metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[copper(I)-bis­­[μ-3-(1H-imidazol-2-yl)pyridine]-copper(I)-di-μ-iodido]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and, South China Normal University, Key Laboratory of Technology in Electrochemical Energy Storage and Power Generation in Guangdong Universities, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: zhanqg2001@yahoo.com.cn

(Received 10 August 2011; accepted 18 August 2011; online 27 August 2011)

The title polymeric compound, [Cu2I2(C8H7N3)2]n [C8H7N3 = 3-(1H-imidazol-2-yl)pyridine (HIPy), where HIPy comes from the in situ deca­rboxylation of 2-(pyridin-3-yl)-1H-imidazole-4,5-dicarb­oxy­lic acid (H3PyIDC)], was obtained under solvo­thermal conditions. Each CuI cation is in a distorted tetra­hedral coordination environment defined by two iodide anions and two nitro­gen atoms from two individual HIPy ligands. Two CuI atoms are connected by two HIPy ligands to form a dimer and these dimers are further bridged through the iodide atoms, leading to a chain structure extending parallel to [100]. Moreover, inter­molecular N—H⋯I hydrogen bonds and weak ππ stacking inter­actions [centroid⋯centroid distances of 3.809 (4) Å, an inter­planar separation of 3.345 (3) Å and a ring slippage of 1.822 Å] between pyridyl rings link the chains into a two-dimensional supra­molecular network in the ac plane.

Related literature

For general background on the deca­rboxylation of N-heterocyclic carb­oxy­lic acid ligands, see: Chen & Tong (2007[Chen, X.-M. & Tong, M.-L. (2007). Acc. Chem. Res. 40, 162-170.]); Sun et al. (2006[Sun, Y.-Q., Zhang, J. & Yang, G.-Y. (2006). Chem. Commun. pp. 1947-1949.]); Yigit et al. (2006[Yigit, M.-V., Wang, Y., Moulton, B. & MacDonald, J.-C. (2006). Cryst. Growth Des. 6, 829-832.]); Zhong et al. (2010[Zhong, D.-C., Lu, W.-G., Jiang, L., Feng, X.-L. & Lu, T.-B. (2010). Cryst. Growth Des. 10, 739-746.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2I2(C8H7N3)2]

  • Mr = 671.22

  • Triclinic, [P \overline 1]

  • a = 8.141 (3) Å

  • b = 8.306 (3) Å

  • c = 8.816 (5) Å

  • α = 114.683 (6)°

  • β = 101.989 (5)°

  • γ = 108.258 (4)°

  • V = 473.1 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 5.52 mm−1

  • T = 298 K

  • 0.35 × 0.32 × 0.30 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.248, Tmax = 0.288

  • 2452 measured reflections

  • 1682 independent reflections

  • 1506 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.080

  • S = 1.06

  • 1682 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯I1i 0.86 2.83 3.588 (5) 148
Symmetry code: (i) x+1, y+1, z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, in situ metal/ligand reactions have been widely investigated for the discovery of new organic reactions, elucidation of reaction mechanisms, as well as generation of novel coordination polymers (Chen et al., 2007). Among them, hydrothermal decarboxylation of N-heterocyclic carboxylic acid ligands has been shown to occur in the presence of metal ions (Sun et al., 2006; Yigit et al., 2006; Zhong et al., 2010). For example, Sun et al. (2006) have synthesized two lanthanide sulfate–carboxylates, [Ln(HIMC)(SO4)(H2O)] (Ln = Dy and Eu, HIMC = 4-imidazolecarboxylic acid ), by using in situ decarboxylation of 4,5-imidazoledicarboxylic acid in the presence of Cu(II) ions. However, as far as we know, no decarboxylation based on 2-(pyridin-3-yl)-1H-imidazole-4,5-dicarboxylic acid (H3PyIDC) under solvothermal reaction conditions has been documented. In this work, we report the synthesis and structure of the polymeric title complex, using H3PyIDC as one of the starting materials. Under the solvothermal reaction conditions and in the presence of CuI decarboxylation occurs and H3PyIDC is transformed into HIPy which is incorporated into the polymeric title complex.

The asymmmetric unit of the title compound contains one Cu+ cation, one I- anion and one HIPy neutral ligand. As shown in Fig. 1, the CuI cation exhibits a distorted tetrahedral coordination, made up of two iodide anions and two nitrogen atoms from two individual HIPy ligands. The Cu···I bond lengths are 2.7331 (12) and 2.7887 (14) Å.

In the crystal structure, two CuI atoms are connected through two HIPy ligands via their Nimidazole and Npyridyl atoms to form a dimer with a Cu···Cu separation of 5.3621 (21) Å; these dimers are further bridged through the µ2-I atoms, leading to a 1D chain structure extending parallel to [100] (Fig. 2). Intermolecular N2–H2···I1iii hydrogen bonds between the imidazole N-H groups and the I atoms (Table 1) [symmetry code: (iii) x+1, y+1, z+1] link the chains into a 2D supramolecular network in the ac plane (Fig. 3). The crystal structure is further stabilized by weak slipped π-π stacking interactions between neighbouring pyridyl rings (N3/C4-C8 and N3v/C4v-C8v, symmetry code: (v) 1-x, 2-y, 1-z), with centroid···centroid distances of 3.809 (4) Å, an interplanar separation of 3.345 (3) Å and a ring slippage of 1.822 Å (Fig. 3).

Related literature top

For general background on the decarboxylation of N-heterocyclic carboxylic acid ligands, see: Chen et al. (2007); Sun et al. (2006); Yigit et al. (2006); Zhong et al., (2010).

Experimental top

A mixture of H3PyIDC (46.6 mg, 0.2 mmol), CuI (38.1 mg, 0.2 mmol), 8 mL EtOH/H2O (1:1, v/v), and 0.1 mL Et3N was sealed in a 15mL Teflon-lined stainless steel autoclave, heated at 443 K for 48 h, and then slowly cooled to room temperature at a rate of 273 K/h. Yellow block-shaped crystals of the title compound were isolated, washed with distilled water, and dried in air (yield: 25%). Anal. Calcd. for C8H7CuIN3: C, 28.63, H, 2.10, N, 12.52. Found: C, 28.73, H, 2.05, N, 12.48%.

Refinement top

All non-hydrogen atoms were assigned anisotropic displacement parameters in the refinement. All hydrogen atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and N—H = 0.86 Å and with Uiso(H) = 1.2 Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (i) -x-1, -y+1, -z; (ii) -x, -y+1, -z.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the one-dimensional chain structure extending parallel to [100].
[Figure 3] Fig. 3. A view showing part of the two-dimensional supramolecular network linked by N–H···I hydrogen bonds and weak π-π stacking interactions. Hydrogen bonds and π-π stacking interactions are shown as dashed lines. Symmetry code: (v) 1-x, 2-y, 1-z).
catena-Poly[copper(I)-bis[µ-3-(1H-imidazol-2-yl)pyridine]- copper(I)-di-µ-iodido] top
Crystal data top
[Cu2I2(C8H7N3)2]Z = 1
Mr = 671.22F(000) = 316
Triclinic, P1Dx = 2.356 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.141 (3) ÅCell parameters from 1252 reflections
b = 8.306 (3) Åθ = 2.8–26.8°
c = 8.816 (5) ŵ = 5.52 mm1
α = 114.683 (6)°T = 298 K
β = 101.989 (5)°Block, yellow
γ = 108.258 (4)°0.35 × 0.32 × 0.30 mm
V = 473.1 (4) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1682 independent reflections
Radiation source: fine-focus sealed tube1506 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.2°, θmin = 2.8°
Absorption correction: multi-scan
(APEX2; Bruker, 2004)
h = 89
Tmin = 0.248, Tmax = 0.288k = 95
2452 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0418P)2 + 0.3135P]
where P = (Fo2 + 2Fc2)/3
1682 reflections(Δ/σ)max = 0.001
118 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Cu2I2(C8H7N3)2]γ = 108.258 (4)°
Mr = 671.22V = 473.1 (4) Å3
Triclinic, P1Z = 1
a = 8.141 (3) ÅMo Kα radiation
b = 8.306 (3) ŵ = 5.52 mm1
c = 8.816 (5) ÅT = 298 K
α = 114.683 (6)°0.35 × 0.32 × 0.30 mm
β = 101.989 (5)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1682 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2004)
1506 reflections with I > 2σ(I)
Tmin = 0.248, Tmax = 0.288Rint = 0.018
2452 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.06Δρmax = 0.86 e Å3
1682 reflectionsΔρmin = 0.69 e Å3
118 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.63541 (5)0.55664 (5)0.19170 (4)0.03979 (15)
Cu10.29230 (10)0.58503 (11)0.03571 (10)0.0494 (2)
N10.1172 (6)0.8746 (7)0.1128 (6)0.0359 (10)
N20.0984 (6)1.1683 (7)0.3412 (6)0.0410 (10)
H20.19901.25840.43620.049*
C50.2418 (7)0.9476 (8)0.4986 (7)0.0387 (12)
H50.23851.05530.58910.046*
C60.3354 (7)0.8513 (9)0.5428 (7)0.0398 (12)
H60.39340.89060.66340.048*
C70.3418 (7)0.6968 (8)0.4067 (7)0.0379 (12)
H70.40390.63170.43840.045*
C30.0440 (7)0.9714 (7)0.2574 (7)0.0329 (11)
C10.1648 (7)1.0191 (8)0.1087 (7)0.0371 (12)
H10.27130.99510.02200.044*
C20.0336 (8)1.2007 (8)0.2495 (7)0.0414 (13)
H2A0.03301.32210.27810.050*
C40.1521 (7)0.8819 (7)0.3165 (7)0.0324 (11)
C80.1698 (7)0.7266 (7)0.1884 (7)0.0343 (11)
H80.11350.68460.06680.041*
N30.2635 (6)0.6336 (6)0.2299 (6)0.0364 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0394 (2)0.0415 (2)0.0382 (2)0.02226 (17)0.01033 (16)0.01990 (18)
Cu10.0506 (4)0.0349 (4)0.0442 (4)0.0235 (3)0.0051 (3)0.0086 (3)
N10.035 (2)0.038 (3)0.037 (2)0.020 (2)0.0167 (19)0.018 (2)
N20.039 (2)0.034 (3)0.042 (3)0.015 (2)0.013 (2)0.016 (2)
C50.036 (3)0.039 (3)0.038 (3)0.016 (2)0.018 (2)0.016 (3)
C60.039 (3)0.051 (3)0.030 (3)0.021 (3)0.014 (2)0.020 (3)
C70.034 (3)0.040 (3)0.045 (3)0.017 (2)0.016 (2)0.026 (3)
C30.033 (3)0.030 (3)0.035 (3)0.016 (2)0.015 (2)0.014 (2)
C10.039 (3)0.039 (3)0.040 (3)0.023 (3)0.017 (2)0.022 (3)
C20.053 (3)0.036 (3)0.050 (3)0.028 (3)0.026 (3)0.025 (3)
C40.030 (2)0.027 (3)0.037 (3)0.013 (2)0.015 (2)0.013 (2)
C80.033 (3)0.032 (3)0.033 (3)0.018 (2)0.011 (2)0.011 (2)
N30.033 (2)0.034 (2)0.039 (2)0.017 (2)0.0118 (19)0.016 (2)
Geometric parameters (Å, º) top
I1—Cu12.7331 (12)C6—C71.368 (8)
I1—Cu1i2.7887 (14)C6—H60.9300
Cu1—N11.994 (4)C7—N31.345 (7)
Cu1—N3ii2.030 (4)C7—H70.9300
Cu1—I1i2.7887 (14)C3—C41.464 (7)
N1—C31.335 (6)C1—C21.353 (7)
N1—C11.384 (7)C1—H10.9300
N2—C31.348 (7)C2—H2A0.9300
N2—C21.372 (7)C4—C81.388 (7)
N2—H20.8600C8—N31.342 (6)
C5—C61.376 (8)C8—H80.9300
C5—C41.392 (7)N3—Cu1ii2.030 (4)
C5—H50.9300
Cu1—I1—Cu1i79.47 (3)N3—C7—H7118.1
N1—Cu1—N3ii127.88 (17)C6—C7—H7118.1
N1—Cu1—I1105.56 (12)N1—C3—N2110.0 (4)
N3ii—Cu1—I1106.58 (12)N1—C3—C4126.1 (5)
N1—Cu1—I1i109.74 (13)N2—C3—C4123.8 (4)
N3ii—Cu1—I1i103.36 (13)C2—C1—N1110.0 (5)
I1—Cu1—I1i100.53 (3)C2—C1—H1125.0
C3—N1—C1105.7 (4)N1—C1—H1125.0
C3—N1—Cu1128.9 (4)C1—C2—N2105.7 (5)
C1—N1—Cu1123.9 (3)C1—C2—H2A127.2
C3—N2—C2108.5 (4)N2—C2—H2A127.2
C3—N2—H2125.7C8—C4—C5117.6 (5)
C2—N2—H2125.7C8—C4—C3119.7 (5)
C6—C5—C4119.1 (5)C5—C4—C3122.6 (5)
C6—C5—H5120.4N3—C8—C4123.8 (5)
C4—C5—H5120.4N3—C8—H8118.1
C7—C6—C5119.0 (5)C4—C8—H8118.1
C7—C6—H6120.5C8—N3—C7116.6 (4)
C5—C6—H6120.5C8—N3—Cu1ii121.6 (3)
N3—C7—C6123.8 (5)C7—N3—Cu1ii121.8 (4)
Cu1i—I1—Cu1—N1114.10 (13)C3—N1—C1—C20.1 (6)
Cu1i—I1—Cu1—N3ii107.49 (14)Cu1—N1—C1—C2167.1 (3)
Cu1i—I1—Cu1—I1i0.0N1—C1—C2—N20.6 (6)
N3ii—Cu1—N1—C378.1 (5)C3—N2—C2—C11.0 (6)
I1—Cu1—N1—C3155.6 (4)C6—C5—C4—C83.0 (7)
I1i—Cu1—N1—C348.1 (4)C6—C5—C4—C3177.8 (5)
N3ii—Cu1—N1—C1117.9 (4)N1—C3—C4—C839.7 (7)
I1—Cu1—N1—C18.4 (4)N2—C3—C4—C8138.2 (5)
I1i—Cu1—N1—C1115.9 (4)N1—C3—C4—C5141.1 (5)
C4—C5—C6—C71.7 (8)N2—C3—C4—C541.0 (7)
C5—C6—C7—N30.9 (8)C5—C4—C8—N31.9 (7)
C1—N1—C3—N20.6 (5)C3—C4—C8—N3178.9 (4)
Cu1—N1—C3—N2166.8 (3)C4—C8—N3—C70.6 (7)
C1—N1—C3—C4178.7 (5)C4—C8—N3—Cu1ii177.5 (4)
Cu1—N1—C3—C415.0 (7)C6—C7—N3—C82.1 (7)
C2—N2—C3—N11.0 (6)C6—C7—N3—Cu1ii176.0 (4)
C2—N2—C3—C4179.2 (5)
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···I1iii0.862.833.588 (5)148
Symmetry code: (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2I2(C8H7N3)2]
Mr671.22
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.141 (3), 8.306 (3), 8.816 (5)
α, β, γ (°)114.683 (6), 101.989 (5), 108.258 (4)
V3)473.1 (4)
Z1
Radiation typeMo Kα
µ (mm1)5.52
Crystal size (mm)0.35 × 0.32 × 0.30
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2004)
Tmin, Tmax0.248, 0.288
No. of measured, independent and
observed [I > 2σ(I)] reflections
2452, 1682, 1506
Rint0.018
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.080, 1.06
No. of reflections1682
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.69

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996); PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···I1i0.862.833.588 (5)148.3
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The author acknowledges the Young Teacher Training plan of Guangdong Universities (grant No. LYM09053, 2010, 01-2011, 12) for supporting this work.

References

First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChen, X.-M. & Tong, M.-L. (2007). Acc. Chem. Res. 40, 162–170.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-Q., Zhang, J. & Yang, G.-Y. (2006). Chem. Commun. pp. 1947–1949.  Web of Science CrossRef Google Scholar
First citationYigit, M.-V., Wang, Y., Moulton, B. & MacDonald, J.-C. (2006). Cryst. Growth Des. 6, 829–832.  Google Scholar
First citationZhong, D.-C., Lu, W.-G., Jiang, L., Feng, X.-L. & Lu, T.-B. (2010). Cryst. Growth Des. 10, 739–746.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds