organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis(benz­yl­oxy)-1,2-bis­­(4-chloro­phen­yl)-3,8-dimeth­­oxy­acenaphthene

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 24 August 2011; accepted 31 August 2011; online 3 September 2011)

In the title compound, C40H32Cl2O4, the two chloro­benzene rings are in syn orientations with respect to the naphthalene ring system and make dihedral angles of 57.12 (6) and 85.74 (6)° with it. The benzene rings of the benz­yloxy group make dihedral angles of 75.34 (6) and 83.95 (7)°, with the naphthalene ring system. In the crystal, the mol­ecules are linked by inter­molecular C—H⋯Cl inter­actions between the methyl­ene H atoms of the benz­yloxy group and the Cl atoms in adjacent mol­ecules. Furthermore, centrosymmetrically related mol­ecules are linked into dimeric units by pairs of C—H⋯π inter­actions.

Related literature

For the synthesis of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915]). For the structures of closely related compounds, see: Watanabe et al. (2010a[Watanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010a). Acta Cryst. E66, o329.],b[Watanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010b). Acta Cryst. E66, o403.]); Mitsui et al. (2010[Mitsui, R., Nagasawa, A., Noguchi, K., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o1790.]); Hijikata et al. (2010[Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902-o2903.]); Nakaema et al. (2007[Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.]).

[Scheme 1]

Experimental

Crystal data
  • C40H32Cl2O4

  • Mr = 647.56

  • Triclinic, [P \overline 1]

  • a = 10.9773 (2) Å

  • b = 12.6514 (2) Å

  • c = 12.9171 (2) Å

  • α = 102.387 (1)°

  • β = 104.899 (1)°

  • γ = 103.306 (1)°

  • V = 1614.04 (5) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.15 mm−1

  • T = 193 K

  • 0.50 × 0.30 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi,1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.414, Tmax = 0.674

  • 30622 measured reflections

  • 5828 independent reflections

  • 5503 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.107

  • S = 1.06

  • 5828 reflections

  • 418 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg6 is the centroid of the C35–C40 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C34—H34A⋯Cl1i 0.99 2.66 3.4748 (16) 140
C16—H16⋯Cg6ii 0.95 2.70 3.3962 (16) 131
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6865. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene homologues exemplified by bis(4-fluorophenyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone (Watanabe et al., 2010a), and bis(4-bromophenyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone (Watanabe et al., 2010b). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are twistedly bonded in an almost perpendicular fashion, but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings. On the other hand, 1,8-bis(4-chlorobenzoyl)-7-methoxynaphthalene-2-ol ethanol monosolvate (Mitsui et al., 2010) and 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene (Hijikata et al., 2010) have been revealed that the aroyl groups attached to the naphthalene ring are oriented in the same direction, i.e., syn-orientation. As a part of our continuous study on the molecular structures of this kind of homologous molecules, the X-ray crystal structure of the title compound, acenaphthene derivative bearing benzyloxy and 4-chlorophenyl groups, is discussed in this article. The title compound was prepared by Zn-complex-mediated pinacol coupling of 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Nakaema et al., 2007), followed by conversion of hydroxy groups to benzyloxy ones. The molecular structure of the title compound is illustrated in Fig. 1. The two intervenient benzene rings, A (C12—C17) and B (C19—C24), are in a syn orientation with respect to the naphthalene ring system (C1—C10), and make the dihedral angles of 57.12 (6) and 85.74 (6)°, respectively, with the naphthalene ring system. Furthermore, the dihedral angles of the two benzene rings in the benzyloxy groups, C (C28—C33) and D (C35—C40), against the naphthalene ring system are 75.34 (6) and 83.95 (7)°, respectively. Besides, the interplanar angle between benzene rings A (C12—C17) and B (C19—C24) is smaller than that between benzene ring C (C28—C33) and D (C35—C40) [31.39 (7) and 84.68 (9)°, respectively].

In the molecular packing, the C—H···Cl interactions between the hydrogen atoms of the methylene moiety and the chloro atoms of the 4-chlorophenyl rings of the adjacent molecules are observed atom along the a axis [C27—H27A···Cl1i = 2.66 Å](Fig. 2). Furthermore, C—H···π interactions between the hydrogen atom of the benzene ring A and the π-system of the benzene ring D (with centroid Cg6) is also observed (C16—H16···Cg6ii = 2.70 Å; Table 1), resulting in the formation of dimeric units having crystallographic inversion centre (Fig. 3).

Related literature top

For the synthesis of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009). For the structures of closely related compounds, see: Watanabe et al. (2010a,b); Mitsui et al. (2010); Hijikata et al. (2010); Nakaema et al. (2007).

Experimental top

To a solution of the pinacol compound, 1,2-bis(4-chlorophenyl)-1,2-dihydroxy-3,8-dimethoxyacenaphthene (0.1 mmol, 46 mg) in DMAc (0.1 ml), a mixture of benzyl bromide (0.22 mmol, 34 mg), NaH (0.22 mmol, 48 mg), and tetrabutylammonium iodide (0.01 mmol, 2 mg) was added by portions at r.t. After the reaction mixture was stirred for 3 h, it was poured into ice-cold water (10 ml). The aqueous layer was extracted with CHCl3 (10 ml ×3). The combined extracts were washed with 2 M aqueous HCl followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake (yield 27 mg, 42%). The crude material was purified by recrystallization from CHCl3/ethanol to give the title compound as colorless platelets (isolated yield, 38%). Spectroscopic Data: 1H NMR (300 MHz, CDCl3)δ;7.88, (d, 2H), 7.19–7.26(m, 12H), 6.84 (d, 8H), 4.74–4.84(m, 4H), 3.68(s, 6H); 13C NMR(75 MHz, CDCl3); 154.5, 142.0, 140.3, 140.0, 132.1, 128.9, 128.9, 127.9, 127.3, 126.8, 126.7, 122.4, 122.3, 113.6, 96.7, 69.1, 55,7; IR (KBr);1623, 1502, 1259 cm-1; Anal. Calcd for C40H32Cl2O4; C, 74.19; H, 4.98. Found: C, 74.176; H, 5.160%; m.p.=203.0–204.0 K.

Refinement top

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uĩso(H) = 1.2 Ueq(C).

Structure description top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene homologues exemplified by bis(4-fluorophenyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone (Watanabe et al., 2010a), and bis(4-bromophenyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone (Watanabe et al., 2010b). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are twistedly bonded in an almost perpendicular fashion, but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings. On the other hand, 1,8-bis(4-chlorobenzoyl)-7-methoxynaphthalene-2-ol ethanol monosolvate (Mitsui et al., 2010) and 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene (Hijikata et al., 2010) have been revealed that the aroyl groups attached to the naphthalene ring are oriented in the same direction, i.e., syn-orientation. As a part of our continuous study on the molecular structures of this kind of homologous molecules, the X-ray crystal structure of the title compound, acenaphthene derivative bearing benzyloxy and 4-chlorophenyl groups, is discussed in this article. The title compound was prepared by Zn-complex-mediated pinacol coupling of 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Nakaema et al., 2007), followed by conversion of hydroxy groups to benzyloxy ones. The molecular structure of the title compound is illustrated in Fig. 1. The two intervenient benzene rings, A (C12—C17) and B (C19—C24), are in a syn orientation with respect to the naphthalene ring system (C1—C10), and make the dihedral angles of 57.12 (6) and 85.74 (6)°, respectively, with the naphthalene ring system. Furthermore, the dihedral angles of the two benzene rings in the benzyloxy groups, C (C28—C33) and D (C35—C40), against the naphthalene ring system are 75.34 (6) and 83.95 (7)°, respectively. Besides, the interplanar angle between benzene rings A (C12—C17) and B (C19—C24) is smaller than that between benzene ring C (C28—C33) and D (C35—C40) [31.39 (7) and 84.68 (9)°, respectively].

In the molecular packing, the C—H···Cl interactions between the hydrogen atoms of the methylene moiety and the chloro atoms of the 4-chlorophenyl rings of the adjacent molecules are observed atom along the a axis [C27—H27A···Cl1i = 2.66 Å](Fig. 2). Furthermore, C—H···π interactions between the hydrogen atom of the benzene ring A and the π-system of the benzene ring D (with centroid Cg6) is also observed (C16—H16···Cg6ii = 2.70 Å; Table 1), resulting in the formation of dimeric units having crystallographic inversion centre (Fig. 3).

For the synthesis of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009). For the structures of closely related compounds, see: Watanabe et al. (2010a,b); Mitsui et al. (2010); Hijikata et al. (2010); Nakaema et al. (2007).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A dimeric pair of the title molecules, showing the intermolecular C—H···Cl interactions as double dashed line [symmetry code: (i) x - 1, y, z].
[Figure 3] Fig. 3. A dimeric pair of the title molecules. The intermolecular C—H···π interactions are observed along c axis (double dashed lines) [symmetry code: (ii) -x + 1, -y, -z].
1,2-Bis(benzyloxy)-1,2-bis(4-chlorophenyl)-3,8-dimethoxyacenaphthene top
Crystal data top
C40H32Cl2O4Z = 2
Mr = 647.56F(000) = 676
Triclinic, P1Dx = 1.332 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54187 Å
a = 10.9773 (2) ÅCell parameters from 29110 reflections
b = 12.6514 (2) Åθ = 3.7–68.2°
c = 12.9171 (2) ŵ = 2.15 mm1
α = 102.387 (1)°T = 193 K
β = 104.899 (1)°Block, colorless
γ = 103.306 (1)°0.50 × 0.30 × 0.20 mm
V = 1614.04 (5) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5828 independent reflections
Radiation source: rotating anode5503 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 10.000 pixels mm-1θmax = 68.2°, θmin = 3.7°
ω scansh = 1312
Absorption correction: numerical
(NUMABS; Higashi,1999)
k = 1515
Tmin = 0.414, Tmax = 0.674l = 1515
30622 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0623P)2 + 0.4586P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
5828 reflectionsΔρmax = 0.43 e Å3
418 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0082 (4)
Crystal data top
C40H32Cl2O4γ = 103.306 (1)°
Mr = 647.56V = 1614.04 (5) Å3
Triclinic, P1Z = 2
a = 10.9773 (2) ÅCu Kα radiation
b = 12.6514 (2) ŵ = 2.15 mm1
c = 12.9171 (2) ÅT = 193 K
α = 102.387 (1)°0.50 × 0.30 × 0.20 mm
β = 104.899 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5828 independent reflections
Absorption correction: numerical
(NUMABS; Higashi,1999)
5503 reflections with I > 2σ(I)
Tmin = 0.414, Tmax = 0.674Rint = 0.061
30622 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.06Δρmax = 0.43 e Å3
5828 reflectionsΔρmin = 0.31 e Å3
418 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.11323 (4)0.16739 (4)0.15815 (4)0.05437 (15)
Cl21.10086 (4)0.63681 (3)0.37022 (3)0.04790 (14)
O10.49403 (9)0.07269 (7)0.17290 (8)0.0276 (2)
O20.51556 (9)0.25848 (8)0.10705 (7)0.0285 (2)
O30.70682 (12)0.05722 (9)0.43438 (9)0.0405 (3)
O40.39937 (12)0.43218 (10)0.22526 (10)0.0437 (3)
C10.59210 (13)0.17780 (11)0.36826 (11)0.0283 (3)
C20.63214 (15)0.12827 (12)0.45074 (12)0.0328 (3)
C30.59278 (17)0.15073 (14)0.54799 (12)0.0397 (4)
H30.62270.11830.60590.048*
C40.51272 (17)0.21801 (14)0.55995 (13)0.0413 (4)
H40.48640.22980.62500.050*
C50.46860 (15)0.27021 (12)0.47695 (12)0.0354 (3)
C60.38935 (16)0.34403 (13)0.47836 (14)0.0409 (4)
H60.35450.35880.53820.049*
C70.36209 (16)0.39443 (13)0.39523 (14)0.0403 (4)
H70.30700.44230.39770.048*
C80.41422 (14)0.37692 (12)0.30514 (13)0.0337 (3)
C90.48695 (13)0.30165 (11)0.29829 (11)0.0284 (3)
C100.51254 (13)0.24915 (11)0.38316 (11)0.0293 (3)
C110.60405 (13)0.16494 (11)0.25134 (10)0.0256 (3)
C120.85295 (14)0.19940 (12)0.31986 (12)0.0317 (3)
H120.85450.22690.39480.038*
C130.73237 (13)0.15671 (11)0.23323 (11)0.0262 (3)
C140.97044 (14)0.20211 (13)0.29780 (13)0.0367 (3)
H141.05240.23080.35700.044*
C150.96649 (14)0.16232 (12)0.18812 (13)0.0347 (3)
C160.84865 (15)0.11863 (12)0.10077 (12)0.0330 (3)
H160.84760.09120.02600.040*
C170.73205 (14)0.11564 (12)0.12420 (11)0.0295 (3)
H170.65030.08500.06480.035*
C180.57022 (13)0.27657 (11)0.22371 (11)0.0263 (3)
C190.69953 (13)0.37403 (11)0.26034 (11)0.0270 (3)
C200.75744 (14)0.44304 (11)0.37078 (11)0.0295 (3)
H200.71230.43410.42350.035*
C210.87998 (15)0.52457 (12)0.40500 (12)0.0329 (3)
H210.91850.57110.48040.039*
C220.94520 (14)0.53719 (12)0.32793 (12)0.0337 (3)
C230.88904 (15)0.47151 (13)0.21747 (12)0.0358 (3)
H230.93400.48160.16490.043*
C240.76659 (14)0.39090 (12)0.18422 (12)0.0319 (3)
H240.72750.34620.10810.038*
C250.77576 (19)0.02741 (16)0.52774 (14)0.0494 (4)
H25A0.83080.09660.58810.059*
H25B0.83200.01680.50520.059*
H25C0.71190.01810.55410.059*
C260.3045 (2)0.49310 (18)0.2163 (2)0.0608 (5)
H26A0.21790.44230.20750.073*
H26B0.29840.52180.15110.073*
H26C0.33190.55700.28420.073*
C270.49115 (14)0.03802 (11)0.18391 (12)0.0310 (3)
H27A0.54990.03130.25890.037*
H27B0.52340.07810.12700.037*
C280.35182 (14)0.10438 (11)0.16839 (11)0.0281 (3)
C290.26258 (15)0.05050 (13)0.19605 (12)0.0330 (3)
H290.28980.02980.22590.040*
C300.13410 (16)0.11310 (15)0.18040 (13)0.0405 (4)
H300.07380.07540.19910.049*
C310.09343 (17)0.23016 (15)0.13764 (15)0.0476 (4)
H310.00540.27290.12650.057*
C320.18202 (18)0.28417 (14)0.11136 (15)0.0476 (4)
H320.15490.36460.08300.057*
C330.31026 (16)0.22221 (12)0.12593 (13)0.0366 (3)
H330.37000.26040.10680.044*
C340.37626 (13)0.20801 (12)0.05308 (12)0.0322 (3)
H34A0.32780.23710.10190.039*
H34B0.35300.12460.03820.039*
C350.33847 (13)0.23730 (12)0.05534 (12)0.0290 (3)
C360.23404 (15)0.16125 (14)0.14550 (13)0.0390 (3)
H360.18830.09110.13830.047*
C370.19564 (18)0.18624 (17)0.24597 (15)0.0508 (4)
H370.12330.13370.30680.061*
C380.26201 (19)0.28700 (18)0.25794 (15)0.0533 (5)
H380.23590.30390.32700.064*
C390.3665 (2)0.36332 (17)0.16918 (18)0.0548 (5)
H390.41270.43280.17720.066*
C400.40430 (17)0.33878 (14)0.06819 (15)0.0421 (4)
H400.47600.39200.00720.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0299 (2)0.0611 (3)0.0746 (3)0.01170 (18)0.0276 (2)0.0141 (2)
Cl20.0353 (2)0.0478 (2)0.0438 (2)0.01135 (17)0.00949 (17)0.00916 (17)
O10.0228 (5)0.0269 (5)0.0287 (5)0.0040 (4)0.0044 (4)0.0078 (4)
O20.0223 (5)0.0362 (5)0.0248 (5)0.0045 (4)0.0066 (4)0.0106 (4)
O30.0484 (7)0.0467 (6)0.0331 (5)0.0200 (5)0.0126 (5)0.0194 (5)
O40.0443 (6)0.0435 (6)0.0565 (7)0.0224 (5)0.0227 (5)0.0232 (5)
C10.0249 (7)0.0301 (6)0.0269 (7)0.0019 (5)0.0100 (5)0.0072 (5)
C20.0330 (7)0.0331 (7)0.0287 (7)0.0028 (6)0.0095 (6)0.0100 (6)
C30.0453 (9)0.0429 (8)0.0285 (7)0.0043 (7)0.0130 (6)0.0140 (6)
C40.0463 (9)0.0443 (8)0.0305 (7)0.0018 (7)0.0203 (7)0.0080 (6)
C50.0343 (8)0.0344 (7)0.0330 (7)0.0001 (6)0.0172 (6)0.0042 (6)
C60.0388 (8)0.0399 (8)0.0418 (8)0.0051 (7)0.0234 (7)0.0021 (7)
C70.0337 (8)0.0353 (7)0.0509 (9)0.0093 (6)0.0205 (7)0.0031 (7)
C80.0285 (7)0.0303 (7)0.0397 (8)0.0047 (6)0.0127 (6)0.0072 (6)
C90.0233 (6)0.0287 (6)0.0296 (7)0.0028 (5)0.0099 (5)0.0052 (5)
C100.0252 (7)0.0285 (6)0.0289 (7)0.0000 (5)0.0103 (5)0.0045 (5)
C110.0230 (6)0.0280 (6)0.0234 (6)0.0041 (5)0.0068 (5)0.0077 (5)
C120.0279 (7)0.0360 (7)0.0269 (7)0.0068 (6)0.0054 (6)0.0078 (6)
C130.0242 (7)0.0271 (6)0.0264 (6)0.0055 (5)0.0075 (5)0.0094 (5)
C140.0232 (7)0.0399 (8)0.0394 (8)0.0052 (6)0.0031 (6)0.0094 (6)
C150.0254 (7)0.0350 (7)0.0475 (8)0.0089 (6)0.0166 (6)0.0139 (6)
C160.0321 (7)0.0364 (7)0.0329 (7)0.0090 (6)0.0152 (6)0.0106 (6)
C170.0257 (7)0.0346 (7)0.0262 (6)0.0061 (5)0.0069 (5)0.0095 (5)
C180.0237 (6)0.0293 (6)0.0255 (6)0.0062 (5)0.0083 (5)0.0087 (5)
C190.0247 (7)0.0280 (6)0.0286 (6)0.0065 (5)0.0085 (5)0.0104 (5)
C200.0297 (7)0.0309 (7)0.0284 (7)0.0071 (6)0.0114 (6)0.0090 (5)
C210.0326 (7)0.0310 (7)0.0295 (7)0.0046 (6)0.0068 (6)0.0067 (6)
C220.0273 (7)0.0315 (7)0.0361 (7)0.0006 (6)0.0068 (6)0.0109 (6)
C230.0326 (8)0.0403 (8)0.0335 (7)0.0031 (6)0.0140 (6)0.0135 (6)
C240.0305 (7)0.0349 (7)0.0273 (7)0.0039 (6)0.0093 (6)0.0092 (6)
C250.0537 (10)0.0538 (10)0.0401 (9)0.0176 (8)0.0058 (8)0.0224 (8)
C260.0599 (12)0.0563 (11)0.0831 (14)0.0353 (10)0.0266 (11)0.0307 (10)
C270.0268 (7)0.0288 (7)0.0348 (7)0.0087 (5)0.0066 (6)0.0079 (6)
C280.0288 (7)0.0323 (7)0.0225 (6)0.0071 (6)0.0063 (5)0.0115 (5)
C290.0328 (8)0.0370 (7)0.0301 (7)0.0097 (6)0.0115 (6)0.0107 (6)
C300.0335 (8)0.0534 (9)0.0399 (8)0.0117 (7)0.0176 (7)0.0189 (7)
C310.0348 (8)0.0531 (10)0.0529 (10)0.0003 (7)0.0148 (7)0.0258 (8)
C320.0456 (10)0.0338 (8)0.0556 (10)0.0004 (7)0.0111 (8)0.0171 (7)
C330.0385 (8)0.0324 (7)0.0375 (8)0.0090 (6)0.0094 (6)0.0122 (6)
C340.0227 (7)0.0374 (7)0.0328 (7)0.0023 (6)0.0065 (6)0.0130 (6)
C350.0245 (7)0.0326 (7)0.0339 (7)0.0117 (5)0.0110 (6)0.0123 (6)
C360.0315 (8)0.0426 (8)0.0396 (8)0.0075 (6)0.0057 (6)0.0159 (7)
C370.0410 (9)0.0684 (11)0.0380 (9)0.0157 (8)0.0026 (7)0.0182 (8)
C380.0527 (11)0.0813 (13)0.0447 (9)0.0325 (10)0.0188 (8)0.0392 (9)
C390.0545 (11)0.0576 (11)0.0680 (12)0.0182 (9)0.0243 (9)0.0425 (10)
C400.0414 (9)0.0371 (8)0.0464 (9)0.0072 (7)0.0110 (7)0.0183 (7)
Geometric parameters (Å, º) top
Cl1—C151.7414 (15)C20—C211.389 (2)
Cl2—C221.7435 (14)C20—H200.9500
O1—C271.4320 (16)C21—C221.382 (2)
O1—C111.4359 (15)C21—H210.9500
O2—C181.4167 (15)C22—C231.382 (2)
O2—C341.4295 (16)C23—C241.384 (2)
O3—C21.3680 (19)C23—H230.9500
O3—C251.4235 (18)C24—H240.9500
O4—C81.3621 (19)C25—H25A0.9800
O4—C261.428 (2)C25—H25B0.9800
C1—C21.376 (2)C25—H25C0.9800
C1—C101.410 (2)C26—H26A0.9800
C1—C111.5267 (18)C26—H26B0.9800
C2—C31.424 (2)C26—H26C0.9800
C3—C41.371 (2)C27—C281.5044 (19)
C3—H30.9500C27—H27A0.9900
C4—C51.416 (2)C27—H27B0.9900
C4—H40.9500C28—C291.391 (2)
C5—C101.412 (2)C28—C331.392 (2)
C5—C61.416 (2)C29—C301.388 (2)
C6—C71.366 (2)C29—H290.9500
C6—H60.9500C30—C311.384 (2)
C7—C81.422 (2)C30—H300.9500
C7—H70.9500C31—C321.380 (3)
C8—C91.379 (2)C31—H310.9500
C9—C101.4006 (19)C32—C331.387 (2)
C9—C181.5230 (19)C32—H320.9500
C11—C131.5089 (18)C33—H330.9500
C11—C181.6277 (18)C34—C351.5050 (19)
C12—C141.385 (2)C34—H34A0.9900
C12—C131.3949 (18)C34—H34B0.9900
C12—H120.9500C35—C361.386 (2)
C13—C171.3913 (19)C35—C401.387 (2)
C14—C151.384 (2)C36—C371.385 (2)
C14—H140.9500C36—H360.9500
C15—C161.380 (2)C37—C381.376 (3)
C16—C171.383 (2)C37—H370.9500
C16—H160.9500C38—C391.379 (3)
C17—H170.9500C38—H380.9500
C18—C191.5355 (18)C39—C401.387 (2)
C19—C241.394 (2)C39—H390.9500
C19—C201.3947 (19)C40—H400.9500
C27—O1—C11115.90 (10)C22—C21—H21120.4
C18—O2—C34119.75 (10)C20—C21—H21120.4
C2—O3—C25118.69 (13)C23—C22—C21120.94 (13)
C8—O4—C26118.61 (14)C23—C22—Cl2119.27 (12)
C2—C1—C10118.46 (13)C21—C22—Cl2119.79 (11)
C2—C1—C11133.47 (13)C22—C23—C24119.35 (14)
C10—C1—C11107.80 (11)C22—C23—H23120.3
O3—C2—C1118.01 (13)C24—C23—H23120.3
O3—C2—C3122.65 (13)C23—C24—C19121.21 (13)
C1—C2—C3119.32 (14)C23—C24—H24119.4
C4—C3—C2121.51 (14)C19—C24—H24119.4
C4—C3—H3119.2O3—C25—H25A109.5
C2—C3—H3119.2O3—C25—H25B109.5
C3—C4—C5121.07 (14)H25A—C25—H25B109.5
C3—C4—H4119.5O3—C25—H25C109.5
C5—C4—H4119.5H25A—C25—H25C109.5
C10—C5—C4116.08 (14)H25B—C25—H25C109.5
C10—C5—C6116.03 (14)O4—C26—H26A109.5
C4—C5—C6127.84 (14)O4—C26—H26B109.5
C7—C6—C5121.22 (14)H26A—C26—H26B109.5
C7—C6—H6119.4O4—C26—H26C109.5
C5—C6—H6119.4H26A—C26—H26C109.5
C6—C7—C8121.50 (14)H26B—C26—H26C109.5
C6—C7—H7119.3O1—C27—C28109.42 (11)
C8—C7—H7119.3O1—C27—H27A109.8
O4—C8—C9117.19 (13)C28—C27—H27A109.8
O4—C8—C7123.92 (14)O1—C27—H27B109.8
C9—C8—C7118.88 (14)C28—C27—H27B109.8
C8—C9—C10118.99 (13)H27A—C27—H27B108.2
C8—C9—C18131.49 (13)C29—C28—C33118.75 (14)
C10—C9—C18108.56 (12)C29—C28—C27121.35 (12)
C9—C10—C1113.21 (12)C33—C28—C27119.90 (13)
C9—C10—C5123.21 (14)C30—C29—C28120.52 (14)
C1—C10—C5123.50 (13)C30—C29—H29119.7
O1—C11—C13111.10 (10)C28—C29—H29119.7
O1—C11—C1108.72 (10)C31—C30—C29120.34 (16)
C13—C11—C1119.20 (11)C31—C30—H30119.8
O1—C11—C18103.24 (9)C29—C30—H30119.8
C13—C11—C18111.09 (10)C32—C31—C30119.38 (15)
C1—C11—C18102.01 (10)C32—C31—H31120.3
C14—C12—C13120.71 (13)C30—C31—H31120.3
C14—C12—H12119.6C31—C32—C33120.65 (15)
C13—C12—H12119.6C31—C32—H32119.7
C17—C13—C12118.78 (13)C33—C32—H32119.7
C17—C13—C11118.42 (11)C32—C33—C28120.34 (15)
C12—C13—C11122.46 (12)C32—C33—H33119.8
C15—C14—C12118.91 (13)C28—C33—H33119.8
C15—C14—H14120.5O2—C34—C35108.48 (11)
C12—C14—H14120.5O2—C34—H34A110.0
C16—C15—C14121.71 (13)C35—C34—H34A110.0
C16—C15—Cl1118.59 (12)O2—C34—H34B110.0
C14—C15—Cl1119.70 (12)C35—C34—H34B110.0
C15—C16—C17118.71 (13)H34A—C34—H34B108.4
C15—C16—H16120.6C36—C35—C40118.50 (14)
C17—C16—H16120.6C36—C35—C34119.35 (13)
C16—C17—C13121.17 (13)C40—C35—C34122.14 (13)
C16—C17—H17119.4C37—C36—C35120.80 (15)
C13—C17—H17119.4C37—C36—H36119.6
O2—C18—C9118.69 (11)C35—C36—H36119.6
O2—C18—C19104.84 (10)C38—C37—C36120.20 (17)
C9—C18—C19110.59 (11)C38—C37—H37119.9
O2—C18—C11111.71 (10)C36—C37—H37119.9
C9—C18—C11101.83 (10)C37—C38—C39119.70 (15)
C19—C18—C11109.05 (10)C37—C38—H38120.2
C24—C19—C20118.16 (13)C39—C38—H38120.2
C24—C19—C18120.05 (12)C38—C39—C40120.14 (16)
C20—C19—C18121.67 (12)C38—C39—H39119.9
C21—C20—C19121.12 (13)C40—C39—H39119.9
C21—C20—H20119.4C35—C40—C39120.66 (16)
C19—C20—H20119.4C35—C40—H40119.7
C22—C21—C20119.19 (13)C39—C40—H40119.7
C25—O3—C2—C1164.83 (14)C11—C13—C17—C16172.21 (12)
C25—O3—C2—C316.4 (2)C34—O2—C18—C931.50 (16)
C10—C1—C2—O3178.58 (12)C34—O2—C18—C19155.53 (11)
C11—C1—C2—O35.4 (2)C34—O2—C18—C1186.51 (14)
C10—C1—C2—C30.2 (2)C8—C9—C18—O248.2 (2)
C11—C1—C2—C3173.39 (14)C10—C9—C18—O2143.42 (12)
O3—C2—C3—C4176.86 (14)C8—C9—C18—C1972.93 (18)
C1—C2—C3—C41.9 (2)C10—C9—C18—C1995.42 (12)
C2—C3—C4—C51.6 (2)C8—C9—C18—C11171.29 (14)
C3—C4—C5—C100.4 (2)C10—C9—C18—C1120.36 (13)
C3—C4—C5—C6178.05 (15)O1—C11—C18—O239.72 (13)
C10—C5—C6—C72.3 (2)C13—C11—C18—O279.42 (13)
C4—C5—C6—C7175.37 (15)C1—C11—C18—O2152.50 (10)
C5—C6—C7—C81.3 (2)O1—C11—C18—C987.97 (11)
C26—O4—C8—C9167.89 (15)C13—C11—C18—C9152.88 (10)
C26—O4—C8—C713.6 (2)C1—C11—C18—C924.81 (12)
C6—C7—C8—O4174.33 (14)O1—C11—C18—C19155.13 (10)
C6—C7—C8—C94.1 (2)C13—C11—C18—C1935.98 (14)
O4—C8—C9—C10175.50 (12)C1—C11—C18—C1992.09 (12)
C7—C8—C9—C103.1 (2)O2—C18—C19—C2427.44 (16)
O4—C8—C9—C188.1 (2)C9—C18—C19—C24156.49 (12)
C7—C8—C9—C18170.44 (14)C11—C18—C19—C2492.32 (14)
C8—C9—C10—C1177.65 (12)O2—C18—C19—C20156.65 (12)
C18—C9—C10—C17.61 (15)C9—C18—C19—C2027.60 (17)
C8—C9—C10—C50.7 (2)C11—C18—C19—C2083.59 (15)
C18—C9—C10—C5169.36 (12)C24—C19—C20—C211.5 (2)
C2—C1—C10—C9175.18 (12)C18—C19—C20—C21174.45 (12)
C11—C1—C10—C910.03 (15)C19—C20—C21—C220.0 (2)
C2—C1—C10—C51.8 (2)C20—C21—C22—C231.3 (2)
C11—C1—C10—C5173.01 (12)C20—C21—C22—Cl2178.48 (11)
C4—C5—C10—C9174.59 (13)C21—C22—C23—C241.0 (2)
C6—C5—C10—C93.4 (2)Cl2—C22—C23—C24178.78 (12)
C4—C5—C10—C12.1 (2)C22—C23—C24—C190.6 (2)
C6—C5—C10—C1179.96 (13)C20—C19—C24—C231.8 (2)
C27—O1—C11—C1365.90 (14)C18—C19—C24—C23174.20 (13)
C27—O1—C11—C167.17 (14)C11—O1—C27—C28138.79 (11)
C27—O1—C11—C18174.96 (10)O1—C27—C28—C2929.00 (17)
C2—C1—C11—O186.75 (17)O1—C27—C28—C33151.23 (12)
C10—C1—C11—O186.93 (12)C33—C28—C29—C300.7 (2)
C2—C1—C11—C1341.9 (2)C27—C28—C29—C30179.54 (13)
C10—C1—C11—C13144.40 (12)C28—C29—C30—C310.4 (2)
C2—C1—C11—C18164.62 (15)C29—C30—C31—C320.4 (2)
C10—C1—C11—C1821.69 (13)C30—C31—C32—C330.9 (3)
C14—C12—C13—C170.7 (2)C31—C32—C33—C280.6 (2)
C14—C12—C13—C11172.46 (13)C29—C28—C33—C320.2 (2)
O1—C11—C13—C1735.72 (15)C27—C28—C33—C32179.96 (14)
C1—C11—C13—C17163.29 (12)C18—O2—C34—C35159.31 (11)
C18—C11—C13—C1778.61 (14)O2—C34—C35—C36148.56 (13)
O1—C11—C13—C12151.08 (12)O2—C34—C35—C4031.88 (19)
C1—C11—C13—C1223.51 (18)C40—C35—C36—C370.4 (2)
C18—C11—C13—C1294.59 (14)C34—C35—C36—C37179.15 (15)
C13—C12—C14—C150.4 (2)C35—C36—C37—C380.7 (3)
C12—C14—C15—C161.0 (2)C36—C37—C38—C390.4 (3)
C12—C14—C15—Cl1178.80 (11)C37—C38—C39—C400.2 (3)
C14—C15—C16—C170.5 (2)C36—C35—C40—C390.1 (2)
Cl1—C15—C16—C17179.31 (11)C34—C35—C40—C39179.71 (16)
C15—C16—C17—C130.7 (2)C38—C39—C40—C350.5 (3)
C12—C13—C17—C161.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg6 is the centroid of the C35–C40 ring.
D—H···AD—HH···AD···AD—H···A
C34—H34A···Cl1i0.992.663.4748 (16)140
C16—H16···Cg6ii0.952.703.3962 (16)131
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC40H32Cl2O4
Mr647.56
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)10.9773 (2), 12.6514 (2), 12.9171 (2)
α, β, γ (°)102.387 (1), 104.899 (1), 103.306 (1)
V3)1614.04 (5)
Z2
Radiation typeCu Kα
µ (mm1)2.15
Crystal size (mm)0.50 × 0.30 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionNumerical
(NUMABS; Higashi,1999)
Tmin, Tmax0.414, 0.674
No. of measured, independent and
observed [I > 2σ(I)] reflections
30622, 5828, 5503
Rint0.061
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.107, 1.06
No. of reflections5828
No. of parameters418
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.31

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
Cg6 is the centroid of the C35–C40 ring.
D—H···AD—HH···AD···AD—H···A
C34—H34A···Cl1i0.992.663.4748 (16)140
C16—H16···Cg6ii0.952.703.3962 (16)131
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

The authors would to express their gratitude to Mr Toyokazu Muto, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture & Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for their technical advice.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6865. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902–o2903.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMitsui, R., Nagasawa, A., Noguchi, K., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o1790.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010a). Acta Cryst. E66, o329.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010b). Acta Cryst. E66, o403.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds