organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Benzyl-3-(4-fluoro­phen­yl)-2-(pyrrol­idin-1-yl)-5,6,7,8-tetra­hydro­pyrido[4′,3′:4,5]thieno[2,3-d]pyrimidin-4(3H)-one

aCollege of Chemistry and Life Science, China Three Gorges University, Yichang 443002, People's Republic of China, and bHubei Key Laboratory of Natural Products Research and Development, Yichang 443002, People's Republic of China
*Correspondence e-mail: chenhong3736@sina.com

(Received 13 July 2011; accepted 29 July 2011; online 2 August 2011)

In the title compound, C26H25FN4OS, the thienopyrimidine fused-ring system is close to planar (r.m.s. deviation = 0.066 Å), with a maximum deviation of 0.1243 (17) Å for the N atom adjacent to the carbonyl group. This ring system forms dihedral angles of 67.5 (1) and 88.9 (1) ° with the adjacent six-membered rings. Inter­molecular C—H⋯O hydrogen bonding and C—H⋯π inter­actions help to stabilize the crystal structure.

Related literature

For the biological and pharmaceutical properties of compounds containing the fused thienopyrimidine system, see: Amr et al. (2010[Amr, A. E., Sherif, M. H., Assy, M. G., Al-Omar, M. A. & Ragab, I. (2010). Eur. J. Med. Chem. 45, 5935-5942.]); Huang et al. (2009[Huang, N. Y., Liang, Y. J., Ding, M. W., Fu, L. W. & He, H. W. (2009). Bioorg. Med. Chem. Lett. 19, 831-833.]); Jennings et al. (2005[Jennings, L. D., Kincaid, S. L., Wang, Y. D., Krishnamurthy, G., Beyer, C. F., McGinnis, J. P., Miranda, M., Discafanid, C. M. & Rabindran, S. K. (2005). Bioorg. Med. Chem. Lett. 15, 4731-4735.]); Kikuchi et al. (2006[Kikuchi, H., Yamamoto, K., Horoiwa, S., Hirai, S., Kasahara, R., Hariguchi, N., Matsumoto, M. & Oshima, Y. (2006). J. Med. Chem. 49, 4698-4706.]); Mavrova et al. (2010[Mavrova, A. T., Vuchev, D., Anichina, K. & Vassilev, N. (2010). Eur. J. Med. Chem. 45, 5856-5861.]); Santagati et al. (2002[Santagati, N. A., Prezzavento, O., Bousquet, E., Ronsisvalle, G. & Spampinato, S. (2002). J. Pharm. Pharmacol. 54, 717-728.]). For related structures, see: Hu et al. (2007[Hu, Y.-G., Li, G.-H. & Zhou, M.-H. (2007). Acta Cryst. E63, o1836-o1838.]); Xie et al. (2008[Xie, H., Meng, S.-M., Fan, Y.-Q. & Guo, Y. (2008). Acta Cryst. E64, o2434.]).

[Scheme 1]

Experimental

Crystal data
  • C26H25FN4OS

  • Mr = 460.56

  • Triclinic, [P \overline 1]

  • a = 8.132 (10) Å

  • b = 9.736 (11) Å

  • c = 15.540 (18) Å

  • α = 99.742 (16)°

  • β = 99.636 (11)°

  • γ = 105.551 (14)°

  • V = 1139 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 296 K

  • 0.23 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.960, Tmax = 0.974

  • 12210 measured reflections

  • 5233 independent reflections

  • 4018 reflections with I > 2σ(I)

  • Rint = 0.154

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.180

  • S = 1.05

  • 5233 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the S1-C11-C10-C13-C16 and N2-C15-N3-C14-C13-C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O1i 0.97 2.50 3.461 (5) 171
C24—H24B⋯O1ii 0.97 2.44 3.316 (5) 151
C25—H25BCg1iii 0.97 2.86 3.693 (5) 144
C26—H26BCg2iii 0.97 2.80 3.717 (5) 158
Symmetry codes: (i) -x+2, -y, -z+1; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derivatives of heterocycles containing the thienopyrimidine system have proved to show significant antifungal, antibacterical, anticonvulsant and angiotensin antagonistic activities (Amr et al. 2010; Huang et al. 2009; Jennings et al. 2005; Kikuchi et al. 2006; Mavrova et al. 2010; Santagati et al. 2002). Recently, we have focused on the synthesis of fused heterocyclic systems containing thienopyrimidine via aza-Wittig reaction under mild conditions. Some X-ray crystal structures of fused pyrimidinone derivatives have been reported (Hu et al., 2007; Xie et al., 2008). The title compound has potential use as a precursor for obtaining bioactive molecules with fluorescence properties. Herein, we report its crystal structure (Fig. 1 and 2).

In the crystal structure of the title compound, C26H25FN4OS, the thienopyrimidine fused ring system are essentially coplanar (rms deviation = 0.066 Å) with a maximum deviation of 0.1243 (17) Å for atom N3. This ring system forms dihedral angles of 67.5 (1) and 88.9 (1) ° with the adjacent 6-membered rings C17–C22 and C1-C6, respectively. Intermolecular C—H···O hydrogen bondings (C8—H8B···O1i and C24—H24B···O1ii with symmetry codes: (i) -x+2, -y, -z+1; (ii) x-1, y, z) and C—H···π interactions (C25—H25B···Cg1iii and C26—H26···Cg2iii with Cg1 and Cg2 centroids of the S1-C11-C10-C13-C16 and N2-C15-N3-C14-C13-C16 rings and symmetry code: (iii) 1-x, 1-y, 1-z) help to stabilize the crystal structure of the title compound (Table 1).

Related literature top

For the biological and pharmaceutical properties of compounds containing the fused thienopyrimidine system, see: Amr et al. (2010); Huang et al. (2009); Jennings et al. (2005); Kikuchi et al. (2006); Mavrova et al. (2010); Santagati et al. (2002). For related structures, see: Hu et al. (2007); Xie et al. (2008).

Experimental top

Fluoro-4-isocyanatobenzene (2 mmol) under nitrogen atmosphere was added to a solution of iminophosphorane (2 mmol) in anhydrous CH2Cl2 (10 ml) at room temperature (Fig. 3). When the reaction mixture was left unstirred for 12 h at 273–278k, iminophosphorane was consumed (TLC monitored). The solvent was removed under reduced pressure and ether/petroleum ether (volume ratio 1:2, 20 ml) was added to precipitate triphenylphosphine oxide. Removal of the solvent gave carbodiimide, which was used directly without further purification. Pyrrolidine (2 mmol) was added to the solution of carbodiimide in anhydrous dichloromethane (10 ml). After the reaction mixture was left unstirred for 5–6 h, the solvent was removed and anhydrous EtOH (10 ml) with several drops of EtONa (in EtOH) was added to the mixture. The mixture was stirred for another 6–8 h at room temperature. The solution was condensed and the residual was recrystallized from EtOH to give the expected title compound as white crystals.

Refinement top

All H atoms were positioned geometrically [C—H = 0.93, 0.97 Å] and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with 50% probability displacement ellipsoids. H atoms are omitted for clarity.
[Figure 2] Fig. 2. Packing diagram of the title compound projected along the a axis direction. H atoms are omitted for clarity.
[Figure 3] Fig. 3. Reaction scheme.
7-Benzyl-3-(4-fluorophenyl)-2-(pyrrolidin-1-yl)-5,6,7,8- tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidin-4(3H)-one top
Crystal data top
C26H25FN4OSZ = 2
Mr = 460.56F(000) = 484
Triclinic, P1Dx = 1.343 Mg m3
Hall symbol: -P 1Melting point: 485 K
a = 8.132 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.736 (11) ÅCell parameters from 2106 reflections
c = 15.540 (18) Åθ = 2.7–27.5°
α = 99.742 (16)°µ = 0.18 mm1
β = 99.636 (11)°T = 296 K
γ = 105.551 (14)°Block, colourless
V = 1139 (2) Å30.23 × 0.20 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
5233 independent reflections
Radiation source: fine-focus sealed tube4018 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.154
CCD Profile fitting scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.960, Tmax = 0.974k = 1212
12210 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0691P)2]
where P = (Fo2 + 2Fc2)/3
5233 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C26H25FN4OSγ = 105.551 (14)°
Mr = 460.56V = 1139 (2) Å3
Triclinic, P1Z = 2
a = 8.132 (10) ÅMo Kα radiation
b = 9.736 (11) ŵ = 0.18 mm1
c = 15.540 (18) ÅT = 296 K
α = 99.742 (16)°0.23 × 0.20 × 0.15 mm
β = 99.636 (11)°
Data collection top
Bruker SMART CCD
diffractometer
5233 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4018 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.974Rint = 0.154
12210 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.05Δρmax = 0.48 e Å3
5233 reflectionsΔρmin = 0.38 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.44564 (6)0.17251 (6)0.31146 (3)0.04008 (18)
N20.3853 (2)0.28656 (17)0.47059 (11)0.0354 (4)
O10.7783 (2)0.16116 (16)0.60615 (10)0.0477 (4)
N30.57983 (19)0.29116 (16)0.60532 (10)0.0318 (3)
N40.3472 (2)0.39607 (17)0.60525 (11)0.0349 (4)
C130.6094 (2)0.16139 (18)0.46627 (13)0.0322 (4)
C150.4366 (2)0.32359 (19)0.55846 (13)0.0315 (4)
C170.6746 (2)0.3752 (2)0.69460 (12)0.0335 (4)
C140.6647 (2)0.19681 (19)0.56157 (13)0.0328 (4)
C160.4790 (2)0.21316 (19)0.42757 (13)0.0332 (4)
N10.7929 (2)0.04640 (17)0.25491 (12)0.0401 (4)
C100.6883 (2)0.09292 (18)0.40137 (13)0.0329 (4)
C230.3336 (3)0.4011 (2)0.69915 (14)0.0403 (4)
H23A0.42580.48260.73960.048*
H23B0.34030.31100.71610.048*
C110.6146 (3)0.0929 (2)0.31656 (13)0.0351 (4)
C220.7449 (3)0.5255 (2)0.70756 (14)0.0393 (4)
H220.72910.57060.66000.047*
C260.2043 (2)0.4368 (2)0.55417 (15)0.0402 (5)
H26A0.11820.35140.51360.048*
H26B0.24950.50720.52000.048*
C90.8400 (3)0.0331 (2)0.41996 (14)0.0381 (4)
H9A0.79910.06360.43180.046*
H9B0.92570.09610.47260.046*
C120.6811 (3)0.0451 (2)0.23597 (14)0.0399 (5)
H12A0.58280.00950.18650.048*
H12B0.74730.13050.21840.048*
C180.7011 (3)0.3054 (2)0.76407 (14)0.0452 (5)
H180.65430.20440.75450.054*
C80.9246 (3)0.0243 (2)0.33961 (15)0.0435 (5)
H8A0.98910.12220.33670.052*
H8B1.00710.03080.34730.052*
F10.9572 (3)0.6188 (2)0.94182 (12)0.1047 (7)
C40.7603 (3)0.1314 (3)0.09123 (16)0.0513 (6)
C210.8389 (3)0.6084 (3)0.79164 (17)0.0530 (6)
H210.88380.70970.80190.064*
C190.7981 (3)0.3875 (3)0.84799 (16)0.0596 (6)
H190.81830.34290.89540.072*
C240.1546 (3)0.4208 (3)0.70031 (16)0.0516 (6)
H24A0.15430.47720.75800.062*
H24B0.06480.32690.68740.062*
C250.1256 (3)0.5036 (2)0.62624 (17)0.0504 (5)
H25A0.00180.48850.60400.061*
H25B0.18500.60770.64780.061*
C70.8822 (3)0.0742 (3)0.18182 (17)0.0520 (6)
H7A0.94340.14440.19330.062*
H7B0.96900.01610.18160.062*
C200.8637 (3)0.5372 (3)0.85920 (16)0.0621 (7)
C30.6252 (4)0.2613 (3)0.0722 (2)0.0719 (8)
H30.61040.31540.11580.086*
C50.7773 (4)0.0546 (3)0.0246 (2)0.0709 (8)
H50.86610.03390.03660.085*
C60.6658 (5)0.1054 (4)0.0599 (2)0.0875 (10)
H60.68120.05210.10390.105*
C20.5115 (5)0.3116 (4)0.0117 (2)0.0837 (9)
H20.41970.39820.02370.100*
C10.5346 (6)0.2330 (4)0.0777 (2)0.0861 (10)
H10.45990.26800.13420.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0408 (3)0.0565 (3)0.0278 (3)0.0268 (2)0.0029 (2)0.0076 (2)
N20.0305 (8)0.0460 (9)0.0319 (8)0.0176 (7)0.0042 (6)0.0075 (7)
O10.0476 (9)0.0631 (9)0.0363 (8)0.0338 (7)0.0036 (6)0.0069 (7)
N30.0275 (7)0.0394 (8)0.0274 (8)0.0124 (6)0.0015 (6)0.0056 (7)
N40.0297 (8)0.0465 (8)0.0312 (8)0.0171 (7)0.0059 (6)0.0080 (7)
C130.0308 (9)0.0346 (9)0.0324 (10)0.0131 (7)0.0039 (7)0.0082 (8)
C150.0261 (8)0.0378 (9)0.0307 (9)0.0104 (7)0.0040 (7)0.0092 (8)
C170.0274 (8)0.0467 (10)0.0265 (9)0.0141 (8)0.0035 (7)0.0062 (8)
C140.0301 (9)0.0346 (9)0.0326 (10)0.0120 (7)0.0015 (7)0.0065 (8)
C160.0301 (9)0.0403 (9)0.0284 (9)0.0140 (7)0.0015 (7)0.0058 (8)
N10.0432 (9)0.0462 (9)0.0363 (9)0.0233 (8)0.0103 (7)0.0063 (8)
C100.0313 (9)0.0341 (8)0.0330 (10)0.0128 (7)0.0027 (7)0.0065 (8)
C230.0353 (10)0.0537 (11)0.0334 (10)0.0143 (9)0.0110 (8)0.0093 (9)
C110.0377 (10)0.0399 (9)0.0307 (10)0.0183 (8)0.0056 (8)0.0076 (8)
C220.0326 (9)0.0475 (10)0.0375 (11)0.0147 (8)0.0062 (8)0.0064 (9)
C260.0283 (9)0.0514 (11)0.0429 (12)0.0166 (8)0.0051 (8)0.0119 (9)
C90.0352 (10)0.0406 (9)0.0371 (10)0.0169 (8)0.0003 (8)0.0041 (8)
C120.0457 (11)0.0466 (10)0.0332 (10)0.0233 (9)0.0094 (9)0.0090 (9)
C180.0461 (12)0.0581 (12)0.0318 (11)0.0178 (10)0.0051 (9)0.0117 (10)
C80.0380 (11)0.0500 (11)0.0460 (12)0.0208 (9)0.0074 (9)0.0097 (10)
F10.1166 (17)0.1151 (14)0.0450 (10)0.0321 (12)0.0342 (10)0.0244 (10)
C40.0655 (15)0.0610 (13)0.0401 (12)0.0356 (12)0.0211 (11)0.0099 (11)
C210.0433 (12)0.0515 (12)0.0502 (14)0.0117 (10)0.0017 (10)0.0087 (11)
C190.0610 (15)0.0860 (18)0.0301 (11)0.0277 (13)0.0020 (10)0.0119 (12)
C240.0349 (11)0.0754 (15)0.0473 (13)0.0192 (10)0.0149 (9)0.0119 (12)
C250.0361 (11)0.0599 (13)0.0606 (15)0.0225 (10)0.0135 (10)0.0123 (12)
C70.0541 (13)0.0638 (13)0.0486 (14)0.0317 (11)0.0187 (11)0.0111 (11)
C200.0575 (15)0.0801 (17)0.0335 (12)0.0234 (13)0.0117 (10)0.0104 (12)
C30.102 (2)0.0659 (16)0.0445 (15)0.0245 (16)0.0109 (14)0.0097 (13)
C50.0764 (19)0.0890 (19)0.0595 (18)0.0321 (16)0.0261 (15)0.0278 (16)
C60.111 (3)0.109 (3)0.056 (2)0.043 (2)0.0215 (19)0.037 (2)
C20.108 (3)0.0735 (18)0.0561 (19)0.0235 (17)0.0034 (16)0.0004 (16)
C10.121 (3)0.100 (2)0.0404 (15)0.053 (2)0.0078 (17)0.0041 (16)
Geometric parameters (Å, º) top
S1—C161.739 (3)C9—H9B0.9700
S1—C111.747 (2)C12—H12A0.9700
N2—C151.316 (3)C12—H12B0.9700
N2—C161.357 (3)C18—C191.388 (3)
O1—C141.222 (2)C18—H180.9300
N3—C151.406 (2)C8—H8A0.9700
N3—C141.438 (3)C8—H8B0.9700
N3—C171.452 (3)F1—C201.364 (3)
N4—C151.354 (3)C4—C51.380 (4)
N4—C231.475 (3)C4—C31.383 (4)
N4—C261.478 (3)C4—C71.499 (4)
C13—C161.384 (3)C21—C201.369 (4)
C13—C141.427 (3)C21—H210.9300
C13—C101.446 (3)C19—C201.380 (4)
C17—C221.387 (3)C19—H190.9300
C17—C181.386 (3)C24—C251.535 (3)
N1—C121.463 (3)C24—H24A0.9700
N1—C71.473 (3)C24—H24B0.9700
N1—C81.476 (3)C25—H25A0.9700
C10—C111.353 (3)C25—H25B0.9700
C10—C91.506 (3)C7—H7A0.9700
C23—C241.521 (3)C7—H7B0.9700
C23—H23A0.9700C3—C21.391 (4)
C23—H23B0.9700C3—H30.9300
C11—C121.497 (3)C5—C61.390 (5)
C22—C211.386 (3)C5—H50.9300
C22—H220.9300C6—C11.354 (5)
C26—C251.518 (3)C6—H60.9300
C26—H26A0.9700C2—C11.387 (5)
C26—H26B0.9700C2—H20.9300
C9—C81.524 (3)C1—H10.9300
C9—H9A0.9700
C16—S1—C1191.27 (9)C11—C12—H12B109.5
C15—N2—C16115.47 (16)H12A—C12—H12B108.1
C15—N3—C14121.92 (17)C19—C18—C17119.4 (2)
C15—N3—C17121.57 (16)C19—C18—H18120.3
C14—N3—C17115.13 (15)C17—C18—H18120.3
C15—N4—C23127.56 (16)N1—C8—C9111.67 (19)
C15—N4—C26117.88 (18)N1—C8—H8A109.3
C23—N4—C26111.67 (16)C9—C8—H8A109.3
C16—C13—C14118.39 (17)N1—C8—H8B109.3
C16—C13—C10112.99 (18)C9—C8—H8B109.3
C14—C13—C10128.06 (17)H8A—C8—H8B107.9
N2—C15—N4118.25 (17)C5—C4—C3117.9 (3)
N2—C15—N3122.75 (17)C5—C4—C7120.9 (3)
N4—C15—N3118.99 (18)C3—C4—C7121.2 (2)
C22—C17—C18120.97 (19)C20—C21—C22118.2 (2)
C22—C17—N3118.44 (17)C20—C21—H21120.9
C18—C17—N3120.52 (18)C22—C21—H21120.9
O1—C14—C13126.76 (18)C20—C19—C18118.2 (2)
O1—C14—N3119.67 (19)C20—C19—H19120.9
C13—C14—N3113.47 (15)C18—C19—H19120.9
N2—C16—C13127.03 (19)C23—C24—C25103.86 (17)
N2—C16—S1121.94 (14)C23—C24—H24A111.0
C13—C16—S1111.04 (14)C25—C24—H24A111.0
C12—N1—C7111.41 (18)C23—C24—H24B111.0
C12—N1—C8110.24 (16)C25—C24—H24B111.0
C7—N1—C8109.4 (2)H24A—C24—H24B109.0
C11—C10—C13111.91 (18)C26—C25—C24103.37 (18)
C11—C10—C9120.74 (18)C26—C25—H25A111.1
C13—C10—C9127.28 (18)C24—C25—H25A111.1
N4—C23—C24103.68 (16)C26—C25—H25B111.1
N4—C23—H23A111.0C24—C25—H25B111.1
C24—C23—H23A111.0H25A—C25—H25B109.1
N4—C23—H23B111.0N1—C7—C4113.4 (2)
C24—C23—H23B111.0N1—C7—H7A108.9
H23A—C23—H23B109.0C4—C7—H7A108.9
C10—C11—C12124.32 (19)N1—C7—H7B108.9
C10—C11—S1112.73 (15)C4—C7—H7B108.9
C12—C11—S1122.64 (15)H7A—C7—H7B107.7
C21—C22—C17119.8 (2)F1—C20—C21118.2 (3)
C21—C22—H22120.1F1—C20—C19118.5 (3)
C17—C22—H22120.1C21—C20—C19123.3 (2)
N4—C26—C25103.64 (19)C4—C3—C2120.4 (3)
N4—C26—H26A111.0C4—C3—H3119.8
C25—C26—H26A111.0C2—C3—H3119.8
N4—C26—H26B111.0C4—C5—C6122.0 (3)
C25—C26—H26B111.0C4—C5—H5119.0
H26A—C26—H26B109.0C6—C5—H5119.0
C10—C9—C8109.86 (18)C1—C6—C5119.5 (3)
C10—C9—H9A109.7C1—C6—H6120.3
C8—C9—H9A109.7C5—C6—H6120.3
C10—C9—H9B109.7C1—C2—C3120.2 (4)
C8—C9—H9B109.7C1—C2—H2119.9
H9A—C9—H9B108.2C3—C2—H2119.9
N1—C12—C11110.81 (17)C6—C1—C2120.1 (3)
N1—C12—H12A109.5C6—C1—H1120.0
C11—C12—H12A109.5C2—C1—H1120.0
N1—C12—H12B109.5
C16—N2—C15—N4179.48 (15)C9—C10—C11—S1178.14 (13)
C16—N2—C15—N30.6 (3)C16—S1—C11—C101.92 (16)
C23—N4—C15—N2155.38 (18)C16—S1—C11—C12172.02 (17)
C26—N4—C15—N23.6 (2)C18—C17—C22—C211.9 (3)
C23—N4—C15—N324.7 (3)N3—C17—C22—C21178.84 (18)
C26—N4—C15—N3176.30 (15)C15—N4—C26—C25175.64 (16)
C14—N3—C15—N29.2 (3)C23—N4—C26—C2513.4 (2)
C17—N3—C15—N2156.74 (18)C11—C10—C9—C818.0 (2)
C14—N3—C15—N4170.88 (16)C13—C10—C9—C8158.70 (18)
C17—N3—C15—N423.2 (2)C7—N1—C12—C11170.65 (17)
C15—N3—C17—C2255.7 (2)C8—N1—C12—C1149.0 (2)
C14—N3—C17—C22111.1 (2)C10—C11—C12—N119.6 (3)
C15—N3—C17—C18127.3 (2)S1—C11—C12—N1167.21 (13)
C14—N3—C17—C1865.8 (2)C22—C17—C18—C190.6 (3)
C16—C13—C14—O1179.38 (18)N3—C17—C18—C19177.5 (2)
C10—C13—C14—O18.6 (3)C12—N1—C8—C966.5 (2)
C16—C13—C14—N33.1 (2)C7—N1—C8—C9170.69 (17)
C10—C13—C14—N3167.70 (16)C10—C9—C8—N148.3 (2)
C15—N3—C14—O1173.49 (17)C17—C22—C21—C202.0 (3)
C17—N3—C14—O119.7 (2)C17—C18—C19—C200.5 (4)
C15—N3—C14—C139.9 (2)N4—C23—C24—C2529.0 (2)
C17—N3—C14—C13156.85 (16)N4—C26—C25—C2431.0 (2)
C15—N2—C16—C136.9 (3)C23—C24—C25—C2637.6 (2)
C15—N2—C16—S1173.02 (14)C12—N1—C7—C451.8 (3)
C14—C13—C16—N25.5 (3)C8—N1—C7—C4173.91 (18)
C10—C13—C16—N2177.61 (17)C5—C4—C7—N1118.8 (3)
C14—C13—C16—S1174.45 (14)C3—C4—C7—N160.0 (3)
C10—C13—C16—S12.31 (19)C22—C21—C20—F1179.6 (2)
C11—S1—C16—N2177.55 (16)C22—C21—C20—C190.8 (4)
C11—S1—C16—C132.38 (14)C18—C19—C20—F1179.2 (2)
C16—C13—C10—C110.9 (2)C18—C19—C20—C210.4 (4)
C14—C13—C10—C11172.11 (18)C5—C4—C3—C20.1 (4)
C16—C13—C10—C9176.07 (17)C7—C4—C3—C2178.9 (3)
C14—C13—C10—C94.9 (3)C3—C4—C5—C61.2 (4)
C15—N4—C23—C24150.15 (19)C7—C4—C5—C6180.0 (3)
C26—N4—C23—C249.9 (2)C4—C5—C6—C10.9 (5)
C13—C10—C11—C12172.87 (17)C4—C3—C2—C11.2 (5)
C9—C10—C11—C124.3 (3)C5—C6—C1—C20.4 (5)
C13—C10—C11—S10.9 (2)C3—C2—C1—C61.4 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the S1-C11-C10-C13-C16 and N2-C15-N3-C14-C13-C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8B···O1i0.972.503.461 (5)171
C24—H24B···O1ii0.972.443.316 (5)151
C25—H25B···Cg1iii0.972.863.693 (5)144
C26—H26B···Cg2iii0.972.803.717 (5)158
Symmetry codes: (i) x+2, y, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC26H25FN4OS
Mr460.56
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.132 (10), 9.736 (11), 15.540 (18)
α, β, γ (°)99.742 (16), 99.636 (11), 105.551 (14)
V3)1139 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.23 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.960, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
12210, 5233, 4018
Rint0.154
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.180, 1.05
No. of reflections5233
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.38

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the S1-C11-C10-C13-C16 and N2-C15-N3-C14-C13-C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8B···O1i0.972.503.461 (5)171
C24—H24B···O1ii0.972.443.316 (5)151
C25—H25B···Cg1iii0.972.863.693 (5)144
C26—H26B···Cg2iii0.972.803.717 (5)158
Symmetry codes: (i) x+2, y, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported financially by the Science Foundation of Hubei Province Education Department, China (project No. D20091301) and the Excellent Fund for Scientific Research and Special Projects in China Three Gorges University, China (project No. KJ2009B004).

References

First citationAmr, A. E., Sherif, M. H., Assy, M. G., Al-Omar, M. A. & Ragab, I. (2010). Eur. J. Med. Chem. 45, 5935–5942.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, Y.-G., Li, G.-H. & Zhou, M.-H. (2007). Acta Cryst. E63, o1836–o1838.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, N. Y., Liang, Y. J., Ding, M. W., Fu, L. W. & He, H. W. (2009). Bioorg. Med. Chem. Lett. 19, 831–833.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJennings, L. D., Kincaid, S. L., Wang, Y. D., Krishnamurthy, G., Beyer, C. F., McGinnis, J. P., Miranda, M., Discafanid, C. M. & Rabindran, S. K. (2005). Bioorg. Med. Chem. Lett. 15, 4731–4735.  CrossRef CAS Google Scholar
First citationKikuchi, H., Yamamoto, K., Horoiwa, S., Hirai, S., Kasahara, R., Hariguchi, N., Matsumoto, M. & Oshima, Y. (2006). J. Med. Chem. 49, 4698–4706.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMavrova, A. T., Vuchev, D., Anichina, K. & Vassilev, N. (2010). Eur. J. Med. Chem. 45, 5856–5861.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSantagati, N. A., Prezzavento, O., Bousquet, E., Ronsisvalle, G. & Spampinato, S. (2002). J. Pharm. Pharmacol. 54, 717–728.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, H., Meng, S.-M., Fan, Y.-Q. & Guo, Y. (2008). Acta Cryst. E64, o2434.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds