organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

14,54-Di­chloro-3(2,7),7(2,7)-dinaphthal­ena-2,4,6,8-tetra­oxa-1(2,6),5(2,6)-di(1,3,5-triazina)octa­phane

aCollege of Chemistry and Chemical Engineering, Graduate University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
*Correspondence e-mail: sqg2882@126.com

(Received 23 July 2011; accepted 22 August 2011; online 31 August 2011)

In the macrocyclic title compound, C26H12Cl2N6O4, an O-atom-bridged calix[2]naphthalene­[2]triazine synthesized using a one-pot approach from naphthalene-2,7-diol and cyanuric chloride, the two isolated naphthalene planes and the two triazine-2,6-di­oxy planes adopt a 1,3-alternate configuration, with a dihedral angle of 84.10 (8)° between the naphthalene rings and a dihedral angle of 39.02 (14)° between the triazine rings. In the crystal, weak inter­molecular ππ stacking inter­actions are found between face-to-face naphthalene rings [centroid–centroid distance = 3.662 (7) Å].

Related literature

For general background and applications of oxocalixarenes, see König & Fonseca (2000[König, B. & Fonseca, M. H. (2000). Eur. J. Inorg. Chem. 11, 2303-2310.]). For background on compounds similar to the title compound and other derivatives from cyanuric chloride reactions, see: Wang & Yang (2004[Wang, M. X. & Yang, H. B. (2004). J. Am. Chem. Soc. 126, 15412-15422.]); Hou et al. (2007[Hou, B. Y., Wang, D., Zheng, Q. Y. & Wang, M. X. (2007). J. Org. Chem. 72, 5218-5226.]); Chen et al. (2010[Chen, Y., Wang, D. X., Huang, Z. T. & Wang, M. X. (2010). J. Org. Chem. 75, 3786-3796.]); Zhu et al. (2010[Zhu, Y. P., Yuan, J. J., Li, Y. T., Gao, M., Cao, L. P., Ding, J. Y. & Wu, A. X. (2010). Synlett, pp. 52-56.]); Katz et al. (2009[Katz, J. L., Wackerly, J. W., Meyer, J. M., Crannell, W. C. & King, S. B. (2009). Macrocycles, 42, 8181-8186.]); Katz & Tschaen (2010[Katz, J. L. & Tschaen, B. A. (2010). Org. Lett. 12, 4300-4303.]); Hu & Chen (2011[Hu, M. X. & Chen, C. F. (2011). Org. Biomol. Chem. 9, 5838-5844.]).

[Scheme 1]

Experimental

Crystal data
  • C26H12Cl2N6O4

  • Mr = 543.32

  • Monoclinic, P 21 /n

  • a = 15.514 (3) Å

  • b = 7.967 (3) Å

  • c = 18.527 (5) Å

  • β = 90.60 (2)°

  • V = 2289.8 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 295 K

  • 0.5 × 0.4 × 0.3 mm

Data collection
  • Bruker P4 diffractometer

  • 5492 measured reflections

  • 4266 independent reflections

  • 2582 reflections with I > 2σ(I)

  • Rint = 0.034

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.123

  • S = 1.03

  • 4266 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: XSCANS (Bruker, 1997[Bruker (1997). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Calixarenes and heteroatom-bridged calixaromatics have provided the driving force for the rapid development of supromolecular chemistry (König & Fonseca, 2000). The fast development of miscellaneous oxa-calixarenes may be largely ascribed to the contributions of several research groups (Wang & Yang, 2004; Hou et al., 2007; Zhu et al., 2010; Chen et al., 2010; Katz et al., 2009; Katz & Tschaen, 2010; Hu & Chen, 2011).

In the macrocyclic title compound, C26H12Cl2N6O4, the oxo-bridged calix[2]naphthalene[2]triazine, which was synthesized using a one-pot procedure from 2,7-naphthalenediol and cyanuric chloride, the molecule adopts a classical 1,3-alternate configuration with the four bridging oxygen atoms located approximately in the same plane (Fig. 1). The distance between two triazine rings varies from 7.006 (12) Å (low rim) to 11.978 (12) Å (upper rim). The distance between two naphthalene rings is 4.048 (12) Å (low rim) or 8.061 (12) Å (upper rim). The dihedral angle between the naphthalene rings is 84.10 (8)° and 39.02 (14)° between the triazine rings. The corresponding angles between triazine rings N1···C2 and N5···C15 and the naphthalene ring C4···C13 are 30.90 (11)° and 27.13 (11)° and to naphthalene ring C17···C26, 64.52 (11)° and 63.57 (11)° respectively. and the inclined angles of the two naphthalene rings are 20.7(x)° and 58.2(x)°, respectively. The length the of C—O bonds between the oxygen bridges and the triazine ring carbon atoms are 1.337(x) Å (C1—O1); 1.332 (3) Å (C2—O2); 1.329 (3) Å (C14—O3) and 1.343 (3) Å (C15—O4), while the oxygen bridges and the naphthalene ring carbon bonds are 1.414 (3) Å (C21—O1); 1.414 (3) Å (C4—O(2); 1.411 (3) Å (C8—O3) and 1.414 (3) Å (C17—O4). This suggests that the oxygen atoms are conjugated with the triazine rings rather than the naphthalene rings.

In the crystal packing of the title compound (Fig. 2) there are relatively short intermolecular interactions involving face-to-face parallel naphthalene rings [ring centroid–centroid separation, 3.662 (7) Å], suggesting weak π-π stacking. In addition there are short intermolecular chlorine···chlorine interactions [Cl1···Cl2i, 3.2786 (16) Å] [for symmetry code (i): x, y, z + 1].

Related literature top

For general background and applications of oxocalixarenes, see König & Fonseca (2000). For background on compounds similar to the title compound and other derivatives from cyanuric chloride reactions, see: Wang & Yang (2004); Hou et al. (2007); Chen et al. (2010); Zhu et al. (2010); Katz et al. (2009); Katz & Tschaen (2010); Hu & Chen (2011).

Experimental top

To a solution of diisopropylethylamine (DIPEA) (5 mmol, 645 mg) in acetone, 2,7-dihydroxynaphthalene (2 mmol,320 mg) and cyanuric chloride (2 mmol, 369 mg) in acetone were separately but simultaneously added slowly using the high-dilution method. The resulting mixture was then stirred for 24 h until the starting materials were consumed. The solvents were removed, and the residue was chromatographed on a silica gel column to give a pure product (276 mg, yield 51%). Single crystals of the title compound were formed by slow evaporation of a solution in ethyl acetate–petroleum ether.

Refinement top

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS (Bruker, 1997); data reduction: XSCANS (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular conformation and atom numbering scheme of the title compound showing showing 50% probability displacement ellipsoids. Hydrogen atoms are omitted.
[Figure 2] Fig. 2. The packing of the title compound showing intermolecular ππ interactions between face-to-face parallel naphthalene rings.
5,19-dichloro-2,8,16,22-tetraoxa-4,6,18,20,32,36- hexaazaheptacyclo[21.5.3.29,12.13,7.111,15.117,21.026,30] hexatriaconta- 1(29),3,5,7(36),9,11,13,15 (33),17 (32),18,20,23 (31),24,26 (30),27,34-hexadecaene top
Crystal data top
C26H12Cl2N6O4F(000) = 1104
Mr = 543.32Dx = 1.576 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 49 reflections
a = 15.514 (3) Åθ = 4.9–12.5°
b = 7.967 (3) ŵ = 0.33 mm1
c = 18.527 (5) ÅT = 295 K
β = 90.60 (2)°Prism, colorless
V = 2289.8 (11) Å30.5 × 0.4 × 0.3 mm
Z = 4
Data collection top
Bruker P4
diffractometer
Rint = 0.034
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 2.2°
Graphite monochromatorh = 118
ω scansk = 91
5492 measured reflectionsl = 2222
4266 independent reflections3 standard reflections every 97 reflections
2582 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.001P)2 + 2.80P]
where P = (Fo2 + 2Fc2)/3
4266 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C26H12Cl2N6O4V = 2289.8 (11) Å3
Mr = 543.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.514 (3) ŵ = 0.33 mm1
b = 7.967 (3) ÅT = 295 K
c = 18.527 (5) Å0.5 × 0.4 × 0.3 mm
β = 90.60 (2)°
Data collection top
Bruker P4
diffractometer
Rint = 0.034
5492 measured reflections3 standard reflections every 97 reflections
4266 independent reflections intensity decay: none
2582 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.03Δρmax = 0.41 e Å3
4266 reflectionsΔρmin = 0.39 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.65337 (5)0.52005 (17)0.13220 (4)0.1212 (4)
Cl20.65653 (5)0.52943 (15)0.69093 (4)0.1076 (3)
O10.82098 (10)0.4316 (3)0.08191 (8)0.0752 (6)
O20.53757 (10)0.2524 (3)0.07781 (8)0.0778 (6)
O30.53255 (10)0.2821 (3)0.47773 (8)0.0755 (6)
O40.81654 (11)0.4587 (3)0.47411 (8)0.0830 (7)
N10.68020 (12)0.3369 (3)0.08891 (9)0.0595 (6)
N20.59479 (13)0.3744 (4)0.01723 (10)0.0766 (8)
N30.73930 (13)0.4742 (3)0.01449 (10)0.0691 (7)
N40.67511 (12)0.3658 (3)0.46679 (9)0.0602 (6)
N50.73800 (13)0.4956 (3)0.57144 (10)0.0689 (7)
N60.59290 (13)0.3986 (3)0.57365 (10)0.0742 (8)
C10.74257 (15)0.4122 (4)0.05242 (11)0.0617 (8)
C20.60781 (15)0.3243 (4)0.05096 (12)0.0633 (8)
C30.66290 (17)0.4477 (4)0.04477 (12)0.0747 (10)
C40.52151 (14)0.1967 (4)0.14883 (12)0.0627 (8)
C50.55811 (14)0.2556 (4)0.21090 (11)0.0591 (8)
H50.60420.33010.20920.071*
C60.52496 (13)0.2016 (3)0.27861 (11)0.0538 (7)
C70.55644 (14)0.2663 (4)0.34550 (11)0.0585 (7)
H70.60250.34100.34670.070*
C80.51762 (14)0.2166 (4)0.40796 (12)0.0593 (7)
C90.44956 (16)0.1016 (4)0.40900 (13)0.0718 (9)
H90.42510.06990.45250.086*
C100.41959 (17)0.0367 (4)0.34581 (14)0.0742 (9)
H100.37470.04070.34640.089*
C110.45556 (15)0.0848 (4)0.27896 (13)0.0596 (7)
C120.42190 (16)0.0250 (4)0.21229 (13)0.0707 (9)
H120.37730.05310.21220.085*
C130.45381 (16)0.0801 (4)0.14867 (13)0.0680 (8)
H130.43090.04090.10520.082*
C140.60391 (15)0.3501 (4)0.50520 (12)0.0617 (8)
C150.73893 (15)0.4367 (4)0.50414 (12)0.0628 (8)
C160.66226 (16)0.4676 (4)0.60166 (12)0.0711 (9)
C170.83673 (14)0.3801 (4)0.40794 (12)0.0649 (8)
C180.80149 (14)0.4335 (4)0.34460 (12)0.0619 (8)
H180.75730.51240.34420.074*
C190.83321 (13)0.3669 (3)0.27905 (11)0.0526 (7)
C200.80400 (14)0.4258 (4)0.21136 (11)0.0600 (8)
H200.76040.50560.20830.072*
C210.84044 (14)0.3642 (4)0.15079 (11)0.0598 (8)
C220.90542 (15)0.2455 (4)0.15168 (12)0.0688 (9)
H220.92890.20730.10870.083*
C230.93466 (15)0.1852 (4)0.21650 (13)0.0694 (9)
H230.97760.10380.21760.083*
C240.89995 (14)0.2457 (4)0.28203 (12)0.0568 (7)
C250.93288 (16)0.1943 (4)0.35013 (13)0.0692 (8)
H250.97600.11330.35240.083*
C260.90224 (15)0.2621 (4)0.41220 (13)0.0709 (9)
H260.92490.22980.45670.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0746 (4)0.2384 (12)0.0506 (3)0.0012 (6)0.0046 (3)0.0454 (5)
Cl20.0756 (4)0.2001 (10)0.0471 (3)0.0050 (6)0.0059 (3)0.0316 (5)
O10.0544 (9)0.1312 (17)0.0398 (8)0.0206 (11)0.0037 (7)0.0095 (10)
O20.0486 (8)0.1420 (18)0.0427 (8)0.0147 (11)0.0059 (7)0.0066 (11)
O30.0551 (9)0.1297 (17)0.0419 (8)0.0138 (11)0.0075 (7)0.0027 (10)
O40.0607 (10)0.1476 (19)0.0408 (8)0.0245 (12)0.0062 (7)0.0147 (11)
N10.0488 (10)0.0919 (17)0.0378 (9)0.0054 (11)0.0024 (8)0.0008 (11)
N20.0522 (11)0.140 (2)0.0375 (10)0.0013 (14)0.0029 (8)0.0050 (13)
N30.0570 (11)0.1115 (19)0.0390 (9)0.0026 (13)0.0015 (9)0.0053 (12)
N40.0500 (10)0.0920 (17)0.0386 (9)0.0036 (11)0.0027 (8)0.0032 (11)
N50.0604 (11)0.1070 (18)0.0392 (9)0.0003 (13)0.0023 (9)0.0046 (12)
N60.0567 (11)0.125 (2)0.0406 (10)0.0021 (14)0.0079 (9)0.0046 (13)
C10.0560 (13)0.093 (2)0.0364 (11)0.0030 (14)0.0004 (10)0.0035 (13)
C20.0502 (12)0.098 (2)0.0416 (12)0.0017 (14)0.0008 (10)0.0032 (14)
C30.0634 (14)0.124 (3)0.0367 (11)0.0123 (17)0.0017 (11)0.0055 (15)
C40.0411 (11)0.102 (2)0.0450 (12)0.0043 (14)0.0000 (10)0.0044 (14)
C50.0420 (11)0.089 (2)0.0466 (12)0.0048 (13)0.0003 (10)0.0008 (13)
C60.0417 (11)0.0732 (18)0.0465 (12)0.0027 (12)0.0019 (9)0.0015 (12)
C70.0444 (11)0.085 (2)0.0456 (12)0.0032 (13)0.0034 (10)0.0006 (13)
C80.0500 (12)0.0840 (19)0.0439 (12)0.0008 (14)0.0034 (10)0.0007 (13)
C90.0640 (15)0.100 (2)0.0515 (13)0.0133 (16)0.0095 (12)0.0104 (15)
C100.0652 (15)0.094 (2)0.0636 (15)0.0169 (16)0.0032 (13)0.0072 (16)
C110.0544 (13)0.0697 (18)0.0548 (13)0.0017 (14)0.0010 (11)0.0009 (13)
C120.0581 (14)0.088 (2)0.0662 (15)0.0133 (15)0.0057 (12)0.0018 (16)
C130.0553 (13)0.096 (2)0.0526 (13)0.0009 (15)0.0088 (11)0.0085 (15)
C140.0547 (13)0.089 (2)0.0414 (12)0.0026 (14)0.0035 (10)0.0065 (13)
C150.0557 (13)0.093 (2)0.0398 (12)0.0008 (15)0.0043 (10)0.0062 (13)
C160.0646 (15)0.111 (2)0.0381 (12)0.0114 (17)0.0021 (11)0.0040 (14)
C170.0473 (12)0.108 (2)0.0394 (11)0.0155 (15)0.0051 (10)0.0034 (14)
C180.0441 (12)0.094 (2)0.0478 (12)0.0017 (14)0.0026 (10)0.0023 (14)
C190.0395 (10)0.0774 (18)0.0410 (11)0.0060 (12)0.0017 (9)0.0009 (12)
C200.0449 (12)0.090 (2)0.0449 (12)0.0001 (13)0.0035 (10)0.0028 (13)
C210.0462 (12)0.095 (2)0.0385 (11)0.0101 (14)0.0035 (9)0.0041 (13)
C220.0496 (12)0.109 (2)0.0479 (13)0.0041 (15)0.0072 (10)0.0134 (15)
C230.0493 (13)0.092 (2)0.0670 (15)0.0088 (15)0.0016 (12)0.0102 (16)
C240.0423 (11)0.0809 (19)0.0471 (12)0.0031 (13)0.0003 (10)0.0034 (13)
C250.0530 (13)0.094 (2)0.0600 (14)0.0030 (15)0.0077 (11)0.0080 (15)
C260.0535 (13)0.111 (2)0.0477 (13)0.0140 (16)0.0073 (11)0.0144 (15)
Geometric parameters (Å, º) top
Cl1—C31.724 (2)C7—C81.369 (3)
Cl2—C161.729 (2)C7—H70.9300
O1—C11.337 (3)C8—C91.398 (4)
O1—C211.414 (3)C9—C101.357 (4)
O2—C21.332 (3)C9—H90.9300
O2—C41.413 (3)C10—C111.417 (3)
O3—C141.329 (3)C10—H100.9300
O3—C81.411 (3)C11—C121.418 (3)
O4—C151.343 (3)C12—C131.356 (4)
O4—C171.414 (3)C12—H120.9300
N1—C21.323 (3)C13—H130.9300
N1—C11.329 (3)C17—C181.358 (3)
N2—C31.315 (3)C17—C261.386 (4)
N2—C21.338 (3)C18—C191.418 (3)
N3—C31.323 (3)C18—H180.9300
N3—C11.335 (3)C19—C201.409 (3)
N4—C141.326 (3)C19—C241.416 (3)
N4—C151.328 (3)C20—C211.354 (3)
N5—C161.326 (3)C20—H200.9300
N5—C151.333 (3)C21—C221.382 (4)
N6—C161.311 (3)C22—C231.367 (3)
N6—C141.338 (3)C22—H220.9300
C4—C51.361 (3)C23—C241.418 (3)
C4—C131.402 (4)C23—H230.9300
C5—C61.427 (3)C24—C251.417 (3)
C5—H50.9300C25—C261.361 (4)
C6—C111.424 (3)C25—H250.9300
C6—C71.424 (3)C26—H260.9300
C1—O1—C21120.63 (19)C13—C12—H12119.6
C2—O2—C4129.45 (18)C11—C12—H12119.6
C14—O3—C8129.02 (18)C12—C13—C4119.5 (2)
C15—O4—C17120.6 (2)C12—C13—H13120.2
C2—N1—C1112.49 (19)C4—C13—H13120.2
C3—N2—C2112.6 (2)N4—C14—O3121.9 (2)
C3—N3—C1111.1 (2)N4—C14—N6126.6 (2)
C14—N4—C15112.40 (19)O3—C14—N6111.5 (2)
C16—N5—C15110.8 (2)N4—C15—N5128.5 (2)
C16—N6—C14112.6 (2)N4—C15—O4120.4 (2)
N1—C1—N3128.2 (2)N5—C15—O4111.1 (2)
N1—C1—O1120.5 (2)N6—C16—N5129.1 (2)
N3—C1—O1111.2 (2)N6—C16—Cl2116.61 (18)
N1—C2—O2121.8 (2)N5—C16—Cl2114.27 (19)
N1—C2—N2126.7 (2)C18—C17—C26123.4 (2)
O2—C2—N2111.4 (2)C18—C17—O4121.3 (3)
N2—C3—N3128.8 (2)C26—C17—O4114.8 (2)
N2—C3—Cl1116.84 (19)C17—C18—C19118.9 (2)
N3—C3—Cl1114.4 (2)C17—C18—H18120.6
C5—C4—C13122.4 (2)C19—C18—H18120.6
C5—C4—O2127.1 (2)C20—C19—C24119.3 (2)
C13—C4—O2110.2 (2)C20—C19—C18121.8 (2)
C4—C5—C6119.2 (2)C24—C19—C18118.8 (2)
C4—C5—H5120.4C21—C20—C19118.9 (2)
C6—C5—H5120.4C21—C20—H20120.5
C11—C6—C7119.0 (2)C19—C20—H20120.5
C11—C6—C5118.7 (2)C20—C21—C22123.3 (2)
C7—C6—C5122.2 (2)C20—C21—O1121.6 (2)
C8—C7—C6118.8 (2)C22—C21—O1114.8 (2)
C8—C7—H7120.6C23—C22—C21119.1 (2)
C6—C7—H7120.6C23—C22—H22120.4
C7—C8—C9122.7 (2)C21—C22—H22120.4
C7—C8—O3126.7 (2)C22—C23—C24120.5 (3)
C9—C8—O3110.3 (2)C22—C23—H23119.8
C10—C9—C8119.3 (2)C24—C23—H23119.8
C10—C9—H9120.3C19—C24—C25119.2 (2)
C8—C9—H9120.3C19—C24—C23118.9 (2)
C9—C10—C11121.1 (3)C25—C24—C23121.8 (2)
C9—C10—H10119.5C26—C25—C24120.8 (3)
C11—C10—H10119.5C26—C25—H25119.6
C10—C11—C12121.7 (2)C24—C25—H25119.6
C10—C11—C6119.1 (2)C25—C26—C17118.9 (2)
C12—C11—C6119.2 (2)C25—C26—H26120.5
C13—C12—C11120.9 (3)C17—C26—H26120.5

Experimental details

Crystal data
Chemical formulaC26H12Cl2N6O4
Mr543.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)15.514 (3), 7.967 (3), 18.527 (5)
β (°) 90.60 (2)
V3)2289.8 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.5 × 0.4 × 0.3
Data collection
DiffractometerBruker P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5492, 4266, 2582
Rint0.034
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.123, 1.03
No. of reflections4266
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.39

Computer programs: XSCANS (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This research was supported by NSFC, SRF for ROCS, SEM, the Present Fund of GUCAS and the Opening Fund from the Laboratory of Organic Solids, CAS, People's Republic of China.

References

First citationBruker (1997). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y., Wang, D. X., Huang, Z. T. & Wang, M. X. (2010). J. Org. Chem. 75, 3786–3796.  Google Scholar
First citationHou, B. Y., Wang, D., Zheng, Q. Y. & Wang, M. X. (2007). J. Org. Chem. 72, 5218–5226.  Google Scholar
First citationHu, M. X. & Chen, C. F. (2011). Org. Biomol. Chem. 9, 5838–5844.  Google Scholar
First citationKatz, J. L. & Tschaen, B. A. (2010). Org. Lett. 12, 4300–4303.  Google Scholar
First citationKatz, J. L., Wackerly, J. W., Meyer, J. M., Crannell, W. C. & King, S. B. (2009). Macrocycles, 42, 8181–8186.  Google Scholar
First citationKönig, B. & Fonseca, M. H. (2000). Eur. J. Inorg. Chem. 11, 2303–2310.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, M. X. & Yang, H. B. (2004). J. Am. Chem. Soc. 126, 15412–15422.  Google Scholar
First citationZhu, Y. P., Yuan, J. J., Li, Y. T., Gao, M., Cao, L. P., Ding, J. Y. & Wu, A. X. (2010). Synlett, pp. 52–56.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds