organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{4-[(2,4-Di­chloro­benzo­yl­oxy)meth­yl]-1-phenyl-1H-1,2,3-triazol-5-yl}methyl 2,4-di­chloro­benzoate

aTashkent Chemical Technology Institute, A. Navoyi, 11, Tashkent, Uzbekistan, bUzbekistan Scientific Research Pharmacological Chemistry Institute (named after A. Sultonov), Durmon yuli, 40, Uzbekistan, and cInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str. 83, Tashkent, 100125 Uzbekistan
*Correspondence e-mail: x-ray.uz@mail.ru

(Received 3 August 2011; accepted 31 August 2011; online 14 September 2011)

In the title molecule, C24H15Cl4N3O4, the triazole ring makes dihedral angles of 72.02 (12), 81.60 (12) and 73.82 (11)°, respectively, with the adjacent phenyl ring and the two dichloro­benzene rings. In the crystal, a weak C—H⋯N inter­action, a short Cl⋯Cl contact [3.307 (2) Å] and a ππ stacking inter­action [centroid–centroid distance = 3.568 (4) Å] are observed. An intra­molecular C—H⋯O inter­action is also present.

Related literature

For the pharmacological activities of 1,2,3-triazole derivatives, see: Dzhuraev et al. (1990[Dzhuraev, A. D., Makhsumov, A. G., Zakirov, U. B., Nikbaev, A. G. & Karimkulov, K. M. (1990). Khim. Farm. Zh. 24 30-31.]); Karimkulov et al. (1991[Karimkulov, K. M., Dzhuraev, A. D., Makhsumov, A. G. & Amanov, N. (1991). Khim. Farm. Zh. 25, 40-41.]); Zakirov et al. (2001[Zakirov, A. U., Pulatov, Kh. Kh., Ismatov, D. N. & Azizov, U. M. (2001). Eksp. Klin. Farmakoter. 64, 50-52.]). For a related structure, see: Jin et al. (2004[Jin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642-o643.]).

[Scheme 1]

Experimental

Crystal data
  • C24H15Cl4N3O4

  • Mr = 551.19

  • Monoclinic, P 21 /n

  • a = 8.908 (5) Å

  • b = 19.567 (5) Å

  • c = 13.908 (5) Å

  • β = 104.010 (5)°

  • V = 2352.1 (17) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.91 mm−1

  • T = 293 K

  • 0.6 × 0.4 × 0.3 mm

Data collection
  • Oxford Xcalibur Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.050, Tmax = 0.229

  • 20081 measured reflections

  • 4196 independent reflections

  • 3370 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.107

  • S = 1.02

  • 4196 reflections

  • 317 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯O4 0.97 2.49 3.280 (3) 139
C9—H9⋯N2i 0.93 2.58 3.288 (3) 134
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Bruker, 1998[Bruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In last few decades, much attention has been paid to the synthesis of 1,2,3-triazole systems mainly due to their broad spectrum of pharmacological properties. 1,2,3-Triazole derivatives possess variety of pharmacological activities such as anti inflammatory, antiviral and antibacterial (Dzhuraev et al., 1990; Karimkulov et al., 1991; Zakirov et al., 2001).

In the title compound, {4-[(2,4-dichlorobenzoyloxy)methyl]-1-phenyl-1H-1,2,3-triazol-5-yl}methyl 2,4-dichlorobenzoate, C24H15N3O4Cl4, the triazole ring (N1/N2/N3/C4/C5) is ideal planar with a greatest deviation of 0.0037 (12) Å (atom N3) from the mean plane and the benzyl rings of dichlorobenzoyloxy substituents (C8–C13 and C16–C21) are tilted out of this plane at 81.60 (12) and 73.82 (11)°, respectively. The dihedral angles between these benzyl rings and corresponding carboxylic fragments (O1/C7/O2 and O3/C15/O4) are 5.9 (4) and 26.9 (3)°, respectively. The dihedral angle between the triazole and phenyl (C22–C27) rings is 72.02 (12)°. The C5—N1 and C4—N2 bond lengths in the triazole ring are 1.352 (3) and 1.361 (3) Å, respectively. The values of these distances are shorter than the pertinent single bond length of 1.443 Å and are longer than the double bond length of 1.269 Å (Jin et al., 2004).

An intermolecular Cl1···Cl1 (-x, 1 - y, 2 - z) contact and a ππ stacking interaction with a Cg1···Cg2 (x - 1/2, 1/2 - y, z + 1/2) distance of 3.568 (4) Å stabilize the crystal structure; Cg1 and Cg2 are the centroids of the C8–C13 and C16–C21 rings, respectively.

Related literature top

For the pharmacological activities of 1,2,3-triazole derivatives, see: Dzhuraev et al. (1990); Karimkulov et al. (1991); Zakirov et al. (2001). For a related structure, see: Jin et al. (2004).

Experimental top

As a result of etherification 24.6 g (0.13 mole) of 2,4-dichlorbenzoic acid with 5.54 g (0.07 mole) of 2-butendiole-1, 4 refluxing for 2 h in benzene containing sulfuric acid as catalyst was got of 1,4-bis-(2,4-dichlorbenzoyloxy)-butene-2 [yield 22.55 g (82.2%), m.p. 364–365 K]. The reaction of obtaining bis-ester with 6.8 g (0.57 mole) phenylazide in 100 ml of toluene was carrying out within 7 h. Then the reaction mixture was cooled. The precipitate [1-phenyl-4,5-bis-(dichlorobenzoyloxymethyl)-1,2,3-triazole, yield 27.84 g (96.8%)] was collected by filtration and purified by recrystallization from ethanol (m.p. 383–384 K).

Refinement top

Aromatic (C—H = 0.93 Å) and methylene (C—H = 0.97 Å) H atoms were placed in geometrically calculated positions and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Structure description top

In last few decades, much attention has been paid to the synthesis of 1,2,3-triazole systems mainly due to their broad spectrum of pharmacological properties. 1,2,3-Triazole derivatives possess variety of pharmacological activities such as anti inflammatory, antiviral and antibacterial (Dzhuraev et al., 1990; Karimkulov et al., 1991; Zakirov et al., 2001).

In the title compound, {4-[(2,4-dichlorobenzoyloxy)methyl]-1-phenyl-1H-1,2,3-triazol-5-yl}methyl 2,4-dichlorobenzoate, C24H15N3O4Cl4, the triazole ring (N1/N2/N3/C4/C5) is ideal planar with a greatest deviation of 0.0037 (12) Å (atom N3) from the mean plane and the benzyl rings of dichlorobenzoyloxy substituents (C8–C13 and C16–C21) are tilted out of this plane at 81.60 (12) and 73.82 (11)°, respectively. The dihedral angles between these benzyl rings and corresponding carboxylic fragments (O1/C7/O2 and O3/C15/O4) are 5.9 (4) and 26.9 (3)°, respectively. The dihedral angle between the triazole and phenyl (C22–C27) rings is 72.02 (12)°. The C5—N1 and C4—N2 bond lengths in the triazole ring are 1.352 (3) and 1.361 (3) Å, respectively. The values of these distances are shorter than the pertinent single bond length of 1.443 Å and are longer than the double bond length of 1.269 Å (Jin et al., 2004).

An intermolecular Cl1···Cl1 (-x, 1 - y, 2 - z) contact and a ππ stacking interaction with a Cg1···Cg2 (x - 1/2, 1/2 - y, z + 1/2) distance of 3.568 (4) Å stabilize the crystal structure; Cg1 and Cg2 are the centroids of the C8–C13 and C16–C21 rings, respectively.

For the pharmacological activities of 1,2,3-triazole derivatives, see: Dzhuraev et al. (1990); Karimkulov et al. (1991); Zakirov et al. (2001). For a related structure, see: Jin et al. (2004).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Bruker, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme.
[Figure 2] Fig. 2. A packing diagram for the title compound. Dashed lines indicated C—H···N interactions.
{4-[(2,4-Dichlorobenzoyloxy)methyl]-1-phenyl-1H- 1,2,3-triazol-5-yl}methyl 2,4-dichlorobenzoate top
Crystal data top
C24H15Cl4N3O4F(000) = 1120
Mr = 551.19Dx = 1.557 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 6999 reflections
a = 8.908 (5) Åθ = 3.3–67.0°
b = 19.567 (5) ŵ = 4.91 mm1
c = 13.908 (5) ÅT = 293 K
β = 104.010 (5)°Prismatic, colourless
V = 2352.1 (17) Å30.6 × 0.4 × 0.3 mm
Z = 4
Data collection top
Oxford Xcalibur Ruby
diffractometer
4196 independent reflections
Radiation source: fine-focus sealed tube3370 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 10.2576 pixels mm-1θmax = 66.9°, θmin = 4.0°
ω scansh = 910
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 2323
Tmin = 0.050, Tmax = 0.229l = 1616
20081 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0642P)2 + 0.6051P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4196 reflectionsΔρmax = 0.28 e Å3
317 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00144 (16)
Crystal data top
C24H15Cl4N3O4V = 2352.1 (17) Å3
Mr = 551.19Z = 4
Monoclinic, P21/nCu Kα radiation
a = 8.908 (5) ŵ = 4.91 mm1
b = 19.567 (5) ÅT = 293 K
c = 13.908 (5) Å0.6 × 0.4 × 0.3 mm
β = 104.010 (5)°
Data collection top
Oxford Xcalibur Ruby
diffractometer
4196 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3370 reflections with I > 2σ(I)
Tmin = 0.050, Tmax = 0.229Rint = 0.035
20081 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.02Δρmax = 0.28 e Å3
4196 reflectionsΔρmin = 0.33 e Å3
317 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.10801 (9)0.46153 (5)0.93488 (6)0.0854 (3)
Cl20.19070 (9)0.22022 (3)0.77880 (5)0.0670 (2)
Cl31.25569 (8)0.07713 (3)0.26450 (5)0.0597 (2)
Cl41.01206 (10)0.09158 (3)0.57671 (5)0.0710 (2)
O10.44606 (18)0.34288 (7)0.59759 (11)0.0417 (4)
O20.3595 (2)0.24058 (8)0.62934 (13)0.0562 (4)
O30.98996 (17)0.31279 (8)0.52445 (12)0.0459 (4)
O40.8516 (2)0.22445 (9)0.55843 (14)0.0592 (5)
N10.52546 (19)0.39978 (8)0.40630 (12)0.0363 (4)
N20.6236 (2)0.44090 (10)0.37294 (15)0.0471 (5)
N30.7620 (2)0.42975 (9)0.42858 (15)0.0470 (5)
C40.7548 (2)0.38112 (10)0.49722 (15)0.0391 (5)
C50.6030 (2)0.36183 (10)0.48375 (14)0.0354 (4)
C60.5258 (3)0.30865 (10)0.53193 (16)0.0404 (5)
H6A0.45260.28290.48200.048*
H6B0.60210.27720.56920.048*
C70.3658 (2)0.30065 (10)0.64358 (14)0.0342 (4)
C80.2928 (2)0.33971 (10)0.71267 (14)0.0344 (4)
C90.3061 (3)0.41067 (11)0.71796 (17)0.0430 (5)
H90.35620.43310.67570.052*
C100.2474 (3)0.44875 (13)0.78378 (18)0.0523 (6)
H100.25670.49610.78550.063*
C110.1748 (3)0.41542 (14)0.84679 (17)0.0529 (6)
C120.1561 (3)0.34554 (15)0.84364 (17)0.0525 (6)
H120.10480.32380.88590.063*
C130.2148 (2)0.30801 (12)0.77651 (15)0.0420 (5)
C140.8976 (3)0.35859 (13)0.56945 (18)0.0502 (6)
H14B0.95900.39830.59570.060*
H14A0.86960.33540.62420.060*
C150.9516 (2)0.24628 (11)0.52285 (15)0.0405 (5)
C161.0439 (2)0.20499 (10)0.46763 (15)0.0364 (4)
C171.1026 (2)0.23534 (11)0.39367 (16)0.0401 (5)
H171.09430.28240.38500.048*
C181.1725 (3)0.19760 (11)0.33304 (16)0.0422 (5)
H181.21070.21880.28410.051*
C191.1847 (2)0.12779 (11)0.34625 (16)0.0413 (5)
C201.1354 (3)0.09624 (11)0.42153 (17)0.0460 (5)
H201.14860.04940.43160.055*
C211.0662 (3)0.13477 (11)0.48190 (16)0.0421 (5)
C220.3629 (2)0.40125 (10)0.35910 (15)0.0372 (5)
C230.2613 (3)0.43117 (11)0.40706 (18)0.0468 (5)
H230.29670.45000.46990.056*
C240.1058 (3)0.43268 (13)0.3600 (2)0.0605 (7)
H240.03570.45250.39140.073*
C250.0543 (3)0.40524 (14)0.2673 (3)0.0658 (8)
H250.05070.40620.23650.079*
C260.1570 (3)0.37622 (14)0.2194 (2)0.0636 (7)
H260.12130.35830.15610.076*
C270.3123 (3)0.37379 (12)0.26507 (17)0.0487 (5)
H270.38210.35400.23330.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0745 (5)0.1223 (7)0.0652 (4)0.0175 (5)0.0282 (4)0.0319 (4)
Cl20.0858 (5)0.0543 (4)0.0696 (4)0.0209 (3)0.0358 (4)0.0128 (3)
Cl30.0716 (4)0.0545 (4)0.0595 (4)0.0131 (3)0.0285 (3)0.0055 (3)
Cl40.1151 (6)0.0443 (3)0.0688 (4)0.0069 (3)0.0518 (4)0.0151 (3)
O10.0529 (9)0.0339 (7)0.0469 (8)0.0018 (6)0.0285 (7)0.0012 (6)
O20.0788 (12)0.0353 (8)0.0641 (10)0.0067 (8)0.0359 (9)0.0011 (7)
O30.0415 (9)0.0389 (8)0.0590 (9)0.0030 (6)0.0157 (7)0.0087 (7)
O40.0621 (11)0.0522 (10)0.0737 (11)0.0043 (8)0.0368 (10)0.0067 (8)
N10.0382 (9)0.0336 (9)0.0429 (9)0.0017 (7)0.0210 (8)0.0021 (7)
N20.0469 (11)0.0420 (10)0.0600 (12)0.0006 (8)0.0275 (10)0.0082 (9)
N30.0428 (11)0.0422 (10)0.0624 (12)0.0025 (8)0.0251 (10)0.0002 (9)
C40.0429 (12)0.0335 (10)0.0450 (11)0.0019 (9)0.0184 (9)0.0092 (9)
C50.0434 (12)0.0314 (10)0.0362 (10)0.0045 (8)0.0188 (9)0.0035 (8)
C60.0493 (13)0.0344 (10)0.0429 (11)0.0042 (9)0.0218 (10)0.0024 (8)
C70.0343 (11)0.0352 (11)0.0325 (10)0.0021 (8)0.0069 (8)0.0056 (8)
C80.0314 (10)0.0396 (10)0.0319 (10)0.0001 (8)0.0069 (8)0.0052 (8)
C90.0437 (12)0.0412 (11)0.0470 (12)0.0023 (9)0.0163 (10)0.0047 (9)
C100.0534 (14)0.0481 (13)0.0569 (14)0.0078 (11)0.0165 (12)0.0056 (11)
C110.0427 (13)0.0741 (17)0.0420 (12)0.0121 (12)0.0104 (10)0.0107 (11)
C120.0432 (13)0.0786 (18)0.0386 (12)0.0023 (12)0.0157 (10)0.0093 (11)
C130.0383 (12)0.0498 (12)0.0377 (11)0.0021 (10)0.0091 (9)0.0084 (9)
C140.0486 (13)0.0458 (12)0.0556 (13)0.0046 (10)0.0115 (11)0.0160 (10)
C150.0397 (12)0.0409 (11)0.0381 (10)0.0043 (9)0.0040 (9)0.0019 (9)
C160.0339 (11)0.0354 (10)0.0382 (10)0.0005 (8)0.0052 (8)0.0002 (8)
C170.0420 (12)0.0318 (10)0.0451 (11)0.0011 (9)0.0080 (9)0.0030 (8)
C180.0447 (12)0.0400 (11)0.0428 (11)0.0022 (9)0.0125 (10)0.0051 (9)
C190.0383 (11)0.0419 (12)0.0431 (11)0.0047 (9)0.0087 (9)0.0020 (9)
C200.0565 (14)0.0310 (10)0.0501 (12)0.0049 (10)0.0125 (11)0.0030 (9)
C210.0484 (13)0.0362 (11)0.0421 (11)0.0007 (9)0.0117 (10)0.0044 (9)
C220.0417 (12)0.0301 (10)0.0443 (11)0.0040 (8)0.0195 (9)0.0077 (8)
C230.0522 (14)0.0414 (12)0.0539 (13)0.0083 (10)0.0268 (11)0.0052 (10)
C240.0488 (15)0.0526 (14)0.091 (2)0.0154 (12)0.0369 (15)0.0208 (14)
C250.0443 (15)0.0544 (15)0.094 (2)0.0035 (12)0.0082 (14)0.0240 (15)
C260.0657 (18)0.0559 (15)0.0608 (15)0.0032 (13)0.0010 (13)0.0053 (12)
C270.0558 (14)0.0444 (12)0.0498 (13)0.0041 (11)0.0202 (11)0.0017 (10)
Geometric parameters (Å, º) top
Cl1—C111.738 (2)C11—C121.377 (4)
Cl2—C131.733 (2)C12—C131.386 (3)
Cl3—C191.739 (2)C12—H120.9300
Cl4—C211.730 (2)C14—H14B0.9700
O1—C71.351 (2)C14—H14A0.9700
O1—C61.449 (2)C15—C161.491 (3)
O2—C71.191 (3)C16—C171.395 (3)
O3—C151.344 (3)C16—C211.396 (3)
O3—C141.457 (3)C17—C181.378 (3)
O4—C151.198 (3)C17—H170.9300
N1—N21.350 (2)C18—C191.379 (3)
N1—C51.352 (3)C18—H180.9300
N1—C221.438 (3)C19—C201.376 (3)
N2—N31.306 (3)C20—C211.380 (3)
N3—C41.360 (3)C20—H200.9300
C4—C51.373 (3)C22—C231.378 (3)
C4—C141.484 (3)C22—C271.384 (3)
C5—C61.492 (3)C23—C241.382 (4)
C6—H6A0.9700C23—H230.9300
C6—H6B0.9700C24—C251.368 (4)
C7—C81.494 (3)C24—H240.9300
C8—C91.394 (3)C25—C261.378 (4)
C8—C131.398 (3)C25—H250.9300
C9—C101.378 (3)C26—C271.376 (4)
C9—H90.9300C26—H260.9300
C10—C111.373 (4)C27—H270.9300
C10—H100.9300
C7—O1—C6114.32 (15)O3—C14—H14A109.2
C15—O3—C14115.79 (18)C4—C14—H14A109.2
N2—N1—C5110.66 (17)H14B—C14—H14A107.9
N2—N1—C22119.68 (17)O4—C15—O3123.4 (2)
C5—N1—C22129.66 (17)O4—C15—C16125.3 (2)
N3—N2—N1107.09 (17)O3—C15—C16111.32 (18)
N2—N3—C4109.52 (18)C17—C16—C21117.27 (19)
N3—C4—C5108.01 (19)C17—C16—C15120.06 (18)
N3—C4—C14120.3 (2)C21—C16—C15122.52 (19)
C5—C4—C14131.7 (2)C18—C17—C16121.93 (19)
N1—C5—C4104.71 (18)C18—C17—H17119.0
N1—C5—C6122.59 (19)C16—C17—H17119.0
C4—C5—C6132.6 (2)C17—C18—C19118.8 (2)
O1—C6—C5108.05 (16)C17—C18—H18120.6
O1—C6—H6A110.1C19—C18—H18120.6
C5—C6—H6A110.1C20—C19—C18121.1 (2)
O1—C6—H6B110.1C20—C19—Cl3118.39 (17)
C5—C6—H6B110.1C18—C19—Cl3120.48 (17)
H6A—C6—H6B108.4C19—C20—C21119.3 (2)
O2—C7—O1122.27 (18)C19—C20—H20120.3
O2—C7—C8126.98 (18)C21—C20—H20120.3
O1—C7—C8110.74 (16)C20—C21—C16121.4 (2)
C9—C8—C13117.22 (19)C20—C21—Cl4116.42 (16)
C9—C8—C7119.93 (18)C16—C21—Cl4122.19 (17)
C13—C8—C7122.81 (19)C23—C22—C27121.4 (2)
C10—C9—C8122.2 (2)C23—C22—N1119.6 (2)
C10—C9—H9118.9C27—C22—N1119.02 (18)
C8—C9—H9118.9C22—C23—C24118.7 (2)
C11—C10—C9118.7 (2)C22—C23—H23120.7
C11—C10—H10120.6C24—C23—H23120.7
C9—C10—H10120.6C25—C24—C23120.5 (2)
C10—C11—C12121.6 (2)C25—C24—H24119.8
C10—C11—Cl1119.8 (2)C23—C24—H24119.8
C12—C11—Cl1118.6 (2)C24—C25—C26120.4 (3)
C11—C12—C13119.0 (2)C24—C25—H25119.8
C11—C12—H12120.5C26—C25—H25119.8
C13—C12—H12120.5C27—C26—C25120.1 (3)
C12—C13—C8121.3 (2)C27—C26—H26119.9
C12—C13—Cl2116.37 (17)C25—C26—H26119.9
C8—C13—Cl2122.32 (17)C26—C27—C22118.9 (2)
O3—C14—C4111.88 (18)C26—C27—H27120.5
O3—C14—H14B109.2C22—C27—H27120.5
C4—C14—H14B109.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O40.972.493.280 (3)139
C9—H9···N2i0.932.583.288 (3)134
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC24H15Cl4N3O4
Mr551.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.908 (5), 19.567 (5), 13.908 (5)
β (°) 104.010 (5)
V3)2352.1 (17)
Z4
Radiation typeCu Kα
µ (mm1)4.91
Crystal size (mm)0.6 × 0.4 × 0.3
Data collection
DiffractometerOxford Xcalibur Ruby
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.050, 0.229
No. of measured, independent and
observed [I > 2σ(I)] reflections
20081, 4196, 3370
Rint0.035
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.107, 1.02
No. of reflections4196
No. of parameters317
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.33

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Bruker, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O40.972.493.280 (3)138.8
C9—H9···N2i0.932.583.288 (3)133.8
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by a Grant for Fundamental Research from the Center of Science and Technology, Uzbekistan (grant No. FA-F3-T-141).

References

First citationBruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDzhuraev, A. D., Makhsumov, A. G., Zakirov, U. B., Nikbaev, A. G. & Karimkulov, K. M. (1990). Khim. Farm. Zh. 24 30–31.  CAS Google Scholar
First citationJin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642–o643.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKarimkulov, K. M., Dzhuraev, A. D., Makhsumov, A. G. & Amanov, N. (1991). Khim. Farm. Zh. 25, 40–41.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZakirov, A. U., Pulatov, Kh. Kh., Ismatov, D. N. & Azizov, U. M. (2001). Eksp. Klin. Farmakoter. 64, 50–52.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds