metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[6-(4-Bromo­phen­yl)-2,2′-bi­pyridine-κ2N,N′]bis­­(tri­phenyl­phosphane-κP)copper(I) tetra­fluoridoborate

aDepartment of Chemistry, Hanshan Normal University, Chaozhou 521041, People's Republic of China
*Correspondence e-mail: hszhongmh@126.com

(Received 19 June 2011; accepted 21 July 2011; online 2 August 2011)

The title compound, [Cu(C16H11BrN2)(C18H15P)2]BF4, is composed of one CuI atom, one 6-(4-bromo­phen­yl)-2,2′-bipyridine (L) ligand, two triphenyl­phosphane mol­ecules and one tetra­fluoridoborate anion. The CuI ion is four-coordinated in a distorted tetra­hedral configuration by two N atoms from L and two P atoms from triphenyl­phosphane ligands. In the L ligand, the two pyridine rings are not coplanar; the mean planes making a dihedral angle of 15.3 (5)°. In the crystal, the ions are linked by weak C—H⋯F inter­actions.

Related literature

For background to CuI complexes, see: Wang et al. (2010[Wang, Z.-W., Cao, Q.-Y., Haung, X., Lin, S. & Gao, X.-C. (2010). Inorg. Chim. Acta, 363, 15-19.]). For related structures, see: Engelhardt et al. (1985[Engelhardt, L. M., Pakawatchai, C. & White, A. H. (1985). J. Chem. Soc. Dalton Trans. pp. 125-133.]); Kirchhoff et al. (1985[Kirchhoff, J. R., McMillin, D. R., Robinson, W. R., Powell, D. R., McKenzie, A. T. & Chen, S. (1985). Inorg. Chem. 24, 3928-3933.]); Navarro et al. (2008[Navarro, M., Corona, O. A., González, T. & Capparelli, M. V. (2008). Acta Cryst. E64, m533-m534.]); Peng (2010[Peng, X.-L. (2010). Acta Cryst. E66, m219.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C16H11BrN2)(C18H15P)2]BF4

  • Mr = 986.07

  • Monoclinic, P c

  • a = 9.992 (1) Å

  • b = 11.2591 (11) Å

  • c = 20.883 (2) Å

  • β = 98.658 (1)°

  • V = 2322.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.45 mm−1

  • T = 298 K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.520, Tmax = 0.758

  • 11516 measured reflections

  • 6547 independent reflections

  • 4275 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.142

  • S = 0.95

  • 6547 reflections

  • 568 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.42 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1482 Friedel pairs

  • Flack parameter: 0.010 (13)

Table 1
Selected geometric parameters (Å, °)

Cu1—N1 2.095 (7)
Cu1—N2 2.178 (6)
Cu1—P2 2.2648 (19)
Cu1—P1 2.276 (2)
N1—Cu1—N2 78.7 (3)
N1—Cu1—P2 105.7 (2)
N2—Cu1—P2 126.24 (16)
N1—Cu1—P1 107.35 (18)
N2—Cu1—P1 98.60 (16)
P2—Cu1—P1 128.29 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26⋯F2 0.93 2.53 3.185 (12) 127
C27—H27⋯F3 0.93 2.48 3.356 (11) 158

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Copper(I) complexes with diimine and phosphane ligands have attracted much attention for their rich photophysical properties and diversity coordination geometry (Engelhardt et al., 1985; Kirchhoff et al., 1985; Navarro et al., 2008; Wang et al., 2010). According to the size of diimine and phosphane ligands, these complexes can adopt three- and four-coordination modes around the metal center. Peng (2010) previously reported a three-coordinated copper(I) complex with 6-(4-bromo)phenyl-2,2'-bipyridine, here we report its related four-coordinated species.

The crystal structure of the title compound is depicted in Fig. 1. The CuI ion is four-coordinated in a distorted tetrahedral geometry by two N atoms from 6-(4-bromo)phenyl-2,2'-bipyridine (L) and two P atoms from triphenylphosphane molecules. The coordination bond angles around the Cu atom vary from 78.7 (3)° (N1—Cu1—N2) to 128.29 (9)° (P1—Cu1—P1). The two Cu—P bond distances of 2.265 (2) and 2.276 (2) Å are very similar while the Cu—N bond distance is slightly longer with the N atom of the substituted pyridine ring (2.178 (6) Å) than with the other one (2.095 (7) Å). These bond distances are within the normal ranges of related complexes (Engelhardt et al., 1985; Wang et al., 2010). In addition, the two pyridine rings in ligand L are not coplanar, the mean planes exhibit a dihedral angle of 15.3 (5) °. In the crystal, the ions are linked by weak C-H···F interactions (Table 1).

Related literature top

For background to CuI complexes, see: Wang et al. (2010). For related structures, see: Engelhardt et al. (1985); Kirchhoff et al. (1985); Navarro et al. (2008); Peng (2010).

Experimental top

The ligand 6-(4-bromophenyl)-2,2'-bipyridine (L) was prepared by a literature method (Wang et al., 2010). A mixture of [Cu(CH3CN)4]BF4 (100 mg, 0.32 mmol) and L (99 mg, 0.32 mmol) in dichloromethane (20 ml) was stirred under nitrogen atmosphere at room temperature for 2 h. Then triphenylphosphane (170 mg, 0.64 mmol) was added kept stirring for 2 h. The solvents were removed and the solid residue was afforded. Yellow single crystals suitable for X-ray diffraction were obtained from the solution of dichloromethane by vapor diffusion with diethyl ether (yield: 82%). Analysis calculated for [Cu(C16H11N2Br)(C18H15P)2].(BF4): C 63.29, H 4.19, N 2.84%; Found: C 63.38, H 4.03, 2.91%.

Refinement top

All H atoms were positioned geomertrically and treated as riding with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level, and all hydrogen atoms are omitted for clarity.
[6-(4-Bromophenyl)-2,2'-bipyridine- κ2N,N']bis(triphenylphosphane-κP)copper(I) tetrafluoridoborate top
Crystal data top
[Cu(C16H11BrN2)(C18H15P)2]BF4F(000) = 1004
Mr = 986.07Dx = 1.41 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 548 reflections
a = 9.992 (1) Åθ = 2.5–26.3°
b = 11.2591 (11) ŵ = 1.45 mm1
c = 20.883 (2) ÅT = 298 K
β = 98.658 (1)°Block, yellow
V = 2322.6 (4) Å30.3 × 0.2 × 0.1 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
6547 independent reflections
Radiation source: fine-focus sealed tube4275 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.520, Tmax = 0.758k = 1313
11516 measured reflectionsl = 2224
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0756P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.001
6547 reflectionsΔρmax = 0.47 e Å3
568 parametersΔρmin = 0.42 e Å3
2 restraintsAbsolute structure: Flack (1983), 1482 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.010 (13)
Crystal data top
[Cu(C16H11BrN2)(C18H15P)2]BF4V = 2322.6 (4) Å3
Mr = 986.07Z = 2
Monoclinic, PcMo Kα radiation
a = 9.992 (1) ŵ = 1.45 mm1
b = 11.2591 (11) ÅT = 298 K
c = 20.883 (2) Å0.3 × 0.2 × 0.1 mm
β = 98.658 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6547 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4275 reflections with I > 2σ(I)
Tmin = 0.520, Tmax = 0.758Rint = 0.066
11516 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.142Δρmax = 0.47 e Å3
S = 0.95Δρmin = 0.42 e Å3
6547 reflectionsAbsolute structure: Flack (1983), 1482 Friedel pairs
568 parametersAbsolute structure parameter: 0.010 (13)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.08269 (9)0.25186 (7)0.57323 (5)0.0422 (2)
Br10.04461 (17)0.19694 (14)0.33891 (7)0.1352 (6)
F10.7674 (8)0.7221 (7)0.7779 (3)0.126 (2)
F20.6759 (7)0.7004 (9)0.6758 (4)0.148 (3)
F30.5916 (9)0.6051 (8)0.7486 (4)0.163 (3)
F40.5706 (12)0.7991 (11)0.7398 (7)0.241 (6)
N10.0407 (8)0.3522 (6)0.6523 (3)0.0611 (19)
N20.1375 (6)0.2447 (5)0.5597 (3)0.0544 (16)
P10.10772 (18)0.38136 (17)0.49217 (9)0.0416 (5)
P20.22605 (18)0.10660 (16)0.61565 (9)0.0457 (5)
B10.6459 (17)0.7107 (15)0.7390 (9)0.105 (4)
C10.1291 (11)0.3954 (7)0.7000 (4)0.075 (3)
H10.22080.38140.69980.090*
C20.0894 (14)0.4620 (9)0.7510 (5)0.089 (3)
H20.15290.48950.78490.107*
C30.0366 (15)0.4833 (10)0.7491 (6)0.095 (3)
H30.06400.52910.78180.114*
C40.1330 (12)0.4414 (9)0.7008 (6)0.092 (3)
H40.22420.45820.70070.110*
C50.0910 (10)0.3729 (7)0.6518 (4)0.069 (2)
C60.1862 (9)0.3256 (7)0.5971 (4)0.061 (2)
C70.3173 (11)0.3699 (8)0.5832 (6)0.082 (3)
H70.34740.42820.60910.099*
C80.3996 (11)0.3271 (9)0.5315 (6)0.088 (3)
H80.48820.35450.52180.105*
C90.3525 (9)0.2435 (8)0.4935 (5)0.072 (2)
H90.40870.21420.45740.086*
C100.2234 (9)0.2027 (7)0.5082 (4)0.062 (2)
C110.1732 (8)0.1095 (7)0.4682 (4)0.058 (2)
C120.0876 (8)0.0190 (7)0.4935 (4)0.058 (2)
H120.05510.01910.53770.070*
C130.0491 (9)0.0706 (8)0.4561 (4)0.070 (2)
H130.00850.13040.47440.084*
C140.0977 (10)0.0706 (8)0.3902 (5)0.078 (3)
C150.1830 (10)0.0149 (9)0.3641 (5)0.079 (3)
H150.21670.01270.32010.095*
C160.2204 (9)0.1042 (8)0.4012 (5)0.070 (3)
H160.27850.16310.38210.084*
C170.1686 (7)0.3258 (6)0.4196 (4)0.0480 (18)
C180.2859 (8)0.3657 (7)0.3995 (4)0.060 (2)
H180.33230.42960.42060.073*
C190.3359 (10)0.3115 (9)0.3482 (5)0.078 (3)
H190.41670.33710.33580.094*
C200.2633 (11)0.2186 (9)0.3156 (5)0.082 (3)
H200.29550.18280.28080.098*
C210.1480 (10)0.1800 (8)0.3336 (5)0.074 (3)
H210.10020.11770.31160.089*
C220.1013 (9)0.2335 (7)0.3848 (4)0.064 (2)
H220.02070.20640.39680.077*
C230.2282 (7)0.4979 (6)0.5200 (4)0.0507 (19)
C240.2378 (8)0.6019 (7)0.4860 (5)0.067 (2)
H240.18040.61550.44730.081*
C250.3355 (10)0.6873 (7)0.5106 (6)0.078 (3)
H250.34210.75800.48830.094*
C260.4193 (9)0.6667 (8)0.5663 (6)0.081 (3)
H260.48610.72200.58080.097*
C270.4083 (8)0.5668 (8)0.6017 (5)0.075 (3)
H270.46340.55570.64120.090*
C280.3135 (8)0.4819 (7)0.5777 (4)0.063 (2)
H280.30730.41230.60110.075*
C290.0478 (7)0.4661 (6)0.4681 (4)0.0501 (18)
C300.0807 (9)0.5535 (8)0.5104 (5)0.069 (2)
H300.02030.57210.54750.082*
C310.2001 (10)0.6110 (9)0.4977 (5)0.085 (3)
H310.22180.66610.52770.101*
C320.2898 (11)0.5924 (10)0.4433 (6)0.092 (3)
H320.36950.63610.43500.110*
C330.2598 (9)0.5072 (10)0.4009 (5)0.081 (3)
H330.32190.49080.36410.097*
C340.1374 (8)0.4439 (7)0.4116 (4)0.062 (2)
H340.11660.38840.38160.075*
C350.3299 (9)0.1538 (7)0.6912 (4)0.067 (3)
C360.4395 (11)0.2260 (8)0.6891 (5)0.088 (3)
H360.45990.24870.64880.106*
C370.5204 (15)0.2660 (11)0.7434 (7)0.129 (5)
H370.60210.30440.74140.155*
C380.4735 (17)0.2462 (12)0.8019 (7)0.140 (6)
H380.52120.27810.83970.169*
C390.3608 (15)0.1820 (11)0.8054 (6)0.127 (5)
H390.33200.17020.84530.153*
C400.2885 (11)0.1339 (9)0.7502 (5)0.091 (3)
H400.21190.08830.75270.109*
C410.3475 (7)0.0474 (6)0.5679 (4)0.0516 (19)
C420.3197 (8)0.0550 (7)0.5007 (4)0.060 (2)
H420.24000.09100.48130.073*
C430.4085 (10)0.0098 (7)0.4627 (5)0.068 (2)
H430.38600.01450.41790.082*
C440.5269 (10)0.0411 (7)0.4878 (6)0.076 (3)
H440.58560.07120.46130.091*
C450.5581 (9)0.0468 (7)0.5546 (6)0.073 (3)
H450.63980.08080.57290.088*
C460.4728 (8)0.0043 (7)0.5942 (5)0.064 (2)
H460.49700.00920.63890.077*
C470.1366 (8)0.0228 (6)0.6396 (3)0.0494 (19)
C480.0138 (9)0.0083 (7)0.6623 (4)0.060 (2)
H480.01750.06820.66810.072*
C490.0630 (9)0.1035 (8)0.6764 (4)0.068 (2)
H490.14510.09230.69140.081*
C500.0145 (10)0.2154 (8)0.6676 (5)0.074 (3)
H500.06540.28070.67670.089*
C510.1040 (10)0.2334 (7)0.6464 (5)0.070 (2)
H510.13430.31050.64160.084*
C520.1816 (8)0.1381 (6)0.6316 (4)0.059 (2)
H520.26330.15120.61640.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0501 (4)0.0413 (4)0.0362 (4)0.0021 (4)0.0101 (3)0.0013 (4)
Br10.2025 (16)0.1209 (10)0.0880 (9)0.0089 (10)0.0405 (9)0.0422 (9)
F10.134 (6)0.156 (6)0.082 (5)0.016 (4)0.004 (4)0.012 (4)
F20.112 (5)0.251 (9)0.082 (5)0.064 (5)0.017 (4)0.012 (5)
F30.167 (7)0.177 (8)0.141 (7)0.058 (6)0.011 (6)0.019 (6)
F40.208 (12)0.225 (12)0.288 (16)0.094 (10)0.034 (10)0.002 (11)
N10.087 (6)0.060 (4)0.040 (4)0.007 (4)0.021 (4)0.003 (3)
N20.064 (4)0.047 (3)0.056 (4)0.001 (3)0.023 (3)0.011 (3)
P10.0442 (11)0.0412 (9)0.0391 (11)0.0030 (8)0.0052 (8)0.0051 (9)
P20.0494 (11)0.0442 (10)0.0426 (11)0.0022 (9)0.0043 (8)0.0082 (9)
B10.092 (11)0.111 (11)0.114 (13)0.031 (9)0.022 (10)0.005 (9)
C10.105 (7)0.069 (5)0.054 (6)0.001 (5)0.020 (5)0.010 (5)
C20.136 (10)0.073 (6)0.062 (7)0.006 (7)0.025 (7)0.013 (5)
C30.139 (11)0.085 (7)0.074 (8)0.007 (8)0.054 (8)0.009 (6)
C40.109 (8)0.086 (7)0.091 (8)0.003 (6)0.051 (7)0.005 (7)
C50.089 (7)0.057 (5)0.069 (6)0.005 (5)0.039 (5)0.009 (5)
C60.064 (6)0.055 (5)0.071 (6)0.007 (4)0.034 (5)0.013 (5)
C70.086 (8)0.075 (6)0.096 (8)0.020 (6)0.045 (6)0.011 (6)
C80.071 (6)0.089 (7)0.108 (9)0.013 (6)0.030 (6)0.018 (7)
C90.061 (6)0.073 (6)0.084 (7)0.003 (5)0.017 (5)0.014 (5)
C100.060 (6)0.056 (4)0.070 (6)0.005 (4)0.014 (5)0.022 (5)
C110.057 (5)0.063 (5)0.055 (5)0.011 (4)0.007 (4)0.004 (4)
C120.065 (5)0.059 (5)0.050 (5)0.007 (4)0.005 (4)0.002 (4)
C130.084 (6)0.068 (5)0.058 (6)0.002 (5)0.009 (5)0.011 (5)
C140.091 (7)0.072 (6)0.072 (7)0.022 (5)0.015 (5)0.004 (5)
C150.096 (8)0.085 (7)0.053 (6)0.027 (6)0.002 (5)0.000 (6)
C160.069 (6)0.073 (6)0.066 (6)0.016 (5)0.004 (5)0.018 (5)
C170.051 (4)0.050 (4)0.045 (4)0.008 (4)0.011 (3)0.007 (4)
C180.051 (5)0.071 (5)0.061 (5)0.003 (4)0.016 (4)0.004 (4)
C190.068 (6)0.102 (7)0.071 (7)0.000 (6)0.032 (5)0.009 (6)
C200.090 (8)0.101 (8)0.060 (6)0.009 (6)0.028 (5)0.011 (6)
C210.078 (7)0.086 (6)0.062 (6)0.012 (5)0.021 (5)0.017 (5)
C220.059 (5)0.075 (5)0.061 (5)0.007 (4)0.018 (4)0.004 (5)
C230.049 (5)0.043 (4)0.062 (5)0.003 (3)0.017 (4)0.007 (4)
C240.064 (6)0.057 (5)0.081 (6)0.008 (4)0.015 (5)0.004 (5)
C250.081 (7)0.050 (5)0.108 (8)0.010 (5)0.028 (6)0.004 (5)
C260.064 (6)0.061 (6)0.115 (9)0.013 (5)0.008 (6)0.017 (6)
C270.060 (5)0.063 (5)0.096 (7)0.000 (4)0.010 (5)0.019 (5)
C280.058 (5)0.055 (5)0.073 (6)0.000 (4)0.003 (4)0.010 (4)
C290.055 (5)0.048 (4)0.048 (5)0.003 (4)0.012 (4)0.012 (4)
C300.069 (6)0.074 (6)0.064 (6)0.011 (5)0.014 (5)0.010 (5)
C310.083 (7)0.092 (7)0.081 (7)0.025 (6)0.018 (6)0.012 (6)
C320.075 (7)0.098 (8)0.101 (9)0.026 (6)0.007 (7)0.022 (7)
C330.060 (6)0.105 (8)0.074 (7)0.004 (5)0.004 (5)0.029 (6)
C340.058 (5)0.068 (5)0.059 (6)0.003 (4)0.005 (4)0.023 (4)
C350.074 (6)0.068 (5)0.053 (6)0.024 (5)0.009 (5)0.008 (4)
C360.099 (8)0.090 (7)0.069 (7)0.036 (6)0.007 (6)0.009 (5)
C370.145 (12)0.140 (10)0.092 (10)0.076 (9)0.018 (9)0.001 (8)
C380.170 (14)0.156 (12)0.080 (10)0.072 (11)0.033 (10)0.002 (9)
C390.161 (12)0.146 (10)0.063 (7)0.065 (10)0.021 (8)0.015 (7)
C400.119 (8)0.093 (7)0.054 (6)0.043 (6)0.007 (6)0.009 (6)
C410.043 (4)0.050 (4)0.061 (5)0.010 (3)0.008 (4)0.009 (4)
C420.055 (5)0.056 (5)0.072 (6)0.001 (4)0.014 (4)0.008 (4)
C430.077 (7)0.058 (5)0.077 (6)0.006 (5)0.036 (5)0.003 (5)
C440.071 (7)0.059 (5)0.108 (9)0.009 (5)0.050 (6)0.008 (6)
C450.047 (6)0.058 (5)0.116 (10)0.001 (4)0.018 (6)0.008 (5)
C460.056 (5)0.054 (4)0.081 (6)0.006 (4)0.007 (5)0.010 (4)
C470.054 (5)0.053 (4)0.041 (4)0.012 (4)0.003 (4)0.006 (3)
C480.067 (6)0.061 (5)0.052 (5)0.002 (4)0.005 (4)0.014 (4)
C490.064 (6)0.082 (6)0.061 (6)0.010 (5)0.020 (4)0.017 (5)
C500.083 (7)0.075 (6)0.067 (6)0.031 (5)0.017 (5)0.013 (5)
C510.081 (7)0.054 (5)0.077 (6)0.018 (5)0.015 (5)0.000 (4)
C520.060 (5)0.056 (5)0.061 (5)0.008 (4)0.013 (4)0.005 (4)
Geometric parameters (Å, º) top
Cu1—N12.095 (7)C22—H220.9300
Cu1—N22.178 (6)C23—C281.379 (10)
Cu1—P22.2648 (19)C23—C241.381 (10)
Cu1—P12.276 (2)C24—C251.412 (12)
Br1—C141.904 (10)C24—H240.9300
F1—B11.361 (16)C25—C261.347 (13)
F2—B11.402 (18)C25—H250.9300
F3—B11.334 (16)C26—C271.359 (13)
F4—B11.250 (18)C26—H260.9300
N1—C11.320 (10)C27—C281.386 (11)
N1—C51.335 (11)C27—H270.9300
N2—C61.338 (10)C28—H280.9300
N2—C101.356 (10)C29—C341.392 (10)
P1—C231.816 (7)C29—C301.395 (11)
P1—C171.825 (8)C30—C311.348 (12)
P1—C291.828 (7)C30—H300.9300
P2—C411.810 (8)C31—C321.353 (14)
P2—C471.817 (7)C31—H310.9300
P2—C351.832 (8)C32—C331.370 (14)
C1—C21.407 (13)C32—H320.9300
C1—H10.9300C33—C341.404 (12)
C2—C31.277 (14)C33—H330.9300
C2—H20.9300C34—H340.9300
C3—C41.369 (15)C35—C361.370 (12)
C3—H30.9300C35—C401.375 (13)
C4—C51.396 (13)C36—C371.367 (14)
C4—H40.9300C36—H360.9300
C5—C61.472 (12)C37—C381.39 (2)
C6—C71.391 (12)C37—H370.9300
C7—C81.343 (14)C38—C391.350 (18)
C7—H70.9300C38—H380.9300
C8—C91.360 (14)C39—C401.377 (13)
C8—H80.9300C39—H390.9300
C9—C101.361 (12)C40—H400.9300
C9—H90.9300C41—C421.390 (11)
C10—C111.476 (12)C41—C461.415 (10)
C11—C121.383 (11)C42—C431.374 (12)
C11—C161.408 (12)C42—H420.9300
C12—C131.366 (11)C43—C441.348 (12)
C12—H120.9300C43—H430.9300
C13—C141.388 (12)C44—C451.383 (13)
C13—H130.9300C44—H440.9300
C14—C151.346 (12)C45—C461.362 (13)
C15—C161.357 (13)C45—H450.9300
C15—H150.9300C46—H460.9300
C16—H160.9300C47—C481.391 (11)
C17—C181.379 (11)C47—C521.393 (11)
C17—C221.384 (10)C48—C491.375 (11)
C18—C191.390 (12)C48—H480.9300
C18—H180.9300C49—C501.372 (12)
C19—C201.390 (13)C49—H490.9300
C19—H190.9300C50—C511.341 (13)
C20—C211.337 (13)C50—H500.9300
C20—H200.9300C51—C521.386 (11)
C21—C221.370 (12)C51—H510.9300
C21—H210.9300C52—H520.9300
N1—Cu1—N278.7 (3)C21—C22—C17123.0 (8)
N1—Cu1—P2105.7 (2)C21—C22—H22118.5
N2—Cu1—P2126.24 (16)C17—C22—H22118.5
N1—Cu1—P1107.35 (18)C28—C23—C24118.7 (7)
N2—Cu1—P198.60 (16)C28—C23—P1118.6 (6)
P2—Cu1—P1128.29 (9)C24—C23—P1122.8 (6)
C1—N1—C5119.2 (8)C23—C24—C25119.2 (8)
C1—N1—Cu1127.1 (7)C23—C24—H24120.4
C5—N1—Cu1113.7 (6)C25—C24—H24120.4
C6—N2—C10117.3 (7)C26—C25—C24120.2 (9)
C6—N2—Cu1110.4 (5)C26—C25—H25119.9
C10—N2—Cu1128.5 (6)C24—C25—H25119.9
C23—P1—C17103.0 (4)C25—C26—C27121.4 (9)
C23—P1—C29101.9 (3)C25—C26—H26119.3
C17—P1—C29109.0 (3)C27—C26—H26119.3
C23—P1—Cu1111.5 (3)C26—C27—C28118.8 (9)
C17—P1—Cu1119.0 (2)C26—C27—H27120.6
C29—P1—Cu1110.8 (2)C28—C27—H27120.6
C41—P2—C47104.7 (4)C23—C28—C27121.6 (8)
C41—P2—C35104.0 (4)C23—C28—H28119.2
C47—P2—C35103.5 (4)C27—C28—H28119.2
C41—P2—Cu1119.2 (3)C34—C29—C30118.7 (7)
C47—P2—Cu1112.2 (3)C34—C29—P1123.4 (6)
C35—P2—Cu1111.7 (3)C30—C29—P1117.7 (6)
F4—B1—F3116.7 (15)C31—C30—C29120.0 (9)
F4—B1—F1113.7 (14)C31—C30—H30120.0
F3—B1—F1110.0 (14)C29—C30—H30120.0
F4—B1—F2107.0 (15)C30—C31—C32123.2 (10)
F3—B1—F2102.5 (13)C30—C31—H31118.4
F1—B1—F2105.7 (12)C32—C31—H31118.4
N1—C1—C2122.3 (10)C31—C32—C33118.0 (9)
N1—C1—H1118.8C31—C32—H32121.0
C2—C1—H1118.8C33—C32—H32121.0
C3—C2—C1117.8 (11)C32—C33—C34121.5 (9)
C3—C2—H2121.1C32—C33—H33119.2
C1—C2—H2121.1C34—C33—H33119.2
C2—C3—C4122.6 (11)C29—C34—C33118.5 (9)
C2—C3—H3118.7C29—C34—H34120.7
C4—C3—H3118.7C33—C34—H34120.7
C3—C4—C5118.3 (11)C36—C35—C40118.4 (8)
C3—C4—H4120.8C36—C35—P2119.7 (8)
C5—C4—H4120.8C40—C35—P2121.1 (7)
N1—C5—C4119.7 (9)C37—C36—C35123.0 (12)
N1—C5—C6117.7 (8)C37—C36—H36118.5
C4—C5—C6122.5 (10)C35—C36—H36118.5
N2—C6—C7122.4 (9)C36—C37—C38116.2 (12)
N2—C6—C5116.7 (8)C36—C37—H37121.9
C7—C6—C5120.7 (9)C38—C37—H37121.9
C8—C7—C6118.9 (10)C39—C38—C37121.9 (11)
C8—C7—H7120.6C39—C38—H38119.0
C6—C7—H7120.6C37—C38—H38119.0
C7—C8—C9119.5 (10)C38—C39—C40120.1 (13)
C7—C8—H8120.2C38—C39—H39120.0
C9—C8—H8120.2C40—C39—H39120.0
C8—C9—C10120.1 (10)C35—C40—C39119.7 (10)
C8—C9—H9119.9C35—C40—H40120.1
C10—C9—H9119.9C39—C40—H40120.1
N2—C10—C9121.8 (9)C42—C41—C46116.7 (8)
N2—C10—C11117.9 (7)C42—C41—P2119.0 (6)
C9—C10—C11120.3 (9)C46—C41—P2124.3 (7)
C12—C11—C16116.4 (8)C43—C42—C41120.8 (8)
C12—C11—C10123.4 (8)C43—C42—H42119.6
C16—C11—C10120.0 (8)C41—C42—H42119.6
C13—C12—C11122.4 (8)C44—C43—C42122.5 (10)
C13—C12—H12118.8C44—C43—H43118.7
C11—C12—H12118.8C42—C43—H43118.7
C12—C13—C14118.7 (8)C43—C44—C45117.6 (9)
C12—C13—H13120.6C43—C44—H44121.2
C14—C13—H13120.6C45—C44—H44121.2
C15—C14—C13120.5 (9)C46—C45—C44122.0 (8)
C15—C14—Br1121.3 (8)C46—C45—H45119.0
C13—C14—Br1118.2 (8)C44—C45—H45119.0
C14—C15—C16120.7 (9)C45—C46—C41120.4 (9)
C14—C15—H15119.6C45—C46—H46119.8
C16—C15—H15119.6C41—C46—H46119.8
C15—C16—C11121.3 (9)C48—C47—C52117.9 (7)
C15—C16—H16119.4C48—C47—P2119.7 (6)
C11—C16—H16119.4C52—C47—P2122.3 (6)
C18—C17—C22116.9 (8)C49—C48—C47122.1 (8)
C18—C17—P1123.1 (6)C49—C48—H48119.0
C22—C17—P1119.8 (6)C47—C48—H48119.0
C17—C18—C19120.9 (8)C50—C49—C48117.9 (8)
C17—C18—H18119.6C50—C49—H49121.0
C19—C18—H18119.6C48—C49—H49121.0
C18—C19—C20119.1 (9)C51—C50—C49122.0 (8)
C18—C19—H19120.5C51—C50—H50119.0
C20—C19—H19120.5C49—C50—H50119.0
C21—C20—C19121.0 (10)C50—C51—C52120.6 (9)
C21—C20—H20119.5C50—C51—H51119.7
C19—C20—H20119.5C52—C51—H51119.7
C20—C21—C22119.0 (9)C51—C52—C47119.6 (9)
C20—C21—H21120.5C51—C52—H52120.2
C22—C21—H21120.5C47—C52—H52120.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26···F20.932.533.185 (12)127
C27—H27···F30.932.483.356 (11)158

Experimental details

Crystal data
Chemical formula[Cu(C16H11BrN2)(C18H15P)2]BF4
Mr986.07
Crystal system, space groupMonoclinic, Pc
Temperature (K)298
a, b, c (Å)9.992 (1), 11.2591 (11), 20.883 (2)
β (°) 98.658 (1)
V3)2322.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.45
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.520, 0.758
No. of measured, independent and
observed [I > 2σ(I)] reflections
11516, 6547, 4275
Rint0.066
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.142, 0.95
No. of reflections6547
No. of parameters568
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.42
Absolute structureFlack (1983), 1482 Friedel pairs
Absolute structure parameter0.010 (13)

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—N12.095 (7)Cu1—P22.2648 (19)
Cu1—N22.178 (6)Cu1—P12.276 (2)
N1—Cu1—N278.7 (3)N1—Cu1—P1107.35 (18)
N1—Cu1—P2105.7 (2)N2—Cu1—P198.60 (16)
N2—Cu1—P2126.24 (16)P2—Cu1—P1128.29 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26···F20.932.533.185 (12)127.4
C27—H27···F30.932.483.356 (11)158.0
 

Acknowledgements

We are very grateful for financial support (LQ200812) from Hanshan Normal University for Youth Teachers.

References

First citationBruker (1998). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEngelhardt, L. M., Pakawatchai, C. & White, A. H. (1985). J. Chem. Soc. Dalton Trans. pp. 125–133.  CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKirchhoff, J. R., McMillin, D. R., Robinson, W. R., Powell, D. R., McKenzie, A. T. & Chen, S. (1985). Inorg. Chem. 24, 3928–3933.  CrossRef CAS Web of Science Google Scholar
First citationNavarro, M., Corona, O. A., González, T. & Capparelli, M. V. (2008). Acta Cryst. E64, m533–m534.  CSD CrossRef IUCr Journals Google Scholar
First citationPeng, X.-L. (2010). Acta Cryst. E66, m219.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-W., Cao, Q.-Y., Haung, X., Lin, S. & Gao, X.-C. (2010). Inorg. Chim. Acta, 363, 15–19.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds