metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­aqua­(μ-4,4′-bi­pyridine-κ2N:N′)[μ-2,2′-(p-phenyl­enedi­­oxy)di­acetato-κ2O:O′]cadmium]

aDepartment of Chemistry, Dezhou University, Dezhou, Shandong 253023, People's Republic of China
*Correspondence e-mail: dzgywang@126.com

(Received 14 July 2011; accepted 3 August 2011; online 17 August 2011)

In the title compound, [Cd(C10H8O6)(C10H8N2)(H2O)2]n, the CdII ion has inversion symmetry and is coordinated by O atoms from two water mol­ecules and two bridging 2,2′-(μ-p-phenyl­enedi­oxy)diacetate ligands and two N atoms from two 4,4′-bipyridine ligands, giving a slightly distorted octa­hedral geometry. The diacetate and 4,4′-bipyridine ligands also lie across inversion centers. The bridging ligands form layers parallel to (11[\overline{1}]), with adjacent layers inter­connected via O—H⋯O hydrogen bonds between the coordinated water mol­ecules and the carboxyl­ate O atoms, giving a three-dimensional supra­molecular architecture.

Related literature

Benzene-1,4-di­oxy­diacetic acid is often used to construct coordination polymers owing to the flexibility of the two phen­oxy­acetate groups, see: Gong et al. (2010[Gong, Y. N., Liu, C. B., Ding, Y., Xiong, Z. Q. & Xiong, L. M. (2010). J. Coord. Chem. 63, 1865-1872.]); Li et al. (2010[Li, X. Y., Liu, C. B., Che, G. B., Wang, X. C., Li, C. X., Yan, Y. S. & Guan, Q. F. (2010). Inorg. Chim. Acta, 363, 1359-1366.]); Zhang & Li (2010[Zhang, X.-M. & Li, Y.-F. (2010). Acta Cryst. E66, m1283.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C10H8O6)(C10H8N2)(H2O)2]

  • Mr = 528.78

  • Triclinic, [P \overline 1]

  • a = 5.8612 (6) Å

  • b = 8.2313 (8) Å

  • c = 10.8659 (11) Å

  • α = 105.640 (1)°

  • β = 97.6785 (12)°

  • γ = 97.931 (1)°

  • V = 491.91 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 296 K

  • 0.21 × 0.11 × 0.04 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.789, Tmax = 0.956

  • 2533 measured reflections

  • 1691 independent reflections

  • 1667 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.067

  • S = 1.14

  • 1691 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯O2i 0.85 1.81 2.636 (4) 165
O1W—H1W⋯O1ii 0.85 2.05 2.858 (4) 159
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Due to the flexibility of the two phenoxyacetate groups, benzene-1,4-dioxydiacetic acid is often used to construct coordination polymers (Zhang & Li, 2010; Gong et al., 2010; Li et al., 2010;). The title coordination polymer [Cd(C10H8O6)(C10H8N2)(H2O)2]n (I) was obtained under hydrothermal conditions, and its crystal structure is reported here .

The asymmetric unit of (I) is composed of one CdII cation lying on a crystallographic inversion centre, half a benzene-1,4-dioxydiacetate anion, half a 4,4'-bipyridine molecule and one water molecule. The CdII ion is coordinated by O atoms from two water molecules [Cd—O, 2.313 (3)Å] and two from bridging benzene-1,4-dioxydiacetate ligands [Cd—O, 2.253 (2) Å] and two N atoms from two 4,4'-bipyridine ligands [Cd—N, 2.317 (3) Å], giving a slightly distorted octahedral geometry (Fig. 1). The benzene-1,4-dioxydiacetate and 4,4'-bipyridine ligands also lie across inversion centers, with both bridging the CdII cations to form two-dimensional layers parallel to the (1 1 -1) plane (Fig. 2). These layers are further interconnected via O—H···O hydrogen bonds between the coordinated water molecules and the carboxylate O atoms, resulting in a three-dimensional supramolecular architecture (Table 1, Fig. 3).

Related literature top

Benzene-1,4-dioxydiacetic acid is often used to construct coordination polymers owing to the flexibility of the two phenoxyacetate groups, see: Gong et al. (2010); Li et al. (2010); Zhang & Li (2010).

Experimental top

A mixture of benzene-1,4-dioxydiacetic acid (0.023 g, 0.1 mmol), 4,4'-bipyridine (0.016 g, 0.1 mmol), NaOH (0.008 g, 0.2 mmol) and Cd(NO3)2. 4H2O (0.038 g, 0.1 mmol) in H2O (7.0 ml) was placed in a 16 ml Teflon-lined stainless steel vessel and heated to 160 °C for 72 h, then cooled to room temperature at a rate of -5 °C/h. Colorless plate crystals are obtained after filtration.

Refinement top

All H atoms bonded to C atoms were added according to theoretical models, assigned isotropic displacement parameters and allowed to ride on their respective parent atoms [C—H = 0.93–0.97Å and Uiso(H) = 1.2Ueq(C)]. The H atoms attached to O atoms of the water were located from the Fourier map with the O—H distances being fixed at 0.85Å and allowed to ride on their parent oxygen atoms in the final cycles of refinement, with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot of (I) at the 50% probability level. H atoms are represented by circles of arbitrary size. Symmetry code: (i)-x + 1, -y, -z; (ii)-x, -y + 1, -z; (iii) -x + 1, -y + 1, -z + 1.
[Figure 2] Fig. 2. The two-dimensional layered substructure of (I). H atoms are omitted except for those of the water molecules.
[Figure 3] Fig. 3. The overall packing diagram of (I) showing showing hydrogen-bonding interactions as dashed lines.
Poly[diaqua(µ-4,4'-bipyridine-κ2N:N')[µ-2,2'-(p- phenylenedioxy)diacetato-κ2O:O']cadmium] top
Crystal data top
[Cd(C10H8O6)(C10H8N2)(H2O)2]Z = 1
Mr = 528.78F(000) = 266
Triclinic, P1Dx = 1.785 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8612 (6) ÅCell parameters from 1861 reflections
b = 8.2313 (8) Åθ = 2.6–27.8°
c = 10.8659 (11) ŵ = 1.16 mm1
α = 105.640 (1)°T = 296 K
β = 97.6785 (12)°Plate, colorless
γ = 97.931 (1)°0.21 × 0.11 × 0.04 mm
V = 491.91 (9) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1691 independent reflections
Radiation source: fine-focus sealed tube1667 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 65
Tmin = 0.789, Tmax = 0.956k = 99
2533 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0276P)2 + 0.6011P]
where P = (Fo2 + 2Fc2)/3
1691 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Cd(C10H8O6)(C10H8N2)(H2O)2]γ = 97.931 (1)°
Mr = 528.78V = 491.91 (9) Å3
Triclinic, P1Z = 1
a = 5.8612 (6) ÅMo Kα radiation
b = 8.2313 (8) ŵ = 1.16 mm1
c = 10.8659 (11) ÅT = 296 K
α = 105.640 (1)°0.21 × 0.11 × 0.04 mm
β = 97.6785 (12)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1691 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1667 reflections with I > 2σ(I)
Tmin = 0.789, Tmax = 0.956Rint = 0.014
2533 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.14Δρmax = 0.45 e Å3
1691 reflectionsΔρmin = 0.39 e Å3
142 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3288 (6)0.2750 (4)0.2007 (3)0.0314 (7)
H10.20970.33890.20980.038*
C20.3250 (6)0.1600 (4)0.0818 (3)0.0313 (7)
H20.20470.14790.01300.038*
C30.4983 (5)0.0624 (4)0.0637 (3)0.0221 (6)
C40.6685 (6)0.0859 (5)0.1715 (3)0.0371 (8)
H40.78810.02230.16560.044*
C50.6607 (6)0.2037 (5)0.2877 (3)0.0386 (8)
H50.77710.21690.35860.046*
C60.3586 (6)0.7739 (4)0.3662 (3)0.0294 (7)
C70.1802 (6)0.8591 (4)0.3031 (3)0.0358 (8)
H7A0.13480.94580.37060.043*
H7B0.25420.91680.24780.043*
C80.1959 (6)0.4972 (5)0.0564 (3)0.0334 (8)
H80.32850.49410.09480.040*
C90.0019 (6)0.6241 (4)0.1162 (3)0.0296 (7)
C100.1962 (6)0.6247 (4)0.0590 (3)0.0336 (8)
H100.32940.70760.09860.040*
N10.4958 (5)0.2990 (3)0.3034 (2)0.0271 (6)
O10.2781 (4)0.6403 (3)0.3942 (2)0.0314 (5)
O20.5658 (5)0.8448 (3)0.3879 (3)0.0511 (7)
O30.0252 (4)0.7435 (3)0.2275 (2)0.0362 (5)
O1W0.1584 (4)0.3373 (3)0.5183 (2)0.0385 (6)
H1W0.05090.36640.55980.046*
H2W0.22640.27280.55430.046*
Cd10.50000.50000.50000.02535 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0336 (18)0.0297 (17)0.0304 (17)0.0152 (14)0.0023 (14)0.0051 (14)
C20.0350 (19)0.0312 (17)0.0244 (16)0.0121 (14)0.0063 (13)0.0049 (13)
C30.0242 (16)0.0216 (14)0.0195 (15)0.0021 (12)0.0033 (12)0.0057 (12)
C40.0302 (18)0.050 (2)0.0268 (17)0.0192 (16)0.0002 (14)0.0001 (15)
C50.035 (2)0.053 (2)0.0215 (16)0.0162 (17)0.0027 (14)0.0008 (15)
C60.0330 (19)0.0304 (17)0.0256 (16)0.0132 (15)0.0093 (14)0.0038 (13)
C70.042 (2)0.0319 (18)0.0371 (19)0.0124 (16)0.0072 (16)0.0128 (15)
C80.0250 (17)0.048 (2)0.0336 (18)0.0095 (15)0.0092 (14)0.0195 (16)
C90.0302 (18)0.0369 (18)0.0292 (17)0.0125 (15)0.0055 (14)0.0187 (14)
C100.0268 (17)0.0386 (18)0.0363 (19)0.0002 (14)0.0025 (14)0.0170 (15)
N10.0279 (14)0.0280 (13)0.0237 (13)0.0062 (11)0.0038 (11)0.0043 (11)
O10.0348 (13)0.0325 (12)0.0306 (12)0.0111 (10)0.0048 (10)0.0136 (10)
O20.0339 (15)0.0488 (16)0.078 (2)0.0089 (12)0.0097 (13)0.0296 (15)
O30.0324 (13)0.0453 (14)0.0327 (12)0.0138 (11)0.0062 (10)0.0108 (11)
O1W0.0268 (13)0.0500 (15)0.0409 (14)0.0076 (11)0.0066 (10)0.0164 (12)
Cd10.0268 (2)0.02717 (19)0.02091 (18)0.00758 (13)0.00313 (12)0.00441 (13)
Geometric parameters (Å, º) top
C1—N11.334 (4)C7—H7B0.9700
C1—C21.376 (5)C8—C10ii1.379 (5)
C1—H10.9300C8—C91.384 (5)
C2—C31.382 (4)C8—H80.9300
C2—H20.9300C9—O31.374 (4)
C3—C41.385 (4)C9—C101.388 (5)
C3—C3i1.489 (6)C10—C8ii1.379 (5)
C4—C51.379 (5)C10—H100.9300
C4—H40.9300N1—Cd12.317 (3)
C5—N11.327 (4)O1—Cd12.253 (2)
C5—H50.9300O1W—Cd12.313 (3)
C6—O21.234 (4)O1W—H1W0.8467
C6—O11.265 (4)O1W—H2W0.8499
C6—C71.526 (5)Cd1—O1iii2.253 (2)
C7—O31.424 (4)Cd1—O1Wiii2.313 (3)
C7—H7A0.9700Cd1—N1iii2.317 (3)
N1—C1—C2122.9 (3)O3—C9—C10125.2 (3)
N1—C1—H1118.5C8—C9—C10118.7 (3)
C2—C1—H1118.5C8ii—C10—C9120.2 (3)
C1—C2—C3120.6 (3)C8ii—C10—H10119.9
C1—C2—H2119.7C9—C10—H10119.9
C3—C2—H2119.7C5—N1—C1117.0 (3)
C2—C3—C4116.1 (3)C5—N1—Cd1121.5 (2)
C2—C3—C3i122.3 (3)C1—N1—Cd1121.6 (2)
C4—C3—C3i121.6 (3)C6—O1—Cd1123.8 (2)
C5—C4—C3120.0 (3)C9—O3—C7117.8 (3)
C5—C4—H4120.0Cd1—O1W—H1W130.3
C3—C4—H4120.0Cd1—O1W—H2W95.3
N1—C5—C4123.4 (3)H1W—O1W—H2W107.2
N1—C5—H5118.3O1iii—Cd1—O1180.000 (1)
C4—C5—H5118.3O1iii—Cd1—O1W91.72 (10)
O2—C6—O1126.7 (3)O1—Cd1—O1W88.28 (10)
O2—C6—C7116.8 (3)O1iii—Cd1—O1Wiii88.28 (10)
O1—C6—C7116.5 (3)O1—Cd1—O1Wiii91.72 (10)
O3—C7—C6114.1 (3)O1W—Cd1—O1Wiii180.0
O3—C7—H7A108.7O1iii—Cd1—N190.66 (9)
C6—C7—H7A108.7O1—Cd1—N189.34 (9)
O3—C7—H7B108.7O1W—Cd1—N188.66 (9)
C6—C7—H7B108.7O1Wiii—Cd1—N191.34 (9)
H7A—C7—H7B107.6O1iii—Cd1—N1iii89.34 (9)
C10ii—C8—C9121.2 (3)O1—Cd1—N1iii90.66 (9)
C10ii—C8—H8119.4O1W—Cd1—N1iii91.34 (9)
C9—C8—H8119.4O1Wiii—Cd1—N1iii88.66 (9)
O3—C9—C8116.2 (3)N1—Cd1—N1iii180.000 (1)
N1—C1—C2—C30.0 (5)C7—C6—O1—Cd1175.7 (2)
C1—C2—C3—C41.1 (5)C8—C9—O3—C7170.1 (3)
C1—C2—C3—C3i179.4 (3)C10—C9—O3—C711.8 (4)
C2—C3—C4—C51.1 (5)C6—C7—O3—C966.8 (4)
C3i—C3—C4—C5179.5 (4)C6—O1—Cd1—O1W170.5 (2)
C3—C4—C5—N10.1 (6)C6—O1—Cd1—O1Wiii9.5 (2)
O2—C6—C7—O3152.4 (3)C6—O1—Cd1—N1100.8 (2)
O1—C6—C7—O329.5 (4)C6—O1—Cd1—N1iii79.2 (2)
C10ii—C8—C9—O3177.0 (3)C5—N1—Cd1—O1iii22.8 (3)
C10ii—C8—C9—C101.3 (5)C1—N1—Cd1—O1iii157.9 (3)
O3—C9—C10—C8ii176.8 (3)C5—N1—Cd1—O1157.2 (3)
C8—C9—C10—C8ii1.3 (5)C1—N1—Cd1—O122.1 (3)
C4—C5—N1—C11.2 (5)C5—N1—Cd1—O1W114.5 (3)
C4—C5—N1—Cd1178.2 (3)C1—N1—Cd1—O1W66.2 (3)
C2—C1—N1—C51.1 (5)C5—N1—Cd1—O1Wiii65.5 (3)
C2—C1—N1—Cd1178.2 (3)C1—N1—Cd1—O1Wiii113.8 (3)
O2—C6—O1—Cd12.1 (5)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O2iii0.851.812.636 (4)165
O1W—H1W···O1iv0.852.052.858 (4)159
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C10H8O6)(C10H8N2)(H2O)2]
Mr528.78
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.8612 (6), 8.2313 (8), 10.8659 (11)
α, β, γ (°)105.640 (1), 97.6785 (12), 97.931 (1)
V3)491.91 (9)
Z1
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.21 × 0.11 × 0.04
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.789, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
2533, 1691, 1667
Rint0.014
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.067, 1.14
No. of reflections1691
No. of parameters142
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.39

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O2i0.851.812.636 (4)165
O1W—H1W···O1ii0.852.052.858 (4)159
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

This work was supported financially by the Project of Shandong Province Higher Educational Science and Technology Program (grant No. J11LB56).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGong, Y. N., Liu, C. B., Ding, Y., Xiong, Z. Q. & Xiong, L. M. (2010). J. Coord. Chem. 63, 1865–1872.  Google Scholar
First citationLi, X. Y., Liu, C. B., Che, G. B., Wang, X. C., Li, C. X., Yan, Y. S. & Guan, Q. F. (2010). Inorg. Chim. Acta, 363, 1359–1366.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X.-M. & Li, Y.-F. (2010). Acta Cryst. E66, m1283.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds