organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 2,5-bis­­[(1E)-(1H-pyrrol-2-yl­methyl­­idene)amino]­thio­phene-3,4-di­carboxyl­ate

aDepartment of Chemistry, University of Montreal, CP 6128, succ. Centre-ville, Montréal, Québec, Canada H3C 3J7
*Correspondence e-mail: w.skene@umontreal.ca

(Received 28 July 2011; accepted 4 August 2011; online 11 August 2011)

In the crystal structure of the title compound, C20H20N4O4S, the azomethine group adopt E conformations. The pyrrole units are twisted by 10.31 (4) and 18.90 (5)° with respect to the central thio­phene ring. The three-dimensional network is close packed and involves N—H⋯O, N—H⋯N, C—H⋯N and C—H⋯O hydrogen bonding.

Related literature

For general background, see: Dufresne et al. (2007[Dufresne, S., Bourgeaux, M. & Skene, W. G. (2007). J. Mater. Chem. 17, 1-13.], 2011[Dufresne, S. & Skene, W. G. (2011). J. Phys. Org. Chem. DOI 10.1002/poc.1894.]). For thio­phene azomethines, see: Dufresne et al. (2006[Dufresne, S., Bourgeaux, M. & Skene, W. G. (2006). Acta Cryst. E62, o5602-o5604.], 2010a[Dufresne, S. & Skene, W. G. (2010a). Acta Cryst. E66, o3027.],b[Dufresne, S. & Skene, W. G. (2010b). Acta Cryst. E66, o3221.]). For alkene comparison, see: Ruban et al. (1975[Ruban, G. & Zobel, D. (1975). Acta Cryst. B31, 2632-2634.]); Zobel et al. (1978[Zobel, D. & Ruban, G. (1978). Acta Cryst. B34, 1652-1657.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20N4O4S

  • Mr = 412.46

  • Orthorhombic, P n a 21

  • a = 16.898 (3) Å

  • b = 12.643 (3) Å

  • c = 9.4220 (19) Å

  • V = 2012.9 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.73 mm−1

  • T = 150 K

  • 0.10 × 0.03 × 0.03 mm

Data collection
  • Bruker SMART 6000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.841, Tmax = 0.947

  • 17313 measured reflections

  • 3040 independent reflections

  • 3004 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.064

  • S = 1.04

  • 3040 reflections

  • 264 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983)[Flack, H. D. (1983). Acta Cryst. A39, 876-881.], 1275 Friedel pairs

  • Flack parameter: 0.085 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H100⋯O3i 0.88 2.37 3.040 (2) 133
N4—H400⋯O1ii 0.88 2.47 3.174 (2) 138
N4—H400⋯N2ii 0.88 2.59 3.2136 (19) 128
C3—H3⋯N4iii 0.95 2.56 3.441 (2) 155
C13—H13⋯O3iv 0.95 2.51 3.126 (2) 123
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (iii) [-x, -y+2, z-{\script{1\over 2}}]; (iv) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: UdMX (Marris, 2004[Marris, T. (2004). UdMX. Université de Montréal, Québec, Canada.]).

Supporting information


Comment top

During our on-going research relating to conjugated azomethines (Dufresne et al., 2007; Dufresne & Skene, 2010a,b; Dufresne & Skene, 2011) we prepared the title compound (I), C20H20N4O4S. To the best of our knowledge, there are very few reported crystal structures of azomethines consisting of pyrrole and thiophene units together. The molecular structure was confirmed by a X-ray diffraction study (Fig. 1). Neither solvent molecules nor counter-ions were found in the closed-packing of the crystal structure.

A major point of interest is the azomethine bond which adopts the E configuration. The bond lengths for C4—C5, N2—C5 and N2—C6 are 1.429 (3), 1.294 (3) and 1.379 (2) Å, respectively. The related bonds C10—C11, N3—C10 and N3—C9 are 1.434 (3), 1.288 (3) and 1.379 (3) Å, respectively. All bond distances are consistent with those of a similar conjugated compound consisting uniquely of thiophenes with two azomethine bonds (Dufresne et al., 2006). The analogues bond lengths for the all-thiophene counterpart are: 1.441 (4), 1.272 (3) and 1.388 (3) Å. It was found that the three heterocycles of (I) are not perfectly coplanar. This was confirmed by measuring the dihedral angles between the planes described by both terminal pyrroles and the plane described by the central thiophene. The dihedral angle between the N1-pyrrole and thiophene planes is 10.31 (4)°, while that for the thiophene and N4-pyrrole planes is 18.90 (5)°. The measured angles are similar to the all-thiophene analogue whose terminal thiophenes are twisted by 9.04 (4)° and 25.07 (6)° with the central thiophene. The pyrrole N-H is involved in several N—H···O and N—H···N donor-acceptor interactions while C—H···N and C—H···O are also observed (Table 1). All these interactions are responsible for the overall extended three-dimensional crystal network (Fig. 2), while no π-stacking was found.

Related literature top

For general background, see: Dufresne et al. (2007, 2011). For thiophene azomethines, see: Dufresne et al. (2006, 2010a,b). For alkene comparison, see: Ruban et al. (1975); Zobel et al. (1978).

Experimental top

In anhydrous toluene (25 mL) was added 1H-pyrrole-2-carbaldehyde to which was subsequently added DABCO, TiCl4 in toluene at 0 °C and then diethyl 2,5-diaminothiophene-3,4-dicarboxylate was added. The mixture was then refluxed for 30 minutes and the solvent, after which the solvent was removed. Purification by flash chromatography yielded the title product as a red solid. Single crystals were obtained by slow evaporation of an acetone solution of the title compound.

Refinement top

H atoms were placed in calculated positions and included in the refinement in the riding-model approximation, with C—H = 0.95 Å for aromatic H atoms, C—H = 0.99 Å for methylene H atoms, C—H = 0.98 Å for methyl H atoms, and Uiso(H) = 1.2 Ueq(C). The protons on the N atoms of the pyrrole groups were placed in calculated positions with N—H = 0.85 Å and included in the refinement in the riding-model approximation, with Uiso(H) = 1.5 Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: UdMX (Marris, 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with thermal ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. Supramolecular structure showing the intermolecular hydrogen bonding (dashed lines). Symmetry codes: (i) x+1/2, -y+3/2, z; (ii) x-1/2, -y+3/2, z; (iii) -x, -y+2, z-1/2; (iv) -x-1/2, y+1/2, z-1/2.
Diethyl 2,5-bis[(1E)-(1H-pyrrol-2- ylmethylidene)amino]thiophene-3,4-dicarboxylate top
Crystal data top
C20H20N4O4SDx = 1.361 Mg m3
Mr = 412.46Melting point: 483(2) K
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2nCell parameters from 4515 reflections
a = 16.898 (3) Åθ = 4.4–70.6°
b = 12.643 (3) ŵ = 1.73 mm1
c = 9.4220 (19) ÅT = 150 K
V = 2012.9 (7) Å3Block, orange
Z = 40.10 × 0.03 × 0.03 mm
F(000) = 864
Data collection top
Bruker SMART 6000
diffractometer
3040 independent reflections
Radiation source: Rotating Anode3004 reflections with I > 2σ(I)
Montel 200 optics monochromatorRint = 0.028
Detector resolution: 5.5 pixels mm-1θmax = 66.6°, θmin = 4.4°
ω scansh = 1919
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1414
Tmin = 0.841, Tmax = 0.947l = 910
17313 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.2939P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3040 reflectionsΔρmax = 0.19 e Å3
264 parametersΔρmin = 0.15 e Å3
1 restraintAbsolute structure: Flack (1983), 1275 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.085 (12)
Crystal data top
C20H20N4O4SV = 2012.9 (7) Å3
Mr = 412.46Z = 4
Orthorhombic, Pna21Cu Kα radiation
a = 16.898 (3) ŵ = 1.73 mm1
b = 12.643 (3) ÅT = 150 K
c = 9.4220 (19) Å0.10 × 0.03 × 0.03 mm
Data collection top
Bruker SMART 6000
diffractometer
3040 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3004 reflections with I > 2σ(I)
Tmin = 0.841, Tmax = 0.947Rint = 0.028
17313 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.064Δρmax = 0.19 e Å3
S = 1.04Δρmin = 0.15 e Å3
3040 reflectionsAbsolute structure: Flack (1983), 1275 Friedel pairs
264 parametersAbsolute structure parameter: 0.085 (12)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.025121 (19)0.93934 (3)0.61244 (5)0.01883 (11)
O10.19929 (6)0.77328 (9)0.93257 (16)0.0238 (3)
O20.08597 (7)0.76090 (9)1.05985 (15)0.0233 (3)
O30.07216 (7)0.66172 (8)0.89456 (15)0.0223 (3)
O40.08363 (6)0.80055 (8)1.04346 (14)0.0199 (3)
N10.34790 (7)0.92360 (10)0.62911 (19)0.0211 (3)
H1000.34040.89210.71130.025*
N20.18309 (7)0.90938 (10)0.69168 (16)0.0176 (3)
N30.12532 (7)0.86607 (10)0.69517 (18)0.0186 (3)
N40.29025 (7)0.83824 (9)0.63130 (17)0.0176 (3)
H4000.27410.78760.68850.021*
C10.41958 (10)0.94223 (13)0.5679 (2)0.0274 (5)
H10.46950.92350.60690.033*
C20.40779 (9)0.99277 (13)0.4398 (2)0.0255 (4)
H20.44761.01490.37510.031*
C30.32546 (9)1.00526 (12)0.4233 (2)0.0237 (4)
H30.29961.03760.34490.028*
C40.28871 (9)0.96205 (12)0.54149 (19)0.0180 (4)
C50.20611 (9)0.95575 (11)0.5762 (2)0.0188 (4)
H50.16800.98580.51390.023*
C60.10367 (9)0.89476 (11)0.72176 (19)0.0171 (3)
C70.07559 (9)0.83597 (11)0.8356 (2)0.0173 (3)
C80.00907 (9)0.82379 (11)0.83286 (19)0.0163 (3)
C90.04488 (9)0.87299 (11)0.7205 (2)0.0177 (3)
C100.15923 (9)0.92361 (11)0.5995 (2)0.0177 (3)
H100.12850.97290.54710.021*
C110.24267 (9)0.91463 (12)0.57050 (19)0.0166 (3)
C120.29035 (9)0.97881 (12)0.4860 (2)0.0197 (3)
H120.27341.03740.43070.024*
C130.36866 (10)0.94050 (11)0.4980 (2)0.0206 (4)
H130.41420.96880.45260.025*
C140.36664 (8)0.85413 (11)0.5881 (2)0.0200 (4)
H140.41100.81270.61540.024*
C150.12846 (9)0.78771 (11)0.9451 (2)0.0177 (4)
C160.12941 (10)0.71688 (13)1.1806 (2)0.0245 (4)
H16A0.17520.67541.14590.029*
H16B0.09450.66881.23500.029*
C170.15813 (11)0.80532 (14)1.2762 (2)0.0294 (4)
H17A0.19580.84971.22430.044*
H17B0.18420.77511.35990.044*
H17C0.11300.84841.30640.044*
C180.05767 (8)0.75280 (11)0.9270 (2)0.0168 (3)
C190.12474 (10)0.73187 (13)1.1459 (2)0.0250 (4)
H19A0.09560.66451.15780.030*
H19B0.17890.71561.11200.030*
C200.12819 (12)0.79079 (15)1.2846 (2)0.0325 (4)
H20A0.07440.80841.31530.049*
H20B0.15360.74631.35650.049*
H20C0.15880.85601.27220.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01600 (17)0.02159 (18)0.0189 (3)0.00165 (12)0.00024 (17)0.00547 (15)
O10.0191 (6)0.0282 (6)0.0243 (8)0.0010 (4)0.0022 (5)0.0040 (5)
O20.0212 (5)0.0307 (6)0.0179 (8)0.0002 (5)0.0019 (5)0.0047 (5)
O30.0294 (6)0.0174 (5)0.0201 (8)0.0038 (4)0.0021 (5)0.0007 (4)
O40.0224 (5)0.0197 (5)0.0175 (8)0.0038 (4)0.0047 (4)0.0006 (4)
N10.0192 (6)0.0238 (6)0.0204 (10)0.0005 (5)0.0019 (6)0.0054 (6)
N20.0163 (6)0.0179 (6)0.0186 (10)0.0028 (5)0.0004 (5)0.0008 (6)
N30.0166 (6)0.0193 (6)0.0199 (9)0.0007 (5)0.0006 (5)0.0005 (5)
N40.0194 (6)0.0160 (6)0.0174 (9)0.0025 (4)0.0001 (5)0.0019 (5)
C10.0161 (8)0.0342 (9)0.0318 (14)0.0000 (6)0.0017 (7)0.0003 (8)
C20.0209 (8)0.0331 (9)0.0226 (12)0.0056 (6)0.0054 (7)0.0051 (7)
C30.0252 (8)0.0249 (8)0.0210 (12)0.0031 (6)0.0020 (7)0.0045 (7)
C40.0172 (8)0.0167 (7)0.0201 (11)0.0009 (6)0.0019 (6)0.0008 (6)
C50.0207 (8)0.0151 (6)0.0206 (12)0.0003 (6)0.0008 (6)0.0004 (6)
C60.0164 (8)0.0145 (7)0.0202 (10)0.0005 (5)0.0006 (6)0.0022 (6)
C70.0183 (8)0.0142 (7)0.0193 (10)0.0017 (5)0.0001 (6)0.0038 (6)
C80.0174 (7)0.0132 (7)0.0183 (11)0.0003 (5)0.0007 (6)0.0025 (6)
C90.0184 (7)0.0162 (7)0.0186 (10)0.0018 (5)0.0025 (6)0.0006 (6)
C100.0187 (7)0.0167 (6)0.0178 (11)0.0009 (5)0.0020 (7)0.0012 (7)
C110.0195 (7)0.0168 (7)0.0136 (10)0.0016 (6)0.0027 (6)0.0008 (5)
C120.0220 (8)0.0181 (7)0.0190 (11)0.0017 (6)0.0007 (6)0.0041 (6)
C130.0202 (8)0.0196 (7)0.0220 (11)0.0030 (6)0.0027 (7)0.0000 (7)
C140.0183 (7)0.0185 (7)0.0233 (12)0.0010 (5)0.0001 (7)0.0011 (7)
C150.0191 (8)0.0148 (7)0.0190 (11)0.0022 (6)0.0008 (7)0.0027 (6)
C160.0282 (9)0.0274 (8)0.0178 (11)0.0007 (6)0.0042 (7)0.0061 (7)
C170.0335 (10)0.0330 (9)0.0215 (12)0.0004 (7)0.0028 (8)0.0002 (8)
C180.0143 (7)0.0174 (7)0.0187 (11)0.0008 (5)0.0017 (6)0.0015 (7)
C190.0262 (8)0.0271 (8)0.0218 (13)0.0062 (6)0.0072 (7)0.0015 (7)
C200.0424 (10)0.0323 (9)0.0228 (13)0.0036 (7)0.0076 (9)0.0003 (8)
Geometric parameters (Å, º) top
S1—C91.7717 (17)C6—C71.389 (2)
S1—C61.7721 (17)C7—C81.439 (2)
O1—C151.2165 (19)C7—C151.495 (2)
O2—C151.342 (2)C8—C91.369 (2)
O2—C161.464 (2)C8—C181.506 (2)
O3—C181.2164 (19)C10—C111.441 (2)
O4—C181.327 (2)C10—H100.9500
O4—C191.472 (2)C11—C121.393 (2)
N1—C11.362 (2)C12—C131.414 (2)
N1—C41.385 (2)C12—H120.9500
N1—H1000.8800C13—C141.384 (2)
N2—C51.296 (2)C13—H130.9500
N2—C61.384 (2)C14—H140.9500
N3—C101.292 (2)C16—C171.516 (3)
N3—C91.383 (2)C16—H16A0.9900
N4—C141.369 (2)C16—H16B0.9900
N4—C111.381 (2)C17—H17A0.9800
N4—H4000.8800C17—H17B0.9800
C1—C21.380 (3)C17—H17C0.9800
C1—H10.9500C19—C201.505 (3)
C2—C31.409 (2)C19—H19A0.9900
C2—H20.9500C19—H19B0.9900
C3—C41.387 (3)C20—H20A0.9800
C3—H30.9500C20—H20B0.9800
C4—C51.436 (2)C20—H20C0.9800
C5—H50.9500
C9—S1—C690.89 (8)N4—C11—C10123.11 (14)
C15—O2—C16117.02 (13)C12—C11—C10128.93 (14)
C18—O4—C19115.44 (12)C11—C12—C13107.25 (14)
C1—N1—C4109.20 (16)C11—C12—H12126.4
C1—N1—H100125.4C13—C12—H12126.4
C4—N1—H100125.4C14—C13—C12107.22 (14)
C5—N2—C6121.56 (15)C14—C13—H13126.4
C10—N3—C9121.37 (14)C12—C13—H13126.4
C14—N4—C11108.84 (13)N4—C14—C13108.77 (13)
C14—N4—H400125.6N4—C14—H14125.6
C11—N4—H400125.6C13—C14—H14125.6
N1—C1—C2108.79 (16)O1—C15—O2124.51 (16)
N1—C1—H1125.6O1—C15—C7125.64 (16)
C2—C1—H1125.6O2—C15—C7109.85 (13)
C1—C2—C3106.93 (15)O2—C16—C17110.00 (14)
C1—C2—H2126.5O2—C16—H16A109.7
C3—C2—H2126.5C17—C16—H16A109.7
C4—C3—C2108.02 (16)O2—C16—H16B109.7
C4—C3—H3126.0C17—C16—H16B109.7
C2—C3—H3126.0H16A—C16—H16B108.2
N1—C4—C3107.07 (14)C16—C17—H17A109.5
N1—C4—C5123.16 (16)C16—C17—H17B109.5
C3—C4—C5129.77 (16)H17A—C17—H17B109.5
N2—C5—C4120.53 (15)C16—C17—H17C109.5
N2—C5—H5119.7H17A—C17—H17C109.5
C4—C5—H5119.7H17B—C17—H17C109.5
N2—C6—C7124.12 (15)O3—C18—O4124.90 (15)
N2—C6—S1124.39 (13)O3—C18—C8121.72 (16)
C7—C6—S1111.31 (11)O4—C18—C8113.35 (12)
C6—C7—C8112.52 (15)O4—C19—C20107.18 (14)
C6—C7—C15123.18 (14)O4—C19—H19A110.3
C8—C7—C15124.26 (14)C20—C19—H19A110.3
C9—C8—C7113.87 (15)O4—C19—H19B110.3
C9—C8—C18119.05 (14)C20—C19—H19B110.3
C7—C8—C18126.54 (14)H19A—C19—H19B108.5
C8—C9—N3122.62 (15)C19—C20—H20A109.5
C8—C9—S1111.38 (12)C19—C20—H20B109.5
N3—C9—S1125.95 (13)H20A—C20—H20B109.5
N3—C10—C11121.45 (15)C19—C20—H20C109.5
N3—C10—H10119.3H20A—C20—H20C109.5
C11—C10—H10119.3H20B—C20—H20C109.5
N4—C11—C12107.92 (13)
C4—N1—C1—C20.1 (2)C10—N3—C9—S111.7 (2)
N1—C1—C2—C30.1 (2)C6—S1—C9—C81.58 (13)
C1—C2—C3—C40.0 (2)C6—S1—C9—N3175.84 (14)
C1—N1—C4—C30.08 (19)C9—N3—C10—C11178.43 (15)
C1—N1—C4—C5179.37 (15)C14—N4—C11—C120.75 (19)
C2—C3—C4—N10.02 (19)C14—N4—C11—C10176.99 (15)
C2—C3—C4—C5179.37 (16)N3—C10—C11—N46.6 (3)
C6—N2—C5—C4174.69 (14)N3—C10—C11—C12170.66 (17)
N1—C4—C5—N22.4 (2)N4—C11—C12—C130.7 (2)
C3—C4—C5—N2178.28 (16)C10—C11—C12—C13176.88 (17)
C5—N2—C6—C7172.80 (15)C11—C12—C13—C140.4 (2)
C5—N2—C6—S11.8 (2)C11—N4—C14—C130.5 (2)
C9—S1—C6—N2173.29 (13)C12—C13—C14—N40.1 (2)
C9—S1—C6—C71.94 (12)C16—O2—C15—O13.6 (2)
N2—C6—C7—C8173.42 (14)C16—O2—C15—C7177.18 (12)
S1—C6—C7—C81.82 (16)C6—C7—C15—O117.3 (2)
N2—C6—C7—C154.4 (2)C8—C7—C15—O1160.28 (15)
S1—C6—C7—C15179.65 (12)C6—C7—C15—O2163.54 (14)
C6—C7—C8—C90.63 (19)C8—C7—C15—O218.9 (2)
C15—C7—C8—C9178.43 (14)C15—O2—C16—C1787.68 (18)
C6—C7—C8—C18170.77 (15)C19—O4—C18—O37.5 (2)
C15—C7—C8—C187.0 (2)C19—O4—C18—C8174.19 (13)
C7—C8—C9—N3176.67 (14)C9—C8—C18—O381.61 (19)
C18—C8—C9—N34.6 (2)C7—C8—C18—O389.4 (2)
C7—C8—C9—S10.86 (17)C9—C8—C18—O496.74 (18)
C18—C8—C9—S1172.96 (11)C7—C8—C18—O492.26 (18)
C10—N3—C9—C8171.18 (16)C18—O4—C19—C20163.89 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H100···O3i0.882.373.040 (2)133
N4—H400···O1ii0.882.473.174 (2)138
N4—H400···N2ii0.882.593.2136 (19)128
C3—H3···N4iii0.952.563.441 (2)155
C13—H13···O3iv0.952.513.126 (2)123
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1/2, y+3/2, z; (iii) x, y+2, z1/2; (iv) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC20H20N4O4S
Mr412.46
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)150
a, b, c (Å)16.898 (3), 12.643 (3), 9.4220 (19)
V3)2012.9 (7)
Z4
Radiation typeCu Kα
µ (mm1)1.73
Crystal size (mm)0.10 × 0.03 × 0.03
Data collection
DiffractometerBruker SMART 6000
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.841, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
17313, 3040, 3004
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.064, 1.04
No. of reflections3040
No. of parameters264
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.15
Absolute structureFlack (1983), 1275 Friedel pairs
Absolute structure parameter0.085 (12)

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997), UdMX (Marris, 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H100···O3i0.882.373.040 (2)133
N4—H400···O1ii0.882.473.174 (2)138
N4—H400···N2ii0.882.593.2136 (19)128
C3—H3···N4iii0.952.563.441 (2)155
C13—H13···O3iv0.952.513.126 (2)123
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1/2, y+3/2, z; (iii) x, y+2, z1/2; (iv) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge financial support from the Natural Sciences and Engineering Research Council Canada, the Centre for Self-Assembled Chemical Structures, and the Canada Foundation for Innovation. SD thanks both NSERC and the Université de Montréal for graduate scholarships.

References

First citationBruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDufresne, S., Bourgeaux, M. & Skene, W. G. (2006). Acta Cryst. E62, o5602–o5604.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDufresne, S., Bourgeaux, M. & Skene, W. G. (2007). J. Mater. Chem. 17, 1–13.  Web of Science CSD CrossRef Google Scholar
First citationDufresne, S. & Skene, W. G. (2010a). Acta Cryst. E66, o3027.  CrossRef IUCr Journals Google Scholar
First citationDufresne, S. & Skene, W. G. (2010b). Acta Cryst. E66, o3221.  CrossRef IUCr Journals Google Scholar
First citationDufresne, S. & Skene, W. G. (2011). J. Phys. Org. Chem. DOI 10.1002/poc.1894.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMarris, T. (2004). UdMX. Université de Montréal, Québec, Canada.  Google Scholar
First citationRuban, G. & Zobel, D. (1975). Acta Cryst. B31, 2632–2634.  CSD CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZobel, D. & Ruban, G. (1978). Acta Cryst. B34, 1652–1657.  CSD CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds