organic compounds
Dimethyl 4-(4-hydroxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate
aCollege of Chemistry and Chemical Engineering, Inner Mongolia University for the Nationalities, Inner Mongolia Autonomous Region Tongliao, Huolinhe Street #22, 028000, People's Republic of China, and bInstitute of Higher Vocational Education, Tongliao Vocational College, Inner Mongolia Autonomous Region Tongliao, Huolinhe Street #152, 028000, People's Republic of China
*Correspondence e-mail: zhangchtl@hotmail.com
The title molecule, C17H19NO5, was prepared by a Hantzsch dihydropyridine synthesis from 4-hydroxybenzaldehyde, methyl acetoacetate and NH4HCO3. In the molecular structure of the title compound, the dihydropyridine ring adopts a flattened boat conformation and the plane of the base of the boat forms a dihedral angle of 80.8 (2)° with the aromatic six-membered ring. The packing is stabilized by strong intermolecular N—H⋯Ocarbonyl, Ohydroxy—H⋯Ocarbonyl and weak intramolecular C—H⋯O hydrogen bonds.
Related literature
For background to the bioactivity and synthesis of 1,4-dihydropyridines, see: Yang et al. (2010); Davies et al. (2005); Warrior et al. (2005); Ko & Yao (2006); Rose & Draeger (1992). For related structures, see: Bai et al. (2009); Fun et al. (2009); Thenmozhi et al. (2009). For hydrogen-bond definitions, see: Desiraju & Steiner (1999). For the synthetic method, see: Tamaddon et al. (2010).
Experimental
Crystal data
|
Data collection
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811032521/zl2397sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811032521/zl2397Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811032521/zl2397Isup3.mol
Supporting information file. DOI: 10.1107/S1600536811032521/zl2397Isup4.cml
The title compound was obtained according to a reported method (Tamaddon et al., 2010). A mixture of 4-hydroxybenzaldehyde (2 mmol), methyl acetoacetate (4 mmol), and NH4HCO3 (2 mmol) was stirred in water (2 mL) under reflux. After completion of the reaction (TLC monitoring), the mixture was diluted with cold water (20 mL) and filtered to obtain the precipitated product which was further purified by recrystallization. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. IR (KBr) v/cm-1: 3327, 2960, 1685, 1652; 1H NMR (300 MHz, DMSO-d6) δ/ppm: 9.05 (s, 1H, NH), 8.77 (s, 1H, OH), 6.91 (d, 2H, ArH, J = 7.8 Hz), 6.56 (d, 2H, ArH, J = 7.8 Hz), 4.77 (s, 1H, H4), 3.55 (s, 6H, 2COOCH3), 2.25 (s, 6H, 2CH3); MS (ESI) m/z: 318.1 [M+H]+, 340.1 [M+Na]+, 356.0 [M+K]+; Anal. Calcd for C17H19NO5: C, 64.34; H, 6.03; N, 4.41; found: C, 64.46; H, 6.09; N, 4.33.
All H atoms were located in a difference map and refined isotropically. The N-H distance of H1A atom (for N1) was constrained to 0.86 Å. All other H atoms were positioned geometrically and treated as riding, with C-H distances in the range 0.93-0.98 Å, an O-H distance of 0.82 Å and Uiso(H) = 1.2 or 1.5 times Ueq(C). The methyl groups were allowed to rotate during the refinement.
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C17H19NO5 | F(000) = 672 |
Mr = 317.33 | Dx = 1.318 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 25 reflections |
a = 13.245 (3) Å | θ = 9–12° |
b = 9.3480 (19) Å | µ = 0.10 mm−1 |
c = 13.754 (3) Å | T = 293 K |
β = 110.14 (3)° | Block, yellow |
V = 1598.8 (6) Å3 | 0.20 × 0.10 × 0.10 mm |
Z = 4 |
Nonius CAD 4 diffractometer | 1212 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.104 |
Graphite monochromator | θmax = 25.4°, θmin = 1.8° |
ω/2θ scans | h = 0→15 |
Absorption correction: ψ scan For semi-empirical (using intensity measurements) absorption, see: North et al. (1968) | k = −4→11 |
Tmin = 0.981, Tmax = 0.990 | l = −16→15 |
4588 measured reflections | 3 standard reflections every 200 reflections |
2931 independent reflections | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.074 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.081 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.005P)2] where P = (Fo2 + 2Fc2)/3 |
2931 reflections | (Δ/σ)max < 0.001 |
209 parameters | Δρmax = 0.16 e Å−3 |
1 restraint | Δρmin = −0.17 e Å−3 |
C17H19NO5 | V = 1598.8 (6) Å3 |
Mr = 317.33 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 13.245 (3) Å | µ = 0.10 mm−1 |
b = 9.3480 (19) Å | T = 293 K |
c = 13.754 (3) Å | 0.20 × 0.10 × 0.10 mm |
β = 110.14 (3)° |
Nonius CAD 4 diffractometer | 1212 reflections with I > 2σ(I) |
Absorption correction: ψ scan For semi-empirical (using intensity measurements) absorption, see: North et al. (1968) | Rint = 0.104 |
Tmin = 0.981, Tmax = 0.990 | 3 standard reflections every 200 reflections |
4588 measured reflections | intensity decay: 1% |
2931 independent reflections |
R[F2 > 2σ(F2)] = 0.074 | 1 restraint |
wR(F2) = 0.081 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.16 e Å−3 |
2931 reflections | Δρmin = −0.17 e Å−3 |
209 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.6521 (3) | 0.2025 (3) | 0.3016 (2) | 0.0547 (9) | |
H1A | 0.6515 | 0.1445 | 0.2529 | 0.066* | |
O1 | 1.0141 (2) | −0.0866 (3) | 0.7601 (2) | 0.0705 (9) | |
H1B | 0.9967 | −0.1157 | 0.8083 | 0.106* | |
C1 | 0.8797 (3) | 0.1492 (4) | 0.5474 (3) | 0.0460 (10) | |
H1C | 0.8910 | 0.1793 | 0.4875 | 0.055* | |
O2 | 0.5444 (2) | 0.3203 (4) | 0.5778 (2) | 0.0866 (11) | |
C2 | 0.9528 (3) | 0.0542 (4) | 0.6113 (3) | 0.0609 (12) | |
H2A | 1.0116 | 0.0232 | 0.5947 | 0.073* | |
O3 | 0.4353 (2) | 0.1763 (3) | 0.4605 (2) | 0.0698 (9) | |
C3 | 0.9371 (3) | 0.0055 (4) | 0.7006 (3) | 0.0498 (10) | |
O4 | 0.8684 (2) | 0.5538 (3) | 0.3923 (2) | 0.0706 (9) | |
C4 | 0.8511 (3) | 0.0495 (4) | 0.7228 (3) | 0.0601 (12) | |
H4A | 0.8396 | 0.0157 | 0.7816 | 0.072* | |
O5 | 0.8363 (2) | 0.5462 (3) | 0.5423 (2) | 0.0600 (8) | |
C5 | 0.7786 (3) | 0.1468 (4) | 0.6570 (3) | 0.0578 (12) | |
H5A | 0.7195 | 0.1763 | 0.6735 | 0.069* | |
C6 | 0.7922 (3) | 0.2018 (4) | 0.5662 (3) | 0.0422 (9) | |
C7 | 0.7113 (3) | 0.3079 (4) | 0.4988 (3) | 0.0466 (9) | |
H7A | 0.7036 | 0.3853 | 0.5438 | 0.056* | |
C8 | 0.5986 (3) | 0.2431 (4) | 0.4446 (3) | 0.0480 (10) | |
C9 | 0.5808 (3) | 0.1810 (4) | 0.3502 (3) | 0.0442 (9) | |
C10 | 0.7253 (3) | 0.3108 (4) | 0.3254 (3) | 0.0461 (10) | |
C11 | 0.7525 (3) | 0.3737 (4) | 0.4184 (3) | 0.0530 (11) | |
C12 | 0.4874 (3) | 0.0857 (4) | 0.2903 (3) | 0.0674 (14) | |
H12A | 0.4384 | 0.0774 | 0.3276 | 0.101* | |
H12B | 0.5139 | −0.0073 | 0.2819 | 0.101* | |
H12C | 0.4508 | 0.1269 | 0.2234 | 0.101* | |
C13 | 0.7703 (3) | 0.3459 (5) | 0.2409 (3) | 0.0789 (16) | |
H13A | 0.8426 | 0.3807 | 0.2715 | 0.118* | |
H13B | 0.7266 | 0.4180 | 0.1962 | 0.118* | |
H13C | 0.7703 | 0.2613 | 0.2013 | 0.118* | |
C14 | 0.5229 (3) | 0.2511 (4) | 0.4999 (3) | 0.0518 (11) | |
C15 | 0.3573 (3) | 0.1894 (5) | 0.5099 (3) | 0.1006 (19) | |
H15A | 0.2957 | 0.1319 | 0.4740 | 0.151* | |
H15B | 0.3359 | 0.2877 | 0.5088 | 0.151* | |
H15C | 0.3878 | 0.1575 | 0.5804 | 0.151* | |
C16 | 0.8259 (3) | 0.4957 (4) | 0.4461 (3) | 0.0506 (10) | |
C17 | 0.9061 (3) | 0.6675 (4) | 0.5735 (3) | 0.0797 (15) | |
H17A | 0.9123 | 0.6948 | 0.6426 | 0.120* | |
H17B | 0.8770 | 0.7457 | 0.5271 | 0.120* | |
H17C | 0.9759 | 0.6433 | 0.5717 | 0.120* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.077 (3) | 0.042 (2) | 0.048 (2) | 0.0006 (19) | 0.0258 (18) | 0.0007 (17) |
O1 | 0.074 (2) | 0.085 (2) | 0.0554 (19) | 0.0210 (18) | 0.0265 (16) | 0.0311 (17) |
C1 | 0.060 (3) | 0.049 (3) | 0.036 (2) | 0.010 (2) | 0.0251 (19) | −0.0016 (17) |
O2 | 0.075 (2) | 0.127 (3) | 0.059 (2) | −0.018 (2) | 0.0253 (17) | −0.038 (2) |
C2 | 0.058 (3) | 0.073 (3) | 0.057 (3) | 0.004 (2) | 0.027 (2) | 0.024 (2) |
O3 | 0.0503 (18) | 0.104 (3) | 0.063 (2) | −0.0190 (18) | 0.0301 (16) | −0.0103 (19) |
C3 | 0.056 (3) | 0.053 (2) | 0.045 (2) | −0.006 (2) | 0.024 (2) | 0.001 (2) |
O4 | 0.085 (2) | 0.075 (2) | 0.0512 (19) | −0.0162 (18) | 0.0227 (16) | 0.0111 (16) |
C4 | 0.066 (3) | 0.075 (3) | 0.045 (3) | 0.003 (3) | 0.026 (2) | 0.014 (2) |
O5 | 0.087 (2) | 0.0338 (16) | 0.071 (2) | −0.0074 (15) | 0.0426 (18) | −0.0083 (15) |
C5 | 0.052 (3) | 0.075 (3) | 0.054 (3) | 0.011 (2) | 0.029 (2) | 0.007 (2) |
C6 | 0.048 (2) | 0.042 (2) | 0.041 (2) | −0.0051 (18) | 0.0206 (19) | 0.0032 (17) |
C7 | 0.054 (3) | 0.049 (2) | 0.039 (2) | 0.012 (2) | 0.0183 (19) | −0.0042 (19) |
C8 | 0.065 (3) | 0.042 (2) | 0.036 (2) | 0.0020 (19) | 0.015 (2) | −0.0039 (17) |
C9 | 0.042 (2) | 0.045 (2) | 0.047 (2) | 0.0111 (19) | 0.0175 (18) | 0.007 (2) |
C10 | 0.058 (3) | 0.046 (2) | 0.046 (2) | 0.000 (2) | 0.032 (2) | 0.0108 (19) |
C11 | 0.077 (3) | 0.043 (2) | 0.037 (2) | 0.014 (2) | 0.019 (2) | −0.0060 (19) |
C12 | 0.064 (3) | 0.097 (4) | 0.040 (2) | −0.004 (3) | 0.016 (2) | −0.021 (3) |
C13 | 0.086 (4) | 0.103 (4) | 0.054 (3) | −0.005 (3) | 0.032 (3) | −0.003 (3) |
C14 | 0.051 (3) | 0.059 (3) | 0.040 (2) | 0.002 (2) | 0.009 (2) | −0.002 (2) |
C15 | 0.055 (3) | 0.136 (5) | 0.112 (4) | 0.008 (4) | 0.031 (3) | −0.018 (4) |
C16 | 0.059 (3) | 0.049 (3) | 0.053 (3) | 0.002 (2) | 0.031 (2) | 0.016 (2) |
C17 | 0.096 (4) | 0.052 (3) | 0.075 (3) | −0.008 (3) | 0.009 (3) | 0.000 (3) |
N1—C9 | 1.346 (4) | C7—C11 | 1.522 (4) |
N1—C10 | 1.361 (4) | C7—C8 | 1.544 (5) |
N1—H1A | 0.8600 | C7—H7A | 0.9800 |
O1—C3 | 1.370 (4) | C8—C9 | 1.367 (4) |
O1—H1B | 0.8200 | C8—C14 | 1.455 (5) |
C1—C6 | 1.363 (4) | C9—C12 | 1.517 (4) |
C1—C2 | 1.383 (4) | C10—C11 | 1.340 (5) |
C1—H1C | 0.9300 | C10—C13 | 1.514 (4) |
O2—C14 | 1.199 (4) | C11—C16 | 1.461 (5) |
C2—C3 | 1.391 (4) | C12—H12A | 0.9600 |
C2—H2A | 0.9300 | C12—H12B | 0.9600 |
O3—C14 | 1.302 (4) | C12—H12C | 0.9600 |
O3—C15 | 1.424 (4) | C13—H13A | 0.9600 |
C3—C4 | 1.341 (4) | C13—H13B | 0.9600 |
O4—C16 | 1.203 (4) | C13—H13C | 0.9600 |
C4—C5 | 1.403 (5) | C15—H15A | 0.9600 |
C4—H4A | 0.9300 | C15—H15B | 0.9600 |
O5—C16 | 1.366 (4) | C15—H15C | 0.9600 |
O5—C17 | 1.433 (4) | C17—H17A | 0.9600 |
C5—C6 | 1.417 (4) | C17—H17B | 0.9600 |
C5—H5A | 0.9300 | C17—H17C | 0.9600 |
C6—C7 | 1.520 (5) | ||
C9—N1—C10 | 123.7 (3) | C11—C10—N1 | 119.4 (3) |
C9—N1—H1A | 118.2 | C11—C10—C13 | 126.2 (4) |
C10—N1—H1A | 118.2 | N1—C10—C13 | 114.4 (4) |
C3—O1—H1B | 109.5 | C10—C11—C16 | 121.8 (4) |
C6—C1—C2 | 124.5 (3) | C10—C11—C7 | 118.1 (4) |
C6—C1—H1C | 117.8 | C16—C11—C7 | 119.9 (3) |
C2—C1—H1C | 117.8 | C9—C12—H12A | 109.5 |
C1—C2—C3 | 119.1 (4) | C9—C12—H12B | 109.5 |
C1—C2—H2A | 120.5 | H12A—C12—H12B | 109.5 |
C3—C2—H2A | 120.5 | C9—C12—H12C | 109.5 |
C14—O3—C15 | 116.3 (3) | H12A—C12—H12C | 109.5 |
C4—C3—O1 | 124.9 (4) | H12B—C12—H12C | 109.5 |
C4—C3—C2 | 119.8 (4) | C10—C13—H13A | 109.5 |
O1—C3—C2 | 115.2 (3) | C10—C13—H13B | 109.5 |
C3—C4—C5 | 119.9 (4) | H13A—C13—H13B | 109.5 |
C3—C4—H4A | 120.1 | C10—C13—H13C | 109.5 |
C5—C4—H4A | 120.1 | H13A—C13—H13C | 109.5 |
C16—O5—C17 | 113.8 (3) | H13B—C13—H13C | 109.5 |
C4—C5—C6 | 122.4 (4) | O2—C14—O3 | 124.5 (4) |
C4—C5—H5A | 118.8 | O2—C14—C8 | 120.0 (4) |
C6—C5—H5A | 118.8 | O3—C14—C8 | 115.5 (4) |
C1—C6—C5 | 114.3 (4) | O3—C15—H15A | 109.5 |
C1—C6—C7 | 126.0 (3) | O3—C15—H15B | 109.5 |
C5—C6—C7 | 119.8 (3) | H15A—C15—H15B | 109.5 |
C6—C7—C11 | 110.6 (3) | O3—C15—H15C | 109.5 |
C6—C7—C8 | 113.6 (3) | H15A—C15—H15C | 109.5 |
C11—C7—C8 | 109.7 (3) | H15B—C15—H15C | 109.5 |
C6—C7—H7A | 107.6 | O4—C16—O5 | 121.8 (4) |
C11—C7—H7A | 107.6 | O4—C16—C11 | 127.0 (4) |
C8—C7—H7A | 107.6 | O5—C16—C11 | 111.0 (3) |
C9—C8—C14 | 126.5 (4) | O5—C17—H17A | 109.5 |
C9—C8—C7 | 116.5 (3) | O5—C17—H17B | 109.5 |
C14—C8—C7 | 117.0 (3) | H17A—C17—H17B | 109.5 |
N1—C9—C8 | 119.2 (4) | O5—C17—H17C | 109.5 |
N1—C9—C12 | 113.5 (3) | H17A—C17—H17C | 109.5 |
C8—C9—C12 | 127.3 (3) | H17B—C17—H17C | 109.5 |
C6—C1—C2—C3 | 1.0 (7) | C7—C8—C9—C12 | 167.3 (4) |
C1—C2—C3—C4 | 0.9 (7) | C9—N1—C10—C11 | 21.1 (6) |
C1—C2—C3—O1 | −179.1 (4) | C9—N1—C10—C13 | −160.3 (3) |
O1—C3—C4—C5 | 178.6 (4) | N1—C10—C11—C16 | −176.5 (3) |
C2—C3—C4—C5 | −1.3 (7) | C13—C10—C11—C16 | 5.0 (7) |
C3—C4—C5—C6 | 0.0 (7) | N1—C10—C11—C7 | 7.9 (6) |
C2—C1—C6—C5 | −2.1 (6) | C13—C10—C11—C7 | −170.6 (4) |
C2—C1—C6—C7 | 179.0 (4) | C6—C7—C11—C10 | 92.2 (4) |
C4—C5—C6—C1 | 1.6 (6) | C8—C7—C11—C10 | −33.9 (5) |
C4—C5—C6—C7 | −179.4 (4) | C6—C7—C11—C16 | −83.5 (4) |
C1—C6—C7—C11 | −12.1 (5) | C8—C7—C11—C16 | 150.4 (3) |
C5—C6—C7—C11 | 169.1 (3) | C15—O3—C14—O2 | 5.5 (7) |
C1—C6—C7—C8 | 111.8 (4) | C15—O3—C14—C8 | −176.4 (4) |
C5—C6—C7—C8 | −67.0 (4) | C9—C8—C14—O2 | −172.9 (4) |
C6—C7—C8—C9 | −88.5 (4) | C7—C8—C14—O2 | 8.7 (6) |
C11—C7—C8—C9 | 35.9 (5) | C9—C8—C14—O3 | 8.9 (6) |
C6—C7—C8—C14 | 90.1 (4) | C7—C8—C14—O3 | −169.5 (4) |
C11—C7—C8—C14 | −145.5 (3) | C17—O5—C16—O4 | −3.2 (6) |
C10—N1—C9—C8 | −18.3 (6) | C17—O5—C16—C11 | −179.1 (3) |
C10—N1—C9—C12 | 162.1 (4) | C10—C11—C16—O4 | 0.8 (7) |
C14—C8—C9—N1 | 169.3 (4) | C7—C11—C16—O4 | 176.3 (4) |
C7—C8—C9—N1 | −12.3 (5) | C10—C11—C16—O5 | 176.4 (4) |
C14—C8—C9—C12 | −11.2 (7) | C7—C11—C16—O5 | −8.0 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O4i | 0.86 | 2.10 | 2.936 (4) | 164 |
O1—H1B···O2ii | 0.82 | 1.92 | 2.742 (4) | 179 |
C7—H7A···O2 | 0.98 | 2.39 | 2.781 (5) | 103 |
C7—H7A···O5 | 0.98 | 2.32 | 2.717 (5) | 103 |
C12—H12A···O3 | 0.96 | 2.06 | 2.790 (5) | 131 |
C13—H13A···O4 | 0.96 | 2.26 | 2.818 (5) | 116 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+3/2, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C17H19NO5 |
Mr | 317.33 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 13.245 (3), 9.3480 (19), 13.754 (3) |
β (°) | 110.14 (3) |
V (Å3) | 1598.8 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.20 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Nonius CAD 4 diffractometer |
Absorption correction | ψ scan For semi-empirical (using intensity measurements) absorption, see: North et al. (1968) |
Tmin, Tmax | 0.981, 0.990 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4588, 2931, 1212 |
Rint | 0.104 |
(sin θ/λ)max (Å−1) | 0.603 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.074, 0.081, 1.00 |
No. of reflections | 2931 |
No. of parameters | 209 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.16, −0.17 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O4i | 0.86 | 2.10 | 2.936 (4) | 164 |
O1—H1B···O2ii | 0.82 | 1.92 | 2.742 (4) | 179 |
C7—H7A···O2 | 0.98 | 2.39 | 2.781 (5) | 103 |
C7—H7A···O5 | 0.98 | 2.32 | 2.717 (5) | 103 |
C12—H12A···O3 | 0.96 | 2.06 | 2.790 (5) | 131 |
C13—H13A···O4 | 0.96 | 2.26 | 2.818 (5) | 116 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+3/2, y−1/2, −z+3/2. |
References
Bai, M.-S., Chen, Y.-Y., Niu, D.-L. & Peng, L. (2009). Acta Cryst. E65, o799. Web of Science CSD CrossRef IUCr Journals Google Scholar
Davies, D. T., Markwell, R. E., Pearson, N. D. & Takle, A. K. (2005). US Patent 6911442. Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 13. New York: Oxford University Press Inc. Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Fun, H.-K., Liew, W.-C., Reddy, B. P., Sarveswari, S. & Vijayakumar, V. (2009). Acta Cryst. E65, o2342–o2343. Google Scholar
Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany. Google Scholar
Ko, S. K. & Yao, C. F. (2006). Tetrahedron, 62, 7293–7299. Web of Science CrossRef CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Rose, U. & Draeger, M. (1992). J. Med. Chem. 35, 2238–2243. CSD CrossRef PubMed CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tamaddon, F., Razmi, A. & Jafari, A. (2010). Tetrahedron Lett. 51, 1187–1189. Web of Science CrossRef CAS Google Scholar
Thenmozhi, M., Kavitha, T., Reddy, B. P., Vijayakumar, V. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o2795. Google Scholar
Warrior, P., Heiman, D. F., Fugiel, J. A. & Petracek, P. D. (2005). WO Patent 2005060748. Google Scholar
Yang, X.-H., Zhou, Y.-H., Zhang, M. & Song, X. (2010). Acta Cryst. E66, o2767. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, much attention has been focused on the synthesis of 1,4-dihydropyridine derivatives because of their presence in numerous natural products along with a wide spectrum of their physiological activities (Yang et al., 2010). For example, some dihydropyridines have calcium modulatory properties (Rose & Draeger, 1992), antibacterial activity (Davies et al., 2005), or fungicidal activity (Warrior et al., 2005), to name just a few. Because of the biological importance associated with these compounds, numerous methods had been developed for the synthesis of 1,4-dihydropyridine derivatives, which include the use of microwaves, ionic liquids, refluxing at high temperature, metal triflates, and iodine (Ko & Yao, 2006). However, the use of high temperatures, expensive metal precursors, catalysts that are harmful to the environment, and long reaction times limit the use of many of these methods. Herein, we report a mild and catalyst-free synthesis based on a variation of the commonly used Hantzsch dihydropyridine synthesis (Tamaddon et al., 2010), and the crystal structure of the resultant title compound is presented. Compared to the classical method involving the three-component coupling of an aldehyde with ethyl acetoacetate, and ammonia in acetic acid or in refluxing alcohol, the reation was conducted in water and avoided the use of catalysts, so it was very environmentally benign. Moreover, the workup is very simple and can give the product in high yield after simple filtration.
In the molecular structure of the title compound (Fig. 1), atoms C7 and N1 deviate from the mean plane of atoms C8/C9/C10/C11 in the same direction, by 0.45 (0) and 0.18 (7) Å, respectively, so the heterocyclic ring adopts a boat conformation. In addition, the phenol ring substituent is almost perpendicular to the plane of the atoms C8/C9/C10/C11, with a dihedral angle between them of 80.8 (2)°. The methyl groups are nearly coplanar with the aformentioned plane of the atoms C8/C9/C10/C11, with the methyl C atoms C12 and C13 deviating from the mean plane by 0.12 (4) and 0.22 (2) Å, respectively. The average C—N bond lengths of the title compound are with 1.353 (9) Å similar to those of its phenyl substituted 1,4-dihydropyridine derivative (Bai et al., 2009) which has average C—N bond lenghts of 1.376 (8) Å, its 4-methoxyphenyl substituted 1,4-dihydropyridine derivative (Thenmozhi et al., 2009) which has average C—N bond lenghts of 1.377 (4) Å, and its 4-methylphenyl substituted 1,4-dihydropyridine derivative (Fun et al., 2009) which has average C—N bond lenghts of 1.385 (7) Å.
The crystal packing of the title compound is stabilized by strong intermolecular N—H···Ocarbonyl and Ohydroxyl—H···Ocarbonyl hydrogen bonds (Desiraju & Steiner, 1999), N1—H1A···O4i and O1—H1B···O2ii, and by several weaker intramolecular C—H···O hydrogen bonds, C7—H7A···O2, C7–H7A···O5, C12—H12A···O3, C13—H13A···O4 (see Table 1 for numerical values and symmetry operators).