organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(E)-4-(Methyl­sulfon­yl)benzyl­­idene]-3-nitro­aniline

aSchool of Life Sciences, ShanDong University of Technology, ZiBo 255049, People's Republic of China
*Correspondence e-mail: njuqss@yahoo.com.cn

(Received 21 July 2011; accepted 4 August 2011; online 11 August 2011)

In the title compound, C14H12N2O4S, the dihedral angle between the two aromatic rings is 35.65 (12)°. The crystal packing is stabilized by weak C—H⋯O hydrogen bonds and aromatic ππ ring stacking inter­actions [minimum ring centroid separation = 3.697 (3) Å].

Related literature

For pharmacological applications of Schiff bases, see: Venugopal & Jayashree (2008[Venugopal, K. N. & Jayashree, B. S. (2008). Ind. J. Pharm. Sci. 70, 88-91.]); Villar et al. (2004[Villar, R., Encio, I., Migliaccio, M., Gil, M. G. & Martinez-Merino, V. (2004). Bioorg. Med. Chem. 12, 963-968.]); Wadher et al. (2009[Wadher, S. J., Puranik, M. P., Karande, N. A. & Yeole, P. G. (2009). Int. J. Pharm. Tech. Res. 1, 22-23.]). For similar structures, see: Qian & Cui (2009[Qian, S.-S. & Cui, H.-Y. (2009). Acta Cryst. E65, o3093.]); Qian & Liu (2010[Qian, S.-S. & Liu, T. (2010). Acta Cryst. E66, o18.]). For comparative bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N2O4S

  • Mr = 304.32

  • Monoclinic, P 21 /n

  • a = 12.707 (7) Å

  • b = 8.669 (5) Å

  • c = 14.257 (8) Å

  • β = 114.140 (5)°

  • V = 1433.2 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.25 × 0.23 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.951

  • 9119 measured reflections

  • 2525 independent reflections

  • 1937 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.02

  • 2525 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14C⋯O1i 0.96 2.42 3.380 (3) 178
C12—H12⋯O5ii 0.93 2.59 3.273 (4) 131
C6—H6⋯O2iii 0.93 2.52 3.442 (3) 169
C5—H5⋯O4iv 0.93 2.41 3.249 (3) 150
Symmetry codes: (i) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) -x+2, -y+2, -z; (iv) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base compounds have been of great interest owing to their wide range of biological activities. They have been found to possess pharmacological activities, such as anti-cancer (Villar et al., 2004), anti-bacterial (Venugopal & Jayashree, 2008), anti-inflammatory, anti-microbial and anti-viral (Wadher et al., 2009). As an extension of our work on the structural characterization of Schiff base compounds, the crystal structure of the title compound C14H12N2O4S is reported here. In this compound (Fig. 1), all bond lengths are within normal ranges (Allen et al., 1987) and comparable with the values observed in two closely related compounds (Qian & Cui, 2009; Qian & Liu, 2010). The dihedral angle between the two aromatic rings is 35.65 (12)°. The crystal packing is stabilized by weak C—H···O hydrogen bonds (Table 1) and aromatic π-π stacking interactions [minimum ring centroid–centroid distance, 3.697 (3)Å] (Fig. 2).

Related literature top

For pharmacological applications of Schiff bases, see: Venugopal & Jayashree (2008); Villar et al. (2004); Wadher et al. (2009). For similar structures, see: Qian & Cui (2009); Qian & Liu (2010). For comparative bond lengths, see: Allen et al. (1987).

Experimental top

4-(Methylsulfonyl)benzaldehyde (0.184 g) and 2,6-diisopropylaniline (0.138 g) were dissolved in acetonitrile (20 ml). The mixture was stirred at room temperature for 10 min to give a clear yellow solution. After allowing the solution to evaporate in air for 5 days, yellow block-shaped crystals of the title compound were obtained.

Refinement top

All H atoms were placed in geometrical positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.96 Å. These were treated as riding atoms, with Uiso(H) = kUeq(C), where k = 1.5 for methyl and 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Hydrogen-bonding interactions in the title compound, shown as dashed lines.
N-[(E)-4-(Methylsulfonyl)benzylidene]-3-nitroaniline top
Crystal data top
C14H12N2O4SF(000) = 632
Mr = 304.32Dx = 1.410 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3721 reflections
a = 12.707 (7) Åθ = 2.8–26.0°
b = 8.669 (5) ŵ = 0.24 mm1
c = 14.257 (8) ÅT = 296 K
β = 114.140 (5)°Block, yellow
V = 1433.2 (14) Å30.25 × 0.23 × 0.21 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2525 independent reflections
Radiation source: fine-focus sealed tube1937 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1515
Tmin = 0.942, Tmax = 0.951k = 109
9119 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0358P)2 + 0.9892P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2525 reflectionsΔρmax = 0.28 e Å3
192 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0103 (10)
Crystal data top
C14H12N2O4SV = 1433.2 (14) Å3
Mr = 304.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.707 (7) ŵ = 0.24 mm1
b = 8.669 (5) ÅT = 296 K
c = 14.257 (8) Å0.25 × 0.23 × 0.21 mm
β = 114.140 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
2525 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1937 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.951Rint = 0.026
9119 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.02Δρmax = 0.28 e Å3
2525 reflectionsΔρmin = 0.21 e Å3
192 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.01452 (18)0.6909 (2)0.10542 (17)0.0405 (5)
C21.0352 (2)0.5465 (3)0.15075 (18)0.0475 (6)
H21.10790.52080.20000.057*
C30.9452 (2)0.4404 (3)0.12122 (18)0.0498 (6)
H30.95800.34330.15150.060*
C40.83654 (19)0.4776 (3)0.04718 (17)0.0420 (5)
C50.8187 (2)0.6221 (3)0.00106 (19)0.0507 (6)
H50.74670.64710.04960.061*
C60.90665 (19)0.7287 (3)0.02969 (18)0.0500 (6)
H60.89410.82530.00130.060*
C70.7403 (2)0.3652 (3)0.01717 (18)0.0479 (6)
H70.75180.27030.05030.058*
C80.5512 (2)0.2885 (3)0.08472 (18)0.0496 (6)
C90.5682 (2)0.1309 (3)0.09320 (17)0.0485 (6)
H90.64170.09120.07650.058*
C100.4727 (2)0.0354 (3)0.12720 (17)0.0504 (6)
C110.3618 (2)0.0891 (4)0.1524 (2)0.0648 (8)
H110.29940.02170.17360.078*
C120.3465 (2)0.2452 (4)0.1451 (2)0.0703 (8)
H120.27280.28410.16210.084*
C130.4393 (2)0.3445 (3)0.1129 (2)0.0640 (7)
H130.42730.44990.10990.077*
N10.64205 (17)0.3974 (2)0.05349 (16)0.0530 (5)
N20.4908 (2)0.1309 (3)0.13755 (16)0.0634 (6)
O11.22903 (14)0.7666 (2)0.21956 (15)0.0694 (6)
O21.13137 (15)0.8930 (2)0.05065 (14)0.0609 (5)
C141.0752 (2)0.9783 (3)0.1990 (2)0.0600 (7)
H14A1.06130.93640.25520.090*
H14B1.00481.02010.14860.090*
H14C1.13201.05850.22380.090*
O40.5876 (2)0.1747 (2)0.12006 (19)0.0886 (7)
O50.4073 (2)0.2168 (3)0.1646 (2)0.1008 (8)
S11.12545 (5)0.83166 (7)0.14267 (5)0.0477 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0409 (11)0.0355 (12)0.0461 (12)0.0032 (10)0.0189 (10)0.0023 (10)
C20.0451 (13)0.0397 (13)0.0495 (13)0.0046 (11)0.0109 (10)0.0002 (11)
C30.0609 (15)0.0332 (12)0.0526 (14)0.0031 (11)0.0205 (12)0.0031 (10)
C40.0447 (12)0.0378 (13)0.0455 (12)0.0008 (10)0.0204 (10)0.0055 (10)
C50.0425 (13)0.0461 (14)0.0567 (14)0.0027 (11)0.0132 (11)0.0048 (11)
C60.0482 (13)0.0381 (13)0.0581 (15)0.0026 (11)0.0161 (11)0.0090 (11)
C70.0551 (14)0.0400 (13)0.0518 (14)0.0005 (11)0.0250 (12)0.0037 (11)
C80.0471 (13)0.0506 (15)0.0488 (14)0.0002 (11)0.0174 (11)0.0008 (11)
C90.0424 (12)0.0519 (15)0.0475 (13)0.0001 (11)0.0147 (10)0.0013 (11)
C100.0514 (14)0.0535 (15)0.0433 (13)0.0007 (12)0.0161 (11)0.0014 (11)
C110.0479 (15)0.081 (2)0.0619 (17)0.0114 (14)0.0186 (12)0.0038 (15)
C120.0443 (14)0.084 (2)0.0773 (19)0.0097 (14)0.0189 (13)0.0106 (17)
C130.0541 (15)0.0622 (17)0.0695 (17)0.0086 (13)0.0191 (13)0.0076 (14)
N10.0483 (12)0.0473 (12)0.0613 (13)0.0043 (10)0.0202 (10)0.0040 (10)
N20.0696 (15)0.0529 (14)0.0540 (13)0.0085 (13)0.0114 (11)0.0022 (11)
O10.0432 (9)0.0555 (11)0.0905 (14)0.0030 (8)0.0081 (9)0.0054 (10)
O20.0639 (11)0.0529 (11)0.0763 (12)0.0058 (9)0.0392 (10)0.0029 (9)
C140.0634 (16)0.0438 (15)0.0705 (17)0.0047 (12)0.0249 (14)0.0131 (13)
O40.0781 (15)0.0586 (13)0.1134 (18)0.0129 (11)0.0232 (13)0.0019 (12)
O50.0914 (16)0.0647 (14)0.1174 (19)0.0310 (13)0.0134 (14)0.0079 (13)
S10.0405 (3)0.0382 (3)0.0612 (4)0.0001 (3)0.0177 (3)0.0009 (3)
Geometric parameters (Å, º) top
C1—C21.385 (3)C9—C101.383 (3)
C1—C61.393 (3)C9—H90.9300
C1—S11.773 (2)C10—C111.384 (4)
C2—C31.391 (3)C10—N21.477 (3)
C2—H20.9300C11—C121.377 (4)
C3—C41.391 (3)C11—H110.9300
C3—H30.9300C12—C131.378 (4)
C4—C51.390 (3)C12—H120.9300
C4—C71.483 (3)C13—H130.9300
C5—C61.377 (3)N2—O41.212 (3)
C5—H50.9300N2—O51.222 (3)
C6—H60.9300O1—S11.4394 (18)
C7—N11.274 (3)O2—S11.446 (2)
C7—H70.9300C14—S11.757 (3)
C8—C91.396 (4)C14—H14A0.9600
C8—C131.398 (3)C14—H14B0.9600
C8—N11.415 (3)C14—H14C0.9600
C2—C1—C6120.9 (2)C9—C10—N2117.9 (2)
C2—C1—S1120.43 (17)C11—C10—N2119.1 (2)
C6—C1—S1118.68 (17)C12—C11—C10118.1 (3)
C1—C2—C3118.7 (2)C12—C11—H11121.0
C1—C2—H2120.6C10—C11—H11121.0
C3—C2—H2120.6C11—C12—C13120.8 (3)
C4—C3—C2121.0 (2)C11—C12—H12119.6
C4—C3—H3119.5C13—C12—H12119.6
C2—C3—H3119.5C12—C13—C8120.7 (3)
C5—C4—C3119.2 (2)C12—C13—H13119.7
C5—C4—C7120.0 (2)C8—C13—H13119.7
C3—C4—C7120.9 (2)C7—N1—C8120.8 (2)
C6—C5—C4120.6 (2)O4—N2—O5123.4 (3)
C6—C5—H5119.7O4—N2—C10118.2 (2)
C4—C5—H5119.7O5—N2—C10118.4 (3)
C5—C6—C1119.6 (2)S1—C14—H14A109.5
C5—C6—H6120.2S1—C14—H14B109.5
C1—C6—H6120.2H14A—C14—H14B109.5
N1—C7—C4120.7 (2)S1—C14—H14C109.5
N1—C7—H7119.7H14A—C14—H14C109.5
C4—C7—H7119.7H14B—C14—H14C109.5
C9—C8—C13119.4 (2)O1—S1—O2117.69 (12)
C9—C8—N1123.0 (2)O1—S1—C14109.00 (13)
C13—C8—N1117.5 (2)O2—S1—C14108.15 (13)
C10—C9—C8118.1 (2)O1—S1—C1109.01 (11)
C10—C9—H9120.9O2—S1—C1108.14 (11)
C8—C9—H9120.9C14—S1—C1103.97 (12)
C9—C10—C11123.0 (3)
C6—C1—C2—C31.7 (4)C10—C11—C12—C130.5 (4)
S1—C1—C2—C3178.49 (18)C11—C12—C13—C81.4 (5)
C1—C2—C3—C40.4 (4)C9—C8—C13—C122.5 (4)
C2—C3—C4—C51.1 (4)N1—C8—C13—C12179.3 (2)
C2—C3—C4—C7179.0 (2)C4—C7—N1—C8177.8 (2)
C3—C4—C5—C61.4 (4)C9—C8—N1—C738.7 (4)
C7—C4—C5—C6178.7 (2)C13—C8—N1—C7144.5 (2)
C4—C5—C6—C10.1 (4)C9—C10—N2—O43.1 (4)
C2—C1—C6—C51.4 (4)C11—C10—N2—O4176.4 (2)
S1—C1—C6—C5178.75 (19)C9—C10—N2—O5177.9 (2)
C5—C4—C7—N12.7 (3)C11—C10—N2—O52.6 (4)
C3—C4—C7—N1177.3 (2)C2—C1—S1—O11.1 (2)
C13—C8—C9—C101.5 (4)C6—C1—S1—O1178.74 (19)
N1—C8—C9—C10178.2 (2)C2—C1—S1—O2130.2 (2)
C8—C9—C10—C110.4 (4)C6—C1—S1—O249.7 (2)
C8—C9—C10—N2179.1 (2)C2—C1—S1—C14115.1 (2)
C9—C10—C11—C121.4 (4)C6—C1—S1—C1465.1 (2)
N2—C10—C11—C12178.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14C···O1i0.962.423.380 (3)178
C12—H12···O5ii0.932.593.273 (4)131
C6—H6···O2iii0.932.523.442 (3)169
C5—H5···O4iv0.932.413.249 (3)150
C2—H2···O10.932.582.948 (3)104
Symmetry codes: (i) x+5/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x+2, y+2, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H12N2O4S
Mr304.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)12.707 (7), 8.669 (5), 14.257 (8)
β (°) 114.140 (5)
V3)1433.2 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.25 × 0.23 × 0.21
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.942, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
9119, 2525, 1937
Rint0.026
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.02
No. of reflections2525
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.21

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14C···O1i0.962.423.380 (3)178
C12—H12···O5ii0.932.593.273 (4)131
C6—H6···O2iii0.932.523.442 (3)169
C5—H5···O4iv0.932.413.249 (3)150
Symmetry codes: (i) x+5/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x+2, y+2, z; (iv) x, y+1, z.
 

Acknowledgements

This project was sponsored by the ShanDong Province Science & Technology Innovation Foundation (People's Republic of China).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationQian, S.-S. & Cui, H.-Y. (2009). Acta Cryst. E65, o3093.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQian, S.-S. & Liu, T. (2010). Acta Cryst. E66, o18.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenugopal, K. N. & Jayashree, B. S. (2008). Ind. J. Pharm. Sci. 70, 88–91.  Google Scholar
First citationVillar, R., Encio, I., Migliaccio, M., Gil, M. G. & Martinez-Merino, V. (2004). Bioorg. Med. Chem. 12, 963–968.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWadher, S. J., Puranik, M. P., Karande, N. A. & Yeole, P. G. (2009). Int. J. Pharm. Tech. Res. 1, 22–23.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds