organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2421-o2422

5-(4-Chloro­phen­yl)-1-methyl-3-phenyl-3,6,8,9-tetra­hydro­pyrazolo­[3,4-b]thio­pyrano[4,3-d]pyridine

aLianyungang Teacher's College, Lianyungang 222006, People's Republic of China
*Correspondence e-mail: jiarunhong@126.com

(Received 18 July 2011; accepted 17 August 2011; online 27 August 2011)

The title compound, C22H18ClN3S, was synthesized by the reaction of 4-chloro­benzaldehyde, tetra­hydro­thio­pyran-4-one and 3-methyl-1-phenyl-1H-pyrazol-5-amine in acetic acid without a catalyst. The pyridine and pyrazole rings are almost coplanar, the dihedral angle between their mean planes being 2.50 (1)°. The thio­pyran ring exhibits an envelope conformation. The crystal packing is stabilized by inter­molecular C—H⋯Cl hydrogen bonds and by C—H⋯π and ππ inter­actions [centroid–centroid distances of 3.825 (2) Å between pyridine rings and 3.557 (2) Å between pyrazole and pyridine rings.

Related literature

The pyrazolo­[3,4-b]pyridine system represents the core skeleton of a pharmaceutically important class of heterocyclic compounds that possess a broad range of biological activity, see: Beutner et al. (2009[Beutner, G. L., Kuethe, J. T., Kim, M. M. & Yasuda, N. (2009). J. Org. Chem. 74, 789-794.]); Hamblin et al. (2008[Hamblin, J. N., Angell, T. D. R., Ballantine, S. P., Cook, C. M., Cooper, A. W. J., Dawson, J., Delves, C. J., Jones, P. S., Lindvall, M., Lucas, F. S., Mitchell, C. J., Neu, M. Y., Ranshaw, L. E., Solanke, Y. E., Somers, D. O. & Wiseman, J. O. (2008). Bioorg. Med. Chem. Lett. 18, 4237-4241.]); Jiang et al. (2011[Jiang, B., Liu, Y. P. & Tu, S. J. (2011). Eur. J. Org. Chem. pp. 3026-3035.]); Lynck et al. (1988[Lynck, B., Khan, M., Teo, H. & Pedrotti, F. (1988). Can. J. Chem. 66, 420-428.]); Manetti et al. (2005[Manetti, F., Schenone, S., Bondavalli, F., Brullo, C., Bruno, O., Ranise, A., Mosti, L., Menozzi, G., Fossa, P., Trincavelli, M. L., Martini, C., Martinelli, A., Tintori, C. & Botta, M. (2005). J. Med. Chem. 48, 7172-7185.]); Meiners & Salama (1982[Meiners, B. A. & Salama, A. I. (1982). Eur. J. Pharmacol. 78, 315-322.]); Revesz et al. (2006[Revesz, L., Blum, E., Di Padova, F. E., Buhl, T., Feifel, R., Gram, H., Hiestand, P., Manning, U., Neumann, U. & Rucklin, G. (2006). Bioorg. Med. Chem. Lett. 16, 262-266.]); Witherington et al. (2003[Witherington, J., Bordas, V., Gaiba, A., Garton, N. S., Naylor, A., Rawlings, A. D., Slingsby, B. P., Smith, D. G., Takle, A. K. & Ward, R. W. (2003). Bioorg. Med. Chem. Lett. 13, 3055-3057.]). For related structures, see: Chebanov et al. (2007[Chebanov, V. A., Saraev, V. E., Desenko, S. M., Chernenko, V. N., Shishkina, S. V., Shishkin, O. V., Kobzar, K. M. & Kappe, C. O. (2007). Org. Lett. 9, 1691-1694.]); Lee & Park (2009[Lee, S. & Park, S. B. (2009). Org. Lett. 11, 5214-5217.]); Quiroga et al. (2001[Quiroga, J., Mejia, D., Insuasty, B., Abonia, R., Nogueras, M., Sànchez, A., Cobo, J. & Low, J. N. (2001). Tetrahedron, 57, 6947-6953.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18ClN3S

  • Mr = 391.90

  • Monoclinic, P 21 /c

  • a = 8.8731 (9) Å

  • b = 19.9044 (18) Å

  • c = 10.5292 (11) Å

  • β = 96.689 (1)°

  • V = 1846.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 298 K

  • 0.48 × 0.19 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996)[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.] Tmin = 0.857, Tmax = 0.943

  • 9193 measured reflections

  • 3264 independent reflections

  • 1988 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.118

  • S = 1.02

  • 3264 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Please define Cg1 is the centroid of the C17–C22 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯Cl1i 0.97 3.00 3.608 (3) 122
C9—H9ACg1ii 0.97 2.84 3.778 (4) 163
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The pyrazolo[3,4-b]pyridine system as a key heterocycle represents the core skeleton of a pharmaceutically important class of heterocyclic compounds that possess a broad range of biological activities (Beutner et al., 2009), such as anxiolytic activity (Meiners et al., 1982), and can be used in the inhibition of xanthine oxidases (Lynck et al., 1988), cholesterol formation and in the treatment of Alzheimer's disease, gastrointestinal diseases, anorexia nervosa, drug and alcohol withdrawal symptoms, drug addiction and infertility. They have also been reported as potent and selective inhibitors of A1 adenosine receptors (Manetti et al., 2005), phosphodiesterase 4 (PDE4) inhibitors in immune and inflammatory cells (Hamblin et al. 2008), glycogen synthase kinase-3 (GSK-3) inhibitors (Witherington et al., 2003) and kinase inhibitors of p38 as anti-inflammatory drugs (Revesz et al., 2006). Because of the biological activities they exhibit, these compounds have distinguished themselves as heterocycles of profound chemical and biological significance.

Thus, the preparation of these molecules has attracted considerable attention (Lee et al., 2009). Many pyrazolo [3,4-b]pyridines have been synthesized through the reactions of 5-aminopyrazoles, aldehydes and appropriate cycloketones by various methods (Quiroga et al. 2001). However, most of these compounds are pyrazolo[3,4-b]pyridines with the aryl group at the 4-position of the pyridine ring. Recently, Chebanov and co-workers synthesized unexpected pyrazolopyridines by similar three-component reactions under strong basic conditions (Chebanov et al., 2007). In this reaction, the aryl group was also located at the 4-position of the pyridine ring. Recently, Jiang et al. (Jiang et al., 2011) have reported a facile one-pot reaction for the synthesis of the regioselective construction of macrocyclane-fused pyrazolo[3,4-b]pyridines with an aryl group at the 2-position of the pyridine nucleus.

In this paper we report the crystal structure of the title compound, C22H18ClN3S, which was synthesized by the reaction of 4-chlorobenzaldehyde, tetrahydrothiopyran-4-one, and 3-methyl-1-phenyl-1H-pyrazol-5-amine in acetic acid without catalyst.

In the crystal structure, the pyridine and pyrazole rings are almost coplanar. Indeed, the dihedral angle between the pyridine C1/C2/C7/C6/C10/N1 plane and the C1/C2/C3/N3/N2 pyrazole ring is 2.50 (1)°. The thiopyran ring exhibits an envelope conformation. The molecules are connected via C—H···Cl hydrogen bonds and C—H···π interactions (Fig. 2; Table 1). Furthermore, intermolecular ππ interactions between two parallel neighboring pyridine rings are observed. The centroid-centroid distance and the perpendicular distance of the centroid on the neighboring ring are 3.825 (2) and 3.472 (1). Even shorter interactions exist between the pyrazole and pyridine rings with corresponding distances of 3.557 (2) and 3.516 (1) Å, respectively.

Related literature top

The pyrazolo[3,4-b]pyridine system represents the core skeleton of a pharmaceutically important class of heterocyclic compounds that possess a broad range of biological activity, see: Beutner et al. (2009); Hamblin et al. (2008); Jiang et al. (2011); Lynck et al. (1988); Manetti et al. (2005); Meiners & Salama (1982); Revesz et al. (2006); Witherington et al. (2003). For related structures, see: Chebanov et al. (2007); Lee & Park (2009); Quiroga et al. (2001).

Experimental top

The title compound was prepared by the reaction of 4-chlorobenzaldehyde (1 mmol), tetrahydrothiopyran-4-one (1 mmol) and 3-methyl-1-phenyl-1H-pyrazol-5-amine (1 mmol) in acetic acid (2.0 ml). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a 95% aqueous ethanol solution (yield 89%; m.p. 473–475 K).

IR (cm-1): 3068, 2963, 2896, 1592, 1577, 1506, 1415, 1383, 1286, 1104, 1090, 1014, 911, 8839, 756, 693. 1H NMR (DMSO-d6): 8.25–8.23 (m, 2H, ArH), 7.63–7.61 (m, 4H, ArH), 7.50 (s, 2H, ArH), 7.27 (s, 1H, ArH), 3.78 (s, 2H, CH2), 3.61–3.54 (m, 2H, CH2), 3.06–3.00 (m, 2H, CH2), 2.76 (s, 3H, CH3).

Refinement top

All H atoms were positioned geometrically and treated as riding, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms, and with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

In the hydrogen-bond geometry table, Cg1 corresponds to the centroid of the C17/C18/C19/C20/C21/C22 ring.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram of the title compound viewed along the a axis.
5-(4-Chlorophenyl)-1-methyl-3-phenyl-3,6,8,9- tetrahydropyrazolo[3,4-b]thiopyrano[4,3-d]pyridine top
Crystal data top
C22H18ClN3SF(000) = 816
Mr = 391.90Dx = 1.409 Mg m3
Monoclinic, P21/cMelting point = 473–475 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.8731 (9) ÅCell parameters from 2113 reflections
b = 19.9044 (18) Åθ = 2.2–26.7°
c = 10.5292 (11) ŵ = 0.33 mm1
β = 96.689 (1)°T = 298 K
V = 1846.9 (3) Å3Solid, yellow
Z = 40.48 × 0.19 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3264 independent reflections
Radiation source: fine-focus sealed tube1988 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.857, Tmax = 0.943k = 2323
9193 measured reflectionsl = 1210
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.3375P]
where P = (Fo2 + 2Fc2)/3
3264 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C22H18ClN3SV = 1846.9 (3) Å3
Mr = 391.90Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8731 (9) ŵ = 0.33 mm1
b = 19.9044 (18) ÅT = 298 K
c = 10.5292 (11) Å0.48 × 0.19 × 0.18 mm
β = 96.689 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3264 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1988 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.943Rint = 0.049
9193 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.02Δρmax = 0.24 e Å3
3264 reflectionsΔρmin = 0.32 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.44021 (11)0.63561 (4)1.01417 (8)0.0593 (3)
N10.7485 (3)0.54523 (11)0.4998 (2)0.0332 (6)
N20.8363 (3)0.55347 (11)0.2913 (2)0.0357 (6)
N30.8983 (3)0.51019 (11)0.2085 (2)0.0387 (6)
S10.67456 (11)0.30052 (4)0.63061 (9)0.0578 (3)
C10.8091 (3)0.51924 (13)0.4001 (2)0.0306 (7)
C20.8559 (3)0.45316 (13)0.3864 (3)0.0318 (7)
C30.9106 (3)0.45062 (14)0.2642 (3)0.0369 (7)
C40.9691 (4)0.39328 (14)0.1935 (3)0.0523 (9)
H4A0.99800.40900.11360.079*
H4B0.89120.35980.17750.079*
H4C1.05570.37410.24360.079*
C50.7208 (4)0.38381 (14)0.6887 (3)0.0447 (8)
H5A0.63390.40230.72450.054*
H5B0.80380.38100.75710.054*
C60.7656 (3)0.43144 (13)0.5871 (2)0.0331 (7)
C70.8341 (3)0.40722 (13)0.4839 (3)0.0328 (7)
C80.8818 (4)0.33513 (14)0.4683 (3)0.0457 (8)
H8A0.82940.31840.38860.055*
H8B0.98950.33480.45980.055*
C90.8542 (4)0.28645 (15)0.5730 (3)0.0574 (10)
H9A0.93440.29110.64330.069*
H9B0.85740.24090.54060.069*
C100.7281 (3)0.50130 (13)0.5927 (2)0.0317 (7)
C110.6564 (3)0.53181 (13)0.7005 (2)0.0316 (7)
C120.5455 (3)0.58021 (14)0.6731 (3)0.0368 (7)
H120.51530.59160.58830.044*
C130.4789 (3)0.61196 (14)0.7682 (3)0.0382 (7)
H130.40480.64450.74800.046*
C140.5232 (4)0.59506 (14)0.8936 (3)0.0374 (7)
C150.6343 (4)0.54796 (14)0.9245 (3)0.0392 (8)
H150.66450.53721.00960.047*
C160.7009 (3)0.51666 (13)0.8279 (3)0.0375 (7)
H160.77670.48490.84870.045*
C170.8084 (3)0.62075 (13)0.2522 (2)0.0328 (7)
C180.7261 (3)0.66428 (14)0.3209 (3)0.0406 (8)
H180.68930.64980.39540.049*
C190.6992 (4)0.72906 (15)0.2776 (3)0.0473 (8)
H190.64410.75810.32380.057*
C200.7524 (4)0.75172 (16)0.1675 (3)0.0503 (9)
H200.73310.79540.13880.060*
C210.8344 (4)0.70828 (15)0.1010 (3)0.0489 (9)
H210.87060.72300.02640.059*
C220.8645 (3)0.64352 (14)0.1420 (3)0.0405 (8)
H220.92180.61520.09630.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0792 (7)0.0579 (6)0.0456 (5)0.0061 (5)0.0279 (5)0.0081 (4)
N10.0386 (15)0.0337 (13)0.0286 (13)0.0005 (11)0.0092 (11)0.0007 (11)
N20.0452 (16)0.0333 (13)0.0306 (13)0.0045 (12)0.0128 (12)0.0004 (11)
N30.0455 (17)0.0405 (15)0.0323 (14)0.0043 (12)0.0138 (12)0.0038 (11)
S10.0621 (7)0.0369 (5)0.0795 (7)0.0095 (4)0.0298 (5)0.0017 (4)
C10.0312 (17)0.0326 (16)0.0290 (15)0.0012 (13)0.0078 (13)0.0014 (12)
C20.0328 (18)0.0292 (15)0.0344 (16)0.0003 (13)0.0079 (13)0.0012 (13)
C30.0383 (19)0.0375 (17)0.0357 (17)0.0037 (15)0.0078 (14)0.0023 (14)
C40.065 (3)0.0421 (19)0.055 (2)0.0025 (17)0.0255 (18)0.0082 (16)
C50.057 (2)0.0361 (17)0.0434 (19)0.0031 (15)0.0166 (16)0.0052 (14)
C60.0335 (18)0.0341 (16)0.0316 (16)0.0033 (13)0.0037 (13)0.0019 (12)
C70.0310 (18)0.0292 (16)0.0380 (17)0.0027 (13)0.0038 (14)0.0009 (13)
C80.051 (2)0.0375 (18)0.0502 (19)0.0060 (15)0.0119 (16)0.0012 (15)
C90.066 (3)0.0341 (18)0.076 (2)0.0056 (17)0.024 (2)0.0087 (17)
C100.0328 (18)0.0338 (16)0.0286 (15)0.0036 (13)0.0042 (13)0.0009 (13)
C110.0362 (18)0.0294 (15)0.0301 (16)0.0054 (13)0.0082 (13)0.0003 (12)
C120.042 (2)0.0404 (17)0.0286 (16)0.0015 (15)0.0056 (14)0.0029 (13)
C130.0327 (19)0.0422 (17)0.0406 (18)0.0041 (14)0.0077 (15)0.0011 (14)
C140.046 (2)0.0352 (17)0.0329 (17)0.0074 (15)0.0150 (15)0.0065 (13)
C150.053 (2)0.0380 (17)0.0281 (16)0.0046 (16)0.0099 (15)0.0036 (13)
C160.043 (2)0.0341 (16)0.0364 (17)0.0026 (14)0.0080 (15)0.0028 (13)
C170.0382 (19)0.0301 (15)0.0303 (16)0.0019 (14)0.0043 (14)0.0011 (12)
C180.052 (2)0.0391 (18)0.0326 (17)0.0015 (16)0.0128 (15)0.0020 (14)
C190.056 (2)0.0372 (18)0.050 (2)0.0063 (16)0.0115 (17)0.0008 (15)
C200.056 (2)0.0395 (19)0.056 (2)0.0026 (17)0.0088 (18)0.0091 (16)
C210.059 (2)0.048 (2)0.0416 (19)0.0107 (17)0.0136 (17)0.0130 (16)
C220.043 (2)0.0444 (19)0.0361 (17)0.0007 (15)0.0131 (15)0.0029 (14)
Geometric parameters (Å, º) top
Cl1—C141.739 (3)C9—H9A0.9700
N1—C11.339 (3)C9—H9B0.9700
N1—C101.339 (3)C10—C111.493 (4)
N2—C11.378 (3)C11—C121.383 (4)
N2—N31.384 (3)C11—C161.387 (4)
N2—C171.414 (3)C12—C131.374 (4)
N3—C31.322 (3)C12—H120.9300
S1—C91.792 (3)C13—C141.375 (4)
S1—C51.798 (3)C13—H130.9300
C1—C21.392 (4)C14—C151.372 (4)
C2—C71.405 (4)C15—C161.382 (4)
C2—C31.428 (4)C15—H150.9300
C3—C41.489 (4)C16—H160.9300
C4—H4A0.9600C17—C181.389 (4)
C4—H4B0.9600C17—C221.391 (4)
C4—H4C0.9600C18—C191.379 (4)
C5—C61.517 (4)C18—H180.9300
C5—H5A0.9700C19—C201.378 (4)
C5—H5B0.9700C19—H190.9300
C6—C71.391 (4)C20—C211.373 (4)
C6—C101.433 (4)C20—H200.9300
C7—C81.511 (4)C21—C221.375 (4)
C8—C91.509 (4)C21—H210.9300
C8—H8A0.9700C22—H220.9300
C8—H8B0.9700
C1—N1—C10114.9 (2)C8—C9—H9B109.2
C1—N2—N3109.7 (2)S1—C9—H9B109.2
C1—N2—C17131.9 (2)H9A—C9—H9B107.9
N3—N2—C17118.4 (2)N1—C10—C6123.5 (2)
C3—N3—N2107.3 (2)N1—C10—C11113.3 (2)
C9—S1—C594.73 (15)C6—C10—C11123.2 (2)
N1—C1—N2125.9 (2)C12—C11—C16117.9 (3)
N1—C1—C2126.7 (2)C12—C11—C10118.7 (2)
N2—C1—C2107.3 (2)C16—C11—C10123.3 (3)
C1—C2—C7118.1 (2)C13—C12—C11121.6 (3)
C1—C2—C3105.3 (2)C13—C12—H12119.2
C7—C2—C3136.5 (3)C11—C12—H12119.2
N3—C3—C2110.4 (2)C12—C13—C14119.2 (3)
N3—C3—C4118.7 (3)C12—C13—H13120.4
C2—C3—C4130.8 (3)C14—C13—H13120.4
C3—C4—H4A109.5C15—C14—C13120.8 (3)
C3—C4—H4B109.5C15—C14—Cl1119.9 (2)
H4A—C4—H4B109.5C13—C14—Cl1119.3 (2)
C3—C4—H4C109.5C14—C15—C16119.4 (3)
H4A—C4—H4C109.5C14—C15—H15120.3
H4B—C4—H4C109.5C16—C15—H15120.3
C6—C5—S1113.9 (2)C15—C16—C11121.0 (3)
C6—C5—H5A108.8C15—C16—H16119.5
S1—C5—H5A108.8C11—C16—H16119.5
C6—C5—H5B108.8C18—C17—C22119.5 (3)
S1—C5—H5B108.8C18—C17—N2121.6 (2)
H5A—C5—H5B107.7C22—C17—N2118.9 (2)
C7—C6—C10119.6 (2)C19—C18—C17119.5 (3)
C7—C6—C5120.6 (3)C19—C18—H18120.2
C10—C6—C5119.8 (2)C17—C18—H18120.2
C6—C7—C2117.1 (2)C20—C19—C18121.4 (3)
C6—C7—C8124.6 (2)C20—C19—H19119.3
C2—C7—C8118.3 (2)C18—C19—H19119.3
C9—C8—C7117.3 (3)C21—C20—C19118.5 (3)
C9—C8—H8A108.0C21—C20—H20120.8
C7—C8—H8A108.0C19—C20—H20120.8
C9—C8—H8B108.0C20—C21—C22121.7 (3)
C7—C8—H8B108.0C20—C21—H21119.2
H8A—C8—H8B107.2C22—C21—H21119.2
C8—C9—S1111.9 (2)C21—C22—C17119.5 (3)
C8—C9—H9A109.2C21—C22—H22120.3
S1—C9—H9A109.2C17—C22—H22120.3
C1—N2—N3—C30.4 (3)C1—N1—C10—C60.8 (4)
C17—N2—N3—C3178.7 (2)C1—N1—C10—C11178.4 (2)
C10—N1—C1—N2177.7 (3)C7—C6—C10—N13.4 (4)
C10—N1—C1—C22.2 (4)C5—C6—C10—N1172.5 (3)
N3—N2—C1—N1179.4 (3)C7—C6—C10—C11179.2 (3)
C17—N2—C1—N11.4 (5)C5—C6—C10—C115.0 (4)
N3—N2—C1—C20.5 (3)N1—C10—C11—C1237.0 (4)
C17—N2—C1—C2178.4 (3)C6—C10—C11—C12140.7 (3)
N1—C1—C2—C72.3 (4)N1—C10—C11—C16139.5 (3)
N2—C1—C2—C7177.5 (2)C6—C10—C11—C1642.9 (4)
N1—C1—C2—C3179.5 (3)C16—C11—C12—C131.0 (4)
N2—C1—C2—C30.4 (3)C10—C11—C12—C13177.6 (3)
N2—N3—C3—C20.1 (3)C11—C12—C13—C140.2 (4)
N2—N3—C3—C4177.6 (3)C12—C13—C14—C151.1 (4)
C1—C2—C3—N30.1 (3)C12—C13—C14—Cl1179.5 (2)
C7—C2—C3—N3176.5 (3)C13—C14—C15—C160.8 (4)
C1—C2—C3—C4176.9 (3)Cl1—C14—C15—C16179.2 (2)
C7—C2—C3—C40.6 (6)C14—C15—C16—C110.4 (4)
C9—S1—C5—C657.4 (3)C12—C11—C16—C151.3 (4)
S1—C5—C6—C729.2 (4)C10—C11—C16—C15177.8 (3)
S1—C5—C6—C10146.6 (2)C1—N2—C17—C187.6 (5)
C10—C6—C7—C23.1 (4)N3—N2—C17—C18170.2 (3)
C5—C6—C7—C2172.8 (3)C1—N2—C17—C22172.7 (3)
C10—C6—C7—C8178.7 (3)N3—N2—C17—C229.5 (4)
C5—C6—C7—C85.4 (4)C22—C17—C18—C191.0 (4)
C1—C2—C7—C60.5 (4)N2—C17—C18—C19178.7 (3)
C3—C2—C7—C6175.6 (3)C17—C18—C19—C200.0 (5)
C1—C2—C7—C8178.8 (3)C18—C19—C20—C210.4 (5)
C3—C2—C7—C82.8 (5)C19—C20—C21—C220.2 (5)
C6—C7—C8—C90.6 (4)C20—C21—C22—C171.1 (5)
C2—C7—C8—C9178.8 (3)C18—C17—C22—C211.5 (4)
C7—C8—C9—S140.3 (4)N2—C17—C22—C21178.2 (3)
C5—S1—C9—C862.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cl1i0.973.003.608 (3)122
C9—H9A···Cg1ii0.972.843.778 (4)163
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC22H18ClN3S
Mr391.90
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.8731 (9), 19.9044 (18), 10.5292 (11)
β (°) 96.689 (1)
V3)1846.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.48 × 0.19 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.857, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
9193, 3264, 1988
Rint0.049
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.118, 1.02
No. of reflections3264
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.32

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cl1i0.973.003.608 (3)122.0
C9—H9A···Cg1ii0.972.843.778 (4)163.0
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y+1, z+1.
 

Acknowledgements

The authors thank the National Science Foundation of China (No. 20672090) for financial support.

References

First citationBeutner, G. L., Kuethe, J. T., Kim, M. M. & Yasuda, N. (2009). J. Org. Chem. 74, 789–794.  CrossRef CAS Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChebanov, V. A., Saraev, V. E., Desenko, S. M., Chernenko, V. N., Shishkina, S. V., Shishkin, O. V., Kobzar, K. M. & Kappe, C. O. (2007). Org. Lett. 9, 1691–1694.  CrossRef CAS Google Scholar
First citationHamblin, J. N., Angell, T. D. R., Ballantine, S. P., Cook, C. M., Cooper, A. W. J., Dawson, J., Delves, C. J., Jones, P. S., Lindvall, M., Lucas, F. S., Mitchell, C. J., Neu, M. Y., Ranshaw, L. E., Solanke, Y. E., Somers, D. O. & Wiseman, J. O. (2008). Bioorg. Med. Chem. Lett. 18, 4237–4241.  CrossRef CAS Google Scholar
First citationJiang, B., Liu, Y. P. & Tu, S. J. (2011). Eur. J. Org. Chem. pp. 3026–3035.  CrossRef Google Scholar
First citationLee, S. & Park, S. B. (2009). Org. Lett. 11, 5214–5217.  CrossRef CAS Google Scholar
First citationLynck, B., Khan, M., Teo, H. & Pedrotti, F. (1988). Can. J. Chem. 66, 420–428.  Google Scholar
First citationManetti, F., Schenone, S., Bondavalli, F., Brullo, C., Bruno, O., Ranise, A., Mosti, L., Menozzi, G., Fossa, P., Trincavelli, M. L., Martini, C., Martinelli, A., Tintori, C. & Botta, M. (2005). J. Med. Chem. 48, 7172–7185.  CrossRef CAS Google Scholar
First citationMeiners, B. A. & Salama, A. I. (1982). Eur. J. Pharmacol. 78, 315–322.  CrossRef CAS Google Scholar
First citationQuiroga, J., Mejia, D., Insuasty, B., Abonia, R., Nogueras, M., Sànchez, A., Cobo, J. & Low, J. N. (2001). Tetrahedron, 57, 6947–6953.  CrossRef CAS Google Scholar
First citationRevesz, L., Blum, E., Di Padova, F. E., Buhl, T., Feifel, R., Gram, H., Hiestand, P., Manning, U., Neumann, U. & Rucklin, G. (2006). Bioorg. Med. Chem. Lett. 16, 262–266.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWitherington, J., Bordas, V., Gaiba, A., Garton, N. S., Naylor, A., Rawlings, A. D., Slingsby, B. P., Smith, D. G., Takle, A. K. & Ward, R. W. (2003). Bioorg. Med. Chem. Lett. 13, 3055–3057.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2421-o2422
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds