organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2362-o2363

Di­methyl 4-(4-hy­dr­oxy­phen­yl)-2,6-di­methyl-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate

aCollege of Chemistry and Chemical Engineering, Inner Mongolia University for the Nationalities, Inner Mongolia Autonomous Region Tongliao, Huolinhe Street #22, 028000, People's Republic of China, and bInstitute of Higher Vocational Education, Tongliao Vocational College, Inner Mongolia Autonomous Region Tongliao, Huolinhe Street #152, 028000, People's Republic of China
*Correspondence e-mail: zhangchtl@hotmail.com

(Received 4 August 2011; accepted 11 August 2011; online 17 August 2011)

The title mol­ecule, C17H19NO5, was prepared by a Hantzsch dihydro­pyridine synthesis from 4-hy­droxy­benzaldehyde, methyl acetoacetate and NH4HCO3. In the mol­ecular structure of the title compound, the dihydro­pyridine ring adopts a flattened boat conformation and the plane of the base of the boat forms a dihedral angle of 80.8 (2)° with the aromatic six-membered ring. The packing is stabilized by strong inter­molecular N—H⋯Ocarbon­yl, Ohydrox­y—H⋯Ocarbon­yl and weak intra­molecular C—H⋯O hydrogen bonds.

Related literature

For background to the bioactivity and synthesis of 1,4-dihydro­pyridines, see: Yang et al. (2010[Yang, X.-H., Zhou, Y.-H., Zhang, M. & Song, X. (2010). Acta Cryst. E66, o2767.]); Davies et al. (2005[Davies, D. T., Markwell, R. E., Pearson, N. D. & Takle, A. K. (2005). US Patent 6911442.]); Warrior et al. (2005[Warrior, P., Heiman, D. F., Fugiel, J. A. & Petracek, P. D. (2005). WO Patent 2005060748.]); Ko & Yao (2006[Ko, S. K. & Yao, C. F. (2006). Tetrahedron, 62, 7293-7299.]); Rose & Draeger (1992[Rose, U. & Draeger, M. (1992). J. Med. Chem. 35, 2238-2243.]). For related structures, see: Bai et al. (2009[Bai, M.-S., Chen, Y.-Y., Niu, D.-L. & Peng, L. (2009). Acta Cryst. E65, o799.]); Fun et al. (2009[Fun, H.-K., Liew, W.-C., Reddy, B. P., Sarveswari, S. & Vijayakumar, V. (2009). Acta Cryst. E65, o2342-o2343.]); Thenmozhi et al. (2009[Thenmozhi, M., Kavitha, T., Reddy, B. P., Vijayakumar, V. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o2795.]). For hydrogen-bond definitions, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 13. New York: Oxford University Press Inc.]). For the synthetic method, see: Tamaddon et al. (2010[Tamaddon, F., Razmi, A. & Jafari, A. (2010). Tetrahedron Lett. 51, 1187-1189.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19NO5

  • Mr = 317.33

  • Monoclinic, P 21 /n

  • a = 13.245 (3) Å

  • b = 9.3480 (19) Å

  • c = 13.754 (3) Å

  • β = 110.14 (3)°

  • V = 1598.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan For semi-empirical (using intensity measurements) absorption, see: North et al. (1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.981, Tmax = 0.990

  • 4588 measured reflections

  • 2931 independent reflections

  • 1212 reflections with I > 2σ(I)

  • Rint = 0.104

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.081

  • S = 1.00

  • 2931 reflections

  • 209 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.86 2.10 2.936 (4) 164
O1—H1B⋯O2ii 0.82 1.92 2.742 (4) 179
C7—H7A⋯O2 0.98 2.39 2.781 (5) 103
C7—H7A⋯O5 0.98 2.32 2.717 (5) 103
C12—H12A⋯O3 0.96 2.06 2.790 (5) 131
C13—H13A⋯O4 0.96 2.26 2.818 (5) 116
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, much attention has been focused on the synthesis of 1,4-dihydropyridine derivatives because of their presence in numerous natural products along with a wide spectrum of their physiological activities (Yang et al., 2010). For example, some dihydropyridines have calcium modulatory properties (Rose & Draeger, 1992), antibacterial activity (Davies et al., 2005), or fungicidal activity (Warrior et al., 2005), to name just a few. Because of the biological importance associated with these compounds, numerous methods had been developed for the synthesis of 1,4-dihydropyridine derivatives, which include the use of microwaves, ionic liquids, refluxing at high temperature, metal triflates, and iodine (Ko & Yao, 2006). However, the use of high temperatures, expensive metal precursors, catalysts that are harmful to the environment, and long reaction times limit the use of many of these methods. Herein, we report a mild and catalyst-free synthesis based on a variation of the commonly used Hantzsch dihydropyridine synthesis (Tamaddon et al., 2010), and the crystal structure of the resultant title compound is presented. Compared to the classical method involving the three-component coupling of an aldehyde with ethyl acetoacetate, and ammonia in acetic acid or in refluxing alcohol, the reation was conducted in water and avoided the use of catalysts, so it was very environmentally benign. Moreover, the workup is very simple and can give the product in high yield after simple filtration.

In the molecular structure of the title compound (Fig. 1), atoms C7 and N1 deviate from the mean plane of atoms C8/C9/C10/C11 in the same direction, by 0.45 (0) and 0.18 (7) Å, respectively, so the heterocyclic ring adopts a boat conformation. In addition, the phenol ring substituent is almost perpendicular to the plane of the atoms C8/C9/C10/C11, with a dihedral angle between them of 80.8 (2)°. The methyl groups are nearly coplanar with the aformentioned plane of the atoms C8/C9/C10/C11, with the methyl C atoms C12 and C13 deviating from the mean plane by 0.12 (4) and 0.22 (2) Å, respectively. The average C—N bond lengths of the title compound are with 1.353 (9) Å similar to those of its phenyl substituted 1,4-dihydropyridine derivative (Bai et al., 2009) which has average C—N bond lenghts of 1.376 (8) Å, its 4-methoxyphenyl substituted 1,4-dihydropyridine derivative (Thenmozhi et al., 2009) which has average C—N bond lenghts of 1.377 (4) Å, and its 4-methylphenyl substituted 1,4-dihydropyridine derivative (Fun et al., 2009) which has average C—N bond lenghts of 1.385 (7) Å.

The crystal packing of the title compound is stabilized by strong intermolecular N—H···Ocarbonyl and Ohydroxyl—H···Ocarbonyl hydrogen bonds (Desiraju & Steiner, 1999), N1—H1A···O4i and O1—H1B···O2ii, and by several weaker intramolecular C—H···O hydrogen bonds, C7—H7A···O2, C7–H7A···O5, C12—H12A···O3, C13—H13A···O4 (see Table 1 for numerical values and symmetry operators).

Related literature top

For background on the bioactivities and synthesis of 1,4-dihydropyridines, see: Yang et al. (2010); Davies et al. (2005); Warrior et al. (2005); Ko & Yao (2006); Rose & Draeger (1992). For related structures, see: Bai et al. (2009); Fun et al. (2009); Thenmozhi et al. (2009). For hydrogen-bond definitions, see: Desiraju & Steiner (1999). For the synthetic method, see: Tamaddon et al. (2010).

Experimental top

The title compound was obtained according to a reported method (Tamaddon et al., 2010). A mixture of 4-hydroxybenzaldehyde (2 mmol), methyl acetoacetate (4 mmol), and NH4HCO3 (2 mmol) was stirred in water (2 mL) under reflux. After completion of the reaction (TLC monitoring), the mixture was diluted with cold water (20 mL) and filtered to obtain the precipitated product which was further purified by recrystallization. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. IR (KBr) v/cm-1: 3327, 2960, 1685, 1652; 1H NMR (300 MHz, DMSO-d6) δ/ppm: 9.05 (s, 1H, NH), 8.77 (s, 1H, OH), 6.91 (d, 2H, ArH, J = 7.8 Hz), 6.56 (d, 2H, ArH, J = 7.8 Hz), 4.77 (s, 1H, H4), 3.55 (s, 6H, 2COOCH3), 2.25 (s, 6H, 2CH3); MS (ESI) m/z: 318.1 [M+H]+, 340.1 [M+Na]+, 356.0 [M+K]+; Anal. Calcd for C17H19NO5: C, 64.34; H, 6.03; N, 4.41; found: C, 64.46; H, 6.09; N, 4.33.

Refinement top

All H atoms were located in a difference map and refined isotropically. The N-H distance of H1A atom (for N1) was constrained to 0.86 Å. All other H atoms were positioned geometrically and treated as riding, with C-H distances in the range 0.93-0.98 Å, an O-H distance of 0.82 Å and Uiso(H) = 1.2 or 1.5 times Ueq(C). The methyl groups were allowed to rotate during the refinement.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing of the title compound, viewed along the a axis. Dashed lines indicate hydrogen bonds.
Dimethyl 4-(4-hydroxyphenyl)-2,6-dimethyl-1,4-dihydropyridine- 3,5-dicarboxylate top
Crystal data top
C17H19NO5F(000) = 672
Mr = 317.33Dx = 1.318 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 13.245 (3) Åθ = 9–12°
b = 9.3480 (19) ŵ = 0.10 mm1
c = 13.754 (3) ÅT = 293 K
β = 110.14 (3)°Block, yellow
V = 1598.8 (6) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Nonius CAD 4
diffractometer
1212 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.104
Graphite monochromatorθmax = 25.4°, θmin = 1.8°
ω/2θ scansh = 015
Absorption correction: ψ scan
For semi-empirical (using intensity measurements) absorption, see: North et al. (1968)
k = 411
Tmin = 0.981, Tmax = 0.990l = 1615
4588 measured reflections3 standard reflections every 200 reflections
2931 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.005P)2]
where P = (Fo2 + 2Fc2)/3
2931 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C17H19NO5V = 1598.8 (6) Å3
Mr = 317.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.245 (3) ŵ = 0.10 mm1
b = 9.3480 (19) ÅT = 293 K
c = 13.754 (3) Å0.20 × 0.10 × 0.10 mm
β = 110.14 (3)°
Data collection top
Nonius CAD 4
diffractometer
1212 reflections with I > 2σ(I)
Absorption correction: ψ scan
For semi-empirical (using intensity measurements) absorption, see: North et al. (1968)
Rint = 0.104
Tmin = 0.981, Tmax = 0.9903 standard reflections every 200 reflections
4588 measured reflections intensity decay: 1%
2931 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0741 restraint
wR(F2) = 0.081H-atom parameters constrained
S = 1.00Δρmax = 0.16 e Å3
2931 reflectionsΔρmin = 0.17 e Å3
209 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6521 (3)0.2025 (3)0.3016 (2)0.0547 (9)
H1A0.65150.14450.25290.066*
O11.0141 (2)0.0866 (3)0.7601 (2)0.0705 (9)
H1B0.99670.11570.80830.106*
C10.8797 (3)0.1492 (4)0.5474 (3)0.0460 (10)
H1C0.89100.17930.48750.055*
O20.5444 (2)0.3203 (4)0.5778 (2)0.0866 (11)
C20.9528 (3)0.0542 (4)0.6113 (3)0.0609 (12)
H2A1.01160.02320.59470.073*
O30.4353 (2)0.1763 (3)0.4605 (2)0.0698 (9)
C30.9371 (3)0.0055 (4)0.7006 (3)0.0498 (10)
O40.8684 (2)0.5538 (3)0.3923 (2)0.0706 (9)
C40.8511 (3)0.0495 (4)0.7228 (3)0.0601 (12)
H4A0.83960.01570.78160.072*
O50.8363 (2)0.5462 (3)0.5423 (2)0.0600 (8)
C50.7786 (3)0.1468 (4)0.6570 (3)0.0578 (12)
H5A0.71950.17630.67350.069*
C60.7922 (3)0.2018 (4)0.5662 (3)0.0422 (9)
C70.7113 (3)0.3079 (4)0.4988 (3)0.0466 (9)
H7A0.70360.38530.54380.056*
C80.5986 (3)0.2431 (4)0.4446 (3)0.0480 (10)
C90.5808 (3)0.1810 (4)0.3502 (3)0.0442 (9)
C100.7253 (3)0.3108 (4)0.3254 (3)0.0461 (10)
C110.7525 (3)0.3737 (4)0.4184 (3)0.0530 (11)
C120.4874 (3)0.0857 (4)0.2903 (3)0.0674 (14)
H12A0.43840.07740.32760.101*
H12B0.51390.00730.28190.101*
H12C0.45080.12690.22340.101*
C130.7703 (3)0.3459 (5)0.2409 (3)0.0789 (16)
H13A0.84260.38070.27150.118*
H13B0.72660.41800.19620.118*
H13C0.77030.26130.20130.118*
C140.5229 (3)0.2511 (4)0.4999 (3)0.0518 (11)
C150.3573 (3)0.1894 (5)0.5099 (3)0.1006 (19)
H15A0.29570.13190.47400.151*
H15B0.33590.28770.50880.151*
H15C0.38780.15750.58040.151*
C160.8259 (3)0.4957 (4)0.4461 (3)0.0506 (10)
C170.9061 (3)0.6675 (4)0.5735 (3)0.0797 (15)
H17A0.91230.69480.64260.120*
H17B0.87700.74570.52710.120*
H17C0.97590.64330.57170.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.077 (3)0.042 (2)0.048 (2)0.0006 (19)0.0258 (18)0.0007 (17)
O10.074 (2)0.085 (2)0.0554 (19)0.0210 (18)0.0265 (16)0.0311 (17)
C10.060 (3)0.049 (3)0.036 (2)0.010 (2)0.0251 (19)0.0016 (17)
O20.075 (2)0.127 (3)0.059 (2)0.018 (2)0.0253 (17)0.038 (2)
C20.058 (3)0.073 (3)0.057 (3)0.004 (2)0.027 (2)0.024 (2)
O30.0503 (18)0.104 (3)0.063 (2)0.0190 (18)0.0301 (16)0.0103 (19)
C30.056 (3)0.053 (2)0.045 (2)0.006 (2)0.024 (2)0.001 (2)
O40.085 (2)0.075 (2)0.0512 (19)0.0162 (18)0.0227 (16)0.0111 (16)
C40.066 (3)0.075 (3)0.045 (3)0.003 (3)0.026 (2)0.014 (2)
O50.087 (2)0.0338 (16)0.071 (2)0.0074 (15)0.0426 (18)0.0083 (15)
C50.052 (3)0.075 (3)0.054 (3)0.011 (2)0.029 (2)0.007 (2)
C60.048 (2)0.042 (2)0.041 (2)0.0051 (18)0.0206 (19)0.0032 (17)
C70.054 (3)0.049 (2)0.039 (2)0.012 (2)0.0183 (19)0.0042 (19)
C80.065 (3)0.042 (2)0.036 (2)0.0020 (19)0.015 (2)0.0039 (17)
C90.042 (2)0.045 (2)0.047 (2)0.0111 (19)0.0175 (18)0.007 (2)
C100.058 (3)0.046 (2)0.046 (2)0.000 (2)0.032 (2)0.0108 (19)
C110.077 (3)0.043 (2)0.037 (2)0.014 (2)0.019 (2)0.0060 (19)
C120.064 (3)0.097 (4)0.040 (2)0.004 (3)0.016 (2)0.021 (3)
C130.086 (4)0.103 (4)0.054 (3)0.005 (3)0.032 (3)0.003 (3)
C140.051 (3)0.059 (3)0.040 (2)0.002 (2)0.009 (2)0.002 (2)
C150.055 (3)0.136 (5)0.112 (4)0.008 (4)0.031 (3)0.018 (4)
C160.059 (3)0.049 (3)0.053 (3)0.002 (2)0.031 (2)0.016 (2)
C170.096 (4)0.052 (3)0.075 (3)0.008 (3)0.009 (3)0.000 (3)
Geometric parameters (Å, º) top
N1—C91.346 (4)C7—C111.522 (4)
N1—C101.361 (4)C7—C81.544 (5)
N1—H1A0.8600C7—H7A0.9800
O1—C31.370 (4)C8—C91.367 (4)
O1—H1B0.8200C8—C141.455 (5)
C1—C61.363 (4)C9—C121.517 (4)
C1—C21.383 (4)C10—C111.340 (5)
C1—H1C0.9300C10—C131.514 (4)
O2—C141.199 (4)C11—C161.461 (5)
C2—C31.391 (4)C12—H12A0.9600
C2—H2A0.9300C12—H12B0.9600
O3—C141.302 (4)C12—H12C0.9600
O3—C151.424 (4)C13—H13A0.9600
C3—C41.341 (4)C13—H13B0.9600
O4—C161.203 (4)C13—H13C0.9600
C4—C51.403 (5)C15—H15A0.9600
C4—H4A0.9300C15—H15B0.9600
O5—C161.366 (4)C15—H15C0.9600
O5—C171.433 (4)C17—H17A0.9600
C5—C61.417 (4)C17—H17B0.9600
C5—H5A0.9300C17—H17C0.9600
C6—C71.520 (5)
C9—N1—C10123.7 (3)C11—C10—N1119.4 (3)
C9—N1—H1A118.2C11—C10—C13126.2 (4)
C10—N1—H1A118.2N1—C10—C13114.4 (4)
C3—O1—H1B109.5C10—C11—C16121.8 (4)
C6—C1—C2124.5 (3)C10—C11—C7118.1 (4)
C6—C1—H1C117.8C16—C11—C7119.9 (3)
C2—C1—H1C117.8C9—C12—H12A109.5
C1—C2—C3119.1 (4)C9—C12—H12B109.5
C1—C2—H2A120.5H12A—C12—H12B109.5
C3—C2—H2A120.5C9—C12—H12C109.5
C14—O3—C15116.3 (3)H12A—C12—H12C109.5
C4—C3—O1124.9 (4)H12B—C12—H12C109.5
C4—C3—C2119.8 (4)C10—C13—H13A109.5
O1—C3—C2115.2 (3)C10—C13—H13B109.5
C3—C4—C5119.9 (4)H13A—C13—H13B109.5
C3—C4—H4A120.1C10—C13—H13C109.5
C5—C4—H4A120.1H13A—C13—H13C109.5
C16—O5—C17113.8 (3)H13B—C13—H13C109.5
C4—C5—C6122.4 (4)O2—C14—O3124.5 (4)
C4—C5—H5A118.8O2—C14—C8120.0 (4)
C6—C5—H5A118.8O3—C14—C8115.5 (4)
C1—C6—C5114.3 (4)O3—C15—H15A109.5
C1—C6—C7126.0 (3)O3—C15—H15B109.5
C5—C6—C7119.8 (3)H15A—C15—H15B109.5
C6—C7—C11110.6 (3)O3—C15—H15C109.5
C6—C7—C8113.6 (3)H15A—C15—H15C109.5
C11—C7—C8109.7 (3)H15B—C15—H15C109.5
C6—C7—H7A107.6O4—C16—O5121.8 (4)
C11—C7—H7A107.6O4—C16—C11127.0 (4)
C8—C7—H7A107.6O5—C16—C11111.0 (3)
C9—C8—C14126.5 (4)O5—C17—H17A109.5
C9—C8—C7116.5 (3)O5—C17—H17B109.5
C14—C8—C7117.0 (3)H17A—C17—H17B109.5
N1—C9—C8119.2 (4)O5—C17—H17C109.5
N1—C9—C12113.5 (3)H17A—C17—H17C109.5
C8—C9—C12127.3 (3)H17B—C17—H17C109.5
C6—C1—C2—C31.0 (7)C7—C8—C9—C12167.3 (4)
C1—C2—C3—C40.9 (7)C9—N1—C10—C1121.1 (6)
C1—C2—C3—O1179.1 (4)C9—N1—C10—C13160.3 (3)
O1—C3—C4—C5178.6 (4)N1—C10—C11—C16176.5 (3)
C2—C3—C4—C51.3 (7)C13—C10—C11—C165.0 (7)
C3—C4—C5—C60.0 (7)N1—C10—C11—C77.9 (6)
C2—C1—C6—C52.1 (6)C13—C10—C11—C7170.6 (4)
C2—C1—C6—C7179.0 (4)C6—C7—C11—C1092.2 (4)
C4—C5—C6—C11.6 (6)C8—C7—C11—C1033.9 (5)
C4—C5—C6—C7179.4 (4)C6—C7—C11—C1683.5 (4)
C1—C6—C7—C1112.1 (5)C8—C7—C11—C16150.4 (3)
C5—C6—C7—C11169.1 (3)C15—O3—C14—O25.5 (7)
C1—C6—C7—C8111.8 (4)C15—O3—C14—C8176.4 (4)
C5—C6—C7—C867.0 (4)C9—C8—C14—O2172.9 (4)
C6—C7—C8—C988.5 (4)C7—C8—C14—O28.7 (6)
C11—C7—C8—C935.9 (5)C9—C8—C14—O38.9 (6)
C6—C7—C8—C1490.1 (4)C7—C8—C14—O3169.5 (4)
C11—C7—C8—C14145.5 (3)C17—O5—C16—O43.2 (6)
C10—N1—C9—C818.3 (6)C17—O5—C16—C11179.1 (3)
C10—N1—C9—C12162.1 (4)C10—C11—C16—O40.8 (7)
C14—C8—C9—N1169.3 (4)C7—C11—C16—O4176.3 (4)
C7—C8—C9—N112.3 (5)C10—C11—C16—O5176.4 (4)
C14—C8—C9—C1211.2 (7)C7—C11—C16—O58.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.862.102.936 (4)164
O1—H1B···O2ii0.821.922.742 (4)179
C7—H7A···O20.982.392.781 (5)103
C7—H7A···O50.982.322.717 (5)103
C12—H12A···O30.962.062.790 (5)131
C13—H13A···O40.962.262.818 (5)116
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC17H19NO5
Mr317.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.245 (3), 9.3480 (19), 13.754 (3)
β (°) 110.14 (3)
V3)1598.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerNonius CAD 4
diffractometer
Absorption correctionψ scan
For semi-empirical (using intensity measurements) absorption, see: North et al. (1968)
Tmin, Tmax0.981, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
4588, 2931, 1212
Rint0.104
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.081, 1.00
No. of reflections2931
No. of parameters209
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.17

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.862.102.936 (4)164
O1—H1B···O2ii0.821.922.742 (4)179
C7—H7A···O20.982.392.781 (5)103
C7—H7A···O50.982.322.717 (5)103
C12—H12A···O30.962.062.790 (5)131
C13—H13A···O40.962.262.818 (5)116
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+3/2.
 

References

First citationBai, M.-S., Chen, Y.-Y., Niu, D.-L. & Peng, L. (2009). Acta Cryst. E65, o799.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDavies, D. T., Markwell, R. E., Pearson, N. D. & Takle, A. K. (2005). US Patent 6911442.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 13. New York: Oxford University Press Inc.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFun, H.-K., Liew, W.-C., Reddy, B. P., Sarveswari, S. & Vijayakumar, V. (2009). Acta Cryst. E65, o2342–o2343.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKo, S. K. & Yao, C. F. (2006). Tetrahedron, 62, 7293–7299.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRose, U. & Draeger, M. (1992). J. Med. Chem. 35, 2238–2243.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamaddon, F., Razmi, A. & Jafari, A. (2010). Tetrahedron Lett. 51, 1187–1189.  Web of Science CrossRef CAS Google Scholar
First citationThenmozhi, M., Kavitha, T., Reddy, B. P., Vijayakumar, V. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o2795.  Google Scholar
First citationWarrior, P., Heiman, D. F., Fugiel, J. A. & Petracek, P. D. (2005). WO Patent 2005060748.  Google Scholar
First citationYang, X.-H., Zhou, Y.-H., Zhang, M. & Song, X. (2010). Acta Cryst. E66, o2767.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2362-o2363
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds