—C225—C22652.6 (3)
Rh1—P1—C121—C12660.38 (17)C222—C221—C226—C22558.3 (3)
C126—C121—C122—C12355.1 (3)P2—C221—C226—C225174.83 (19)
P1—C121—C122—C123176.66 (18)C224—C225—C226—C22155.0 (3)
C121—C122—C123—C12457.7 (3)C211—P2—C231—C23662.33 (19)
C122—C123—C124—C12557.6 (3)C221—P2—C231—C236172.02 (17)
C123—C124—C125—C12655.8 (3)Rh1—P2—C231—C23663.03 (18)
C124—C125—C126—C12154.6 (3)C211—P2—C231—C232174.74 (16)
C122—C121—C126—C12553.9 (3)C221—P2—C231—C23265.04 (18)
P1—C121—C126—C125176.98 (18)Rh1—P2—C231—C23259.91 (17)
C111—P1—C131—C13264.11 (18)C236—C231—C232—C23355.3 (3)
C121—P1—C131—C132175.22 (16)P2—C231—C232—C233179.41 (17)
Rh1—P1—C131—C13262.54 (17)C231—C232—C233—C23455.1 (3)
C111—P1—C131—C13661.5 (2)C232—C233—C234—C23555.7 (3)
C121—P1—C131—C13649.6 (2)C233—C234—C235—C23657.2 (3)
Rh1—P1—C131—C136171.83 (16)C234—C235—C236—C23158.4 (3)
C136—C131—C132—C13356.8 (3)C232—C231—C236—C23557.2 (3)
P1—C131—C132—C133174.60 (17)P2—C231—C236—C235179.80 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C131—H131···Cl1.002.763.332 (2)117
C221—H221···Cl1.002.673.324 (2)123
C224—H22E···O1i0.992.703.359 (3)124
Symmetry code: (i) y+1/2, x1/2, z1/4.

Experimental details

Crystal data
Chemical formula[RhCl(C21H33P)2(CO)]·C3H6O
Mr857.34
Crystal system, space groupTetragonal, P43212
Temperature (K)100
a, c (Å)16.0130 (15), 35.557 (3)
V3)9117.4 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.34 × 0.24 × 0.14
Data collection
DiffractometerBruker APEX DUO 4K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.838, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
245346, 11404, 10089
Rint0.105
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.059, 1.04
No. of reflections11404
No. of parameters544
No. of restraints31
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.36
Absolute structureFlack (1983), 4954 Friedel pairs
Absolute structure parameter0.029 (17)

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C131—H131···Cl1.002.763.332 (2)116.8
C221—H221···Cl1.002.673.324 (2)123.0
C224—H22E···O1i0.992.703.359 (3)124.2
Symmetry code: (i) y+1/2, x1/2, z1/4.
 

Acknowledgements

Thanks to the Research Academy for Undergraduates and the University of Johannesburg for financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y.-J., Wang, J.-C. & Wang, Yu (1991). Acta Cryst. C47, 2441–2442.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCollman, J. P., Sears, C. T. Jr & Kubota, M. (1990). Inorg. Synth. 28, 92–94.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKuwabara, E. & Bau, R. (1994). Acta Cryst. C50, 1409–1411.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMuller, A., Meijboom, R. & Roodt, A. (2006). J. Organomet. Chem. 691, 5794–5801.  Web of Science CSD CrossRef CAS Google Scholar
First citationMuller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650–657.  Web of Science CSD CrossRef PubMed Google Scholar
First citationOtto, S. (2001). Acta Cryst. C57, 793–795.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOtto, S., Roodt, A. & Smith, J. (2000). Inorg. Chim. Acta, 303, 295–299.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoodt, A., Otto, S. & Steyl, G. J. (2003). Coord. Chem. Rev. 245, 121–137.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTolman, C. A. (1977). Chem. Rev. 77, 313–348.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1286-m1287
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds