metal-organic compounds
catena-Poly[[diaquastrontium]-bis(μ-quinoline-3-carboxylato)]
aCollege of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, bSchool of Environmental Science and Engineering, Donghua University, Shanghai 200051, People's Republic of China, cCollege of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, and dCollege of Agronomy, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@163.com
The title compound, [Sr(C10H6NO2)2(H2O)2]n, contains an eight-coordinate SrII ion displaying a distorted square-antiprismatic geometry, two quinoline-3-carboxylate ligands and two terminal water molecules. The SrII atom is surrounded by six carboxylate O atoms from four separate quinoline-3-carboxylate ligands and two O atoms from two coordinated water molecules. The bridging carboxylate O atoms [Sr—O = 2.498 (3) and 2.495 (3) Å] link SrII atoms, forming a chain extending along the c axis. The chains are linked by O—H⋯N and O—H⋯O hydrogen bonds, giving a three-dimensional framework structure
Related literature
For a similar structure, see: Miao et al. (2010). For structures with quinoline-3-carboxylate ligands, see: Okabe & Muranishi (2003a,b); Zevaco et al. (1998). For quinoline-3-carboxylate ligands in a range of metal complexes, see: Haendler (1986, 1996); Hu et al. (2007); Martell & Smith (1974); Odoko et al. (2001); Okabe & Koizumi (1997); Okabe & Makino (1998, 1999); Okabe & Muranishi (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536811036610/jh2325sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811036610/jh2325Isup2.hkl
A mixture of SrCl2 (0.05 g, 0.2 mmol) and quinoline-3-carboxylic acid (0.04 g, 0.2 mmol) in 12 ml of distilled water was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 394 K for 2 days. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.
Water H atoms were located in a difference Fourier map and were allowed to ride on the parent atom, with Uiso(H) = 1.5Ueq(O). Carboxyl H atoms were located in a difference map and refined with distance restraints, Uiso(H) = 1.5Ueq(O). Other H atoms were placed at calculated positions and were treated as riding on parent atoms with C—H = 0.96 (methyl), 0.97 (methylene) and N—H = 0.86 Å, Uiso(H) = 1.2 or 1.5Ueq(C,N). The propyl groups of H3pimda are disordered over two sites with refined occupancies of 0.768 (6):0.232 (6) and 0.642 (8):0.358 (8). C—C distance restraints of disordered components were applied. The O3W water molecule is located close to an inversion center, its occupancy factor was refined to 0.49 (1) and was fixed as 0.5 at the final refinements.
Crystal engineering of mental-organic complexes is a very active research field. It is well known that organic ligands play a crucial role in the design and construction of desirable frameworks. Quinoline-2-carboxylic acid is a tryptophan metabolite and it is known to be a chelator of transition metal ions (Martell & Smith, 1974). The crystal structures of its metal complexes have been determined for several metal ions, including FeII (Okabe & Makino, 1998; Okabe & Muranishi (2003a), ZnII (Zevaco et al., 1998; Okabe & Muranishi (2003b), NiII (Odoko et al., 2001), VIV (Okabe & Muranishi, 2002), CuII (Haendler, 1986), MnII (Haendler, 1986; Okabe & Koizumi, 1997) and CoII (Okabe & Makino, 1999). However, to the best of our knowledge, the complexes based on the quinoline-3-carboxylate ligand are still largely unexplored(Hu et al., 2007), In our previous study, we obtained a new CaII complex with quinoline-3-carboxylate ligand (Miao et al., 2010). In this paper, we will present the synthesis and
of a new Sr(II) complex assembled from SrCl2 and quinoline-3-carboxylate ligand.As illustrated in Fig. 1, the title complex [Sr(C10H6NO2)2 (H2O)2]n, contains a eight-coordinate SrII ion, two quinoline-3-carboxylate ligands and two terminal water molecules. Each SrII displays a distorted square-antiprismatic geametry defined by six carboxylate O atoms, from four separate quinoline-3-carboxylate ligands and two oxygen atoms from two aqual ligands. It is noted that the quinoline-3-carboxylate only one coordination mode in the title complex: each adopts bidentate chelating and bridging coordination fashion to connect two adjacent SrII ions. The bridging carboxylate O atoms (O1 and O4) [Sr—O, 2.498 (3), 2.495 (3) Å] link separate SrII centres, forming a one-dimensional chain
extended along c (Fig.2). The chains are linked together by O—H···N and O—H···O hydrogen bonds (Table 1) giving a three-dimensional framework structure (Fig.3).For a similar structure, see: Miao et al. (2010). For structures with quinoline-3-carboxylate ligands, see: Okabe & Muranishi (2003a,b); Zevaco et al. (1998). For quinoline-3-carboxylate ligands in a range of metal complexes, see: Haendler (1986, 1996); Hu et al. (2007); Martell & Smith (1974); Odoko et al. (2001); Okabe & Koizumi (1997); Okabe & Makino (1998, 1999); Okabe & Muranishi (2002).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Sr(C10H6NO2)2(H2O)2] | Z = 4 |
Mr = 467.97 | F(000) = 944 |
Monoclinic, P21/c | Dx = 1.569 Mg m−3 |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 16.121 (3) Å | µ = 2.76 mm−1 |
b = 15.568 (3) Å | T = 293 K |
c = 7.9607 (16) Å | Block, colorless |
β = 97.42 (3)° | 0.30 × 0.28 × 0.22 mm |
V = 1981.2 (7) Å3 |
Bruker APEXII area-detector diffractometer | 3551 independent reflections |
Radiation source: fine-focus sealed tube | 2571 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
φ and ω scan | θmax = 25.2°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −19→19 |
Tmin = 0.491, Tmax = 0.582 | k = −18→18 |
15104 measured reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.19 | w = 1/[σ2(Fo2) + (0.0192P)2 + 6.2168P] where P = (Fo2 + 2Fc2)/3 |
3551 reflections | (Δ/σ)max < 0.001 |
274 parameters | Δρmax = 0.79 e Å−3 |
6 restraints | Δρmin = −1.19 e Å−3 |
[Sr(C10H6NO2)2(H2O)2] | V = 1981.2 (7) Å3 |
Mr = 467.97 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 16.121 (3) Å | µ = 2.76 mm−1 |
b = 15.568 (3) Å | T = 293 K |
c = 7.9607 (16) Å | 0.30 × 0.28 × 0.22 mm |
β = 97.42 (3)° |
Bruker APEXII area-detector diffractometer | 3551 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 2571 reflections with I > 2σ(I) |
Tmin = 0.491, Tmax = 0.582 | Rint = 0.047 |
15104 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 6 restraints |
wR(F2) = 0.112 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.19 | Δρmax = 0.79 e Å−3 |
3551 reflections | Δρmin = −1.19 e Å−3 |
274 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3837 (3) | 0.4533 (3) | 0.1246 (6) | 0.0332 (11) | |
C2 | 0.3401 (3) | 0.5067 (3) | 0.0107 (6) | 0.0365 (12) | |
H2 | 0.2915 | 0.4874 | −0.0540 | 0.044* | |
C3 | 0.3245 (4) | 0.6518 (4) | −0.1203 (8) | 0.0556 (16) | |
H3 | 0.2742 | 0.6365 | −0.1840 | 0.067* | |
C4 | 0.3558 (5) | 0.7327 (4) | −0.1338 (9) | 0.0653 (19) | |
H4 | 0.3263 | 0.7728 | −0.2047 | 0.078* | |
C5 | 0.4321 (5) | 0.7549 (4) | −0.0410 (8) | 0.0629 (19) | |
H5 | 0.4537 | 0.8096 | −0.0539 | 0.076* | |
C6 | 0.4753 (4) | 0.6996 (4) | 0.0668 (7) | 0.0506 (15) | |
H6 | 0.5258 | 0.7164 | 0.1281 | 0.061* | |
C7 | 0.4575 (3) | 0.4845 (3) | 0.2190 (7) | 0.0390 (13) | |
H7 | 0.4861 | 0.4485 | 0.3000 | 0.047* | |
C8 | 0.3683 (3) | 0.5914 (3) | −0.0099 (7) | 0.0388 (13) | |
C9 | 0.4441 (3) | 0.6161 (3) | 0.0865 (7) | 0.0378 (13) | |
C10 | 0.3537 (3) | 0.3649 (3) | 0.1549 (6) | 0.0281 (11) | |
C11 | 0.0395 (3) | 0.3680 (3) | 0.3787 (6) | 0.0351 (12) | |
C12 | 0.0123 (3) | 0.3445 (4) | 0.5246 (7) | 0.0441 (14) | |
H12 | 0.0446 | 0.3078 | 0.5988 | 0.053* | |
C13 | −0.0952 (4) | 0.3567 (5) | 0.7191 (9) | 0.077 (2) | |
H13 | −0.0651 | 0.3203 | 0.7973 | 0.093* | |
C14 | −0.1681 (5) | 0.3917 (6) | 0.7537 (11) | 0.093 (3) | |
H14 | −0.1873 | 0.3802 | 0.8566 | 0.112* | |
C15 | −0.2145 (5) | 0.4451 (5) | 0.6353 (10) | 0.076 (2) | |
H15 | −0.2649 | 0.4679 | 0.6596 | 0.091* | |
C16 | −0.1873 (4) | 0.4638 (4) | 0.4872 (9) | 0.0564 (17) | |
H16 | −0.2188 | 0.4995 | 0.4098 | 0.068* | |
C17 | −0.0119 (4) | 0.4216 (4) | 0.2672 (7) | 0.0466 (14) | |
H17 | 0.0064 | 0.4359 | 0.1646 | 0.056* | |
C18 | −0.0649 (4) | 0.3751 (4) | 0.5657 (7) | 0.0469 (14) | |
C19 | −0.1115 (4) | 0.4298 (4) | 0.4488 (7) | 0.0439 (14) | |
C20 | 0.1226 (3) | 0.3383 (3) | 0.3324 (7) | 0.0358 (12) | |
N1 | 0.4882 (3) | 0.5620 (3) | 0.1991 (6) | 0.0419 (11) | |
N2 | −0.0843 (3) | 0.4528 (3) | 0.2993 (6) | 0.0518 (13) | |
O1 | 0.3147 (2) | 0.3241 (2) | 0.0321 (4) | 0.0353 (8) | |
O2 | 0.3661 (2) | 0.3348 (2) | 0.3017 (4) | 0.0379 (9) | |
O3 | 0.1346 (2) | 0.3385 (3) | 0.1807 (4) | 0.0486 (10) | |
O4 | 0.1760 (2) | 0.3101 (2) | 0.4499 (4) | 0.0363 (8) | |
O1W | 0.3523 (2) | 0.1106 (3) | 0.1318 (5) | 0.0446 (10) | |
H2W | 0.355 (3) | 0.119 (4) | 0.028 (2) | 0.067* | |
H1W | 0.3984 (18) | 0.093 (4) | 0.182 (5) | 0.067* | |
O2W | 0.1494 (3) | 0.1094 (3) | 0.3479 (5) | 0.0535 (11) | |
H3W | 0.141 (4) | 0.117 (3) | 0.448 (3) | 0.080* | |
H4W | 0.129 (4) | 0.063 (2) | 0.308 (6) | 0.080* | |
Sr1 | 0.25124 (3) | 0.21557 (3) | 0.23948 (6) | 0.02880 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.037 (3) | 0.030 (3) | 0.033 (3) | −0.003 (2) | 0.003 (2) | −0.006 (2) |
C2 | 0.033 (3) | 0.044 (3) | 0.032 (3) | −0.009 (2) | 0.004 (2) | −0.004 (2) |
C3 | 0.062 (4) | 0.054 (4) | 0.048 (4) | −0.007 (3) | −0.006 (3) | 0.010 (3) |
C4 | 0.085 (5) | 0.049 (4) | 0.062 (4) | −0.004 (3) | 0.011 (4) | 0.022 (3) |
C5 | 0.085 (5) | 0.047 (4) | 0.059 (4) | −0.022 (4) | 0.020 (4) | 0.004 (3) |
C6 | 0.057 (4) | 0.048 (4) | 0.047 (4) | −0.013 (3) | 0.009 (3) | −0.004 (3) |
C7 | 0.037 (3) | 0.042 (3) | 0.036 (3) | −0.006 (2) | −0.004 (2) | −0.004 (2) |
C8 | 0.040 (3) | 0.036 (3) | 0.042 (3) | −0.005 (2) | 0.010 (3) | 0.003 (2) |
C9 | 0.041 (3) | 0.034 (3) | 0.039 (3) | −0.010 (2) | 0.009 (3) | −0.005 (2) |
C10 | 0.021 (3) | 0.039 (3) | 0.027 (3) | −0.002 (2) | 0.014 (2) | −0.008 (2) |
C11 | 0.031 (3) | 0.042 (3) | 0.031 (3) | 0.005 (2) | −0.001 (2) | −0.004 (2) |
C12 | 0.036 (3) | 0.058 (4) | 0.037 (3) | 0.009 (3) | 0.001 (2) | 0.007 (3) |
C13 | 0.056 (5) | 0.120 (6) | 0.060 (5) | 0.024 (4) | 0.023 (4) | 0.025 (4) |
C14 | 0.074 (6) | 0.140 (8) | 0.072 (6) | 0.022 (5) | 0.035 (5) | 0.009 (5) |
C15 | 0.049 (4) | 0.095 (6) | 0.086 (6) | 0.016 (4) | 0.024 (4) | −0.005 (5) |
C16 | 0.044 (4) | 0.061 (4) | 0.067 (4) | 0.016 (3) | 0.016 (3) | −0.009 (3) |
C17 | 0.048 (4) | 0.055 (4) | 0.037 (3) | 0.015 (3) | 0.006 (3) | 0.009 (3) |
C18 | 0.038 (3) | 0.059 (4) | 0.044 (4) | 0.007 (3) | 0.006 (3) | 0.005 (3) |
C19 | 0.038 (3) | 0.044 (3) | 0.051 (4) | 0.001 (2) | 0.008 (3) | −0.004 (3) |
C20 | 0.037 (3) | 0.035 (3) | 0.034 (3) | 0.004 (2) | 0.000 (2) | −0.002 (2) |
N1 | 0.039 (3) | 0.046 (3) | 0.040 (3) | −0.012 (2) | 0.000 (2) | −0.005 (2) |
N2 | 0.044 (3) | 0.055 (3) | 0.056 (3) | 0.019 (2) | 0.004 (2) | 0.007 (2) |
O1 | 0.042 (2) | 0.0345 (19) | 0.0281 (19) | −0.0058 (15) | −0.0005 (16) | −0.0059 (14) |
O2 | 0.047 (2) | 0.047 (2) | 0.0189 (18) | −0.0094 (17) | 0.0002 (15) | 0.0023 (15) |
O3 | 0.055 (3) | 0.068 (3) | 0.024 (2) | 0.023 (2) | 0.0086 (18) | 0.0050 (17) |
O4 | 0.033 (2) | 0.051 (2) | 0.0246 (18) | 0.0092 (16) | 0.0020 (15) | 0.0017 (15) |
O1W | 0.044 (2) | 0.056 (2) | 0.033 (2) | 0.0159 (19) | 0.0027 (18) | 0.0034 (18) |
O2W | 0.066 (3) | 0.063 (3) | 0.032 (2) | −0.029 (2) | 0.009 (2) | −0.0082 (19) |
Sr1 | 0.0294 (3) | 0.0317 (2) | 0.0244 (3) | −0.0002 (2) | −0.00020 (17) | 0.00050 (19) |
C1—C2 | 1.357 (7) | C14—C15 | 1.398 (11) |
C1—C7 | 1.409 (7) | C14—H14 | 0.9300 |
C1—C10 | 1.488 (7) | C15—C16 | 1.342 (9) |
C2—C8 | 1.412 (7) | C15—H15 | 0.9300 |
C2—H2 | 0.9300 | C16—C19 | 1.400 (8) |
C3—C4 | 1.366 (8) | C16—H16 | 0.9300 |
C3—C8 | 1.412 (8) | C17—N2 | 1.320 (7) |
C3—H3 | 0.9300 | C17—H17 | 0.9300 |
C4—C5 | 1.394 (9) | C18—C19 | 1.406 (8) |
C4—H4 | 0.9300 | C19—N2 | 1.368 (7) |
C5—C6 | 1.345 (9) | C20—O3 | 1.247 (6) |
C5—H5 | 0.9300 | C20—O4 | 1.265 (6) |
C6—C9 | 1.411 (7) | O1—Sr1i | 2.498 (3) |
C6—H6 | 0.9300 | O1—Sr1 | 2.658 (3) |
C7—N1 | 1.322 (6) | O2—Sr1 | 2.624 (3) |
C7—H7 | 0.9300 | O3—Sr1 | 2.682 (4) |
C8—C9 | 1.410 (7) | O4—Sr1ii | 2.495 (3) |
C9—N1 | 1.362 (7) | O4—Sr1 | 2.640 (3) |
C10—O2 | 1.251 (6) | O1W—Sr1 | 2.534 (4) |
C10—O1 | 1.263 (5) | O1W—H2W | 0.840 (10) |
C11—C12 | 1.344 (7) | O1W—H1W | 0.841 (10) |
C11—C17 | 1.407 (7) | O2W—Sr1 | 2.557 (4) |
C11—C20 | 1.508 (7) | O2W—H3W | 0.839 (10) |
C12—C18 | 1.410 (8) | O2W—H4W | 0.838 (10) |
C12—H12 | 0.9300 | Sr1—O4i | 2.495 (3) |
C13—C14 | 1.356 (10) | Sr1—O1ii | 2.498 (3) |
C13—C18 | 1.402 (8) | Sr1—H2W | 2.93 (4) |
C13—H13 | 0.9300 | ||
C2—C1—C7 | 118.3 (5) | C20—O3—Sr1 | 91.3 (3) |
C2—C1—C10 | 121.6 (5) | C20—O4—Sr1ii | 160.4 (3) |
C7—C1—C10 | 120.1 (5) | C20—O4—Sr1 | 92.8 (3) |
C1—C2—C8 | 120.3 (5) | Sr1ii—O4—Sr1 | 106.78 (12) |
C1—C2—H2 | 119.9 | Sr1—O1W—H2W | 110 (4) |
C8—C2—H2 | 119.9 | Sr1—O1W—H1W | 128 (4) |
C4—C3—C8 | 120.2 (6) | H2W—O1W—H1W | 111.6 (14) |
C4—C3—H3 | 119.9 | Sr1—O2W—H3W | 115 (4) |
C8—C3—H3 | 119.9 | Sr1—O2W—H4W | 132 (3) |
C3—C4—C5 | 119.8 (6) | H3W—O2W—H4W | 111.9 (14) |
C3—C4—H4 | 120.1 | O4i—Sr1—O1ii | 156.08 (11) |
C5—C4—H4 | 120.1 | O4i—Sr1—O1W | 80.89 (12) |
C6—C5—C4 | 121.9 (6) | O1ii—Sr1—O1W | 87.25 (11) |
C6—C5—H5 | 119.1 | O4i—Sr1—O2W | 87.22 (12) |
C4—C5—H5 | 119.1 | O1ii—Sr1—O2W | 74.30 (13) |
C5—C6—C9 | 119.9 (6) | O1W—Sr1—O2W | 99.57 (14) |
C5—C6—H6 | 120.1 | O4i—Sr1—O2 | 122.32 (11) |
C9—C6—H6 | 120.1 | O1ii—Sr1—O2 | 78.73 (11) |
N1—C7—C1 | 123.7 (5) | O1W—Sr1—O2 | 92.94 (13) |
N1—C7—H7 | 118.2 | O2W—Sr1—O2 | 149.55 (11) |
C1—C7—H7 | 118.2 | O4i—Sr1—O4 | 117.83 (13) |
C9—C8—C2 | 117.4 (5) | O1ii—Sr1—O4 | 73.29 (10) |
C9—C8—C3 | 119.1 (5) | O1W—Sr1—O4 | 160.47 (11) |
C2—C8—C3 | 123.5 (5) | O2W—Sr1—O4 | 77.18 (13) |
N1—C9—C8 | 122.1 (5) | O2—Sr1—O4 | 81.79 (11) |
N1—C9—C6 | 118.7 (5) | O4i—Sr1—O1 | 73.02 (10) |
C8—C9—C6 | 119.2 (5) | O1ii—Sr1—O1 | 126.30 (13) |
O2—C10—O1 | 122.6 (4) | O1W—Sr1—O1 | 83.32 (12) |
O2—C10—C1 | 118.7 (4) | O2W—Sr1—O1 | 159.40 (12) |
O1—C10—C1 | 118.6 (4) | O2—Sr1—O1 | 49.34 (10) |
C12—C11—C17 | 118.4 (5) | O4—Sr1—O1 | 106.60 (10) |
C12—C11—C20 | 121.8 (5) | O4i—Sr1—O3 | 72.94 (12) |
C17—C11—C20 | 119.8 (5) | O1ii—Sr1—O3 | 122.19 (11) |
C11—C12—C18 | 120.3 (5) | O1W—Sr1—O3 | 150.27 (11) |
C11—C12—H12 | 119.9 | O2W—Sr1—O3 | 93.09 (14) |
C18—C12—H12 | 119.9 | O2—Sr1—O3 | 89.40 (12) |
C14—C13—C18 | 120.2 (7) | O4—Sr1—O3 | 48.96 (10) |
C14—C13—H13 | 119.9 | O1—Sr1—O3 | 75.85 (11) |
C18—C13—H13 | 119.9 | O4i—Sr1—Sr1ii | 150.83 (8) |
C13—C14—C15 | 120.3 (7) | O1ii—Sr1—Sr1ii | 38.27 (8) |
C13—C14—H14 | 119.8 | O1W—Sr1—Sr1ii | 125.06 (9) |
C15—C14—H14 | 119.8 | O2W—Sr1—Sr1ii | 76.24 (9) |
C16—C15—C14 | 120.9 (7) | O2—Sr1—Sr1ii | 73.85 (8) |
C16—C15—H15 | 119.5 | O4—Sr1—Sr1ii | 35.41 (7) |
C14—C15—H15 | 119.5 | O1—Sr1—Sr1ii | 118.86 (7) |
C15—C16—C19 | 120.2 (6) | O3—Sr1—Sr1ii | 83.99 (8) |
C15—C16—H16 | 119.9 | O4i—Sr1—Sr1i | 37.81 (8) |
C19—C16—H16 | 119.9 | O1ii—Sr1—Sr1i | 156.01 (8) |
N2—C17—C11 | 124.0 (5) | O1W—Sr1—Sr1i | 76.17 (9) |
N2—C17—H17 | 118.0 | O2W—Sr1—Sr1i | 125.03 (9) |
C11—C17—H17 | 118.0 | O2—Sr1—Sr1i | 84.84 (7) |
C13—C18—C19 | 118.9 (6) | O4—Sr1—Sr1i | 121.68 (7) |
C13—C18—C12 | 123.4 (6) | O1—Sr1—Sr1i | 35.59 (7) |
C19—C18—C12 | 117.6 (5) | O3—Sr1—Sr1i | 74.54 (8) |
N2—C19—C16 | 118.5 (6) | Sr1ii—Sr1—Sr1i | 149.85 (2) |
N2—C19—C18 | 122.0 (5) | O4i—Sr1—H2W | 68.4 (7) |
C16—C19—C18 | 119.4 (6) | O1ii—Sr1—H2W | 102.4 (5) |
O3—C20—O4 | 122.8 (5) | O1W—Sr1—H2W | 15.7 (6) |
O3—C20—C11 | 119.3 (5) | O2W—Sr1—H2W | 107.5 (11) |
O4—C20—C11 | 117.8 (5) | O2—Sr1—H2W | 91.7 (11) |
C7—N1—C9 | 118.1 (4) | O4—Sr1—H2W | 172.8 (10) |
C17—N2—C19 | 117.6 (5) | O1—Sr1—H2W | 71.0 (10) |
C10—O1—Sr1i | 161.6 (3) | O3—Sr1—H2W | 134.7 (6) |
C10—O1—Sr1 | 91.8 (3) | Sr1ii—Sr1—H2W | 139.3 (6) |
Sr1i—O1—Sr1 | 106.14 (12) | Sr1i—Sr1—H2W | 60.5 (6) |
C10—O2—Sr1 | 93.7 (3) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H2W···O2i | 0.84 (1) | 1.97 (2) | 2.798 (5) | 168 (6) |
O1W—H1W···N1iii | 0.84 (1) | 2.01 (1) | 2.846 (6) | 175 (6) |
O2W—H3W···O3ii | 0.84 (1) | 1.99 (2) | 2.810 (5) | 166 (5) |
O2W—H4W···N2iv | 0.84 (1) | 2.01 (1) | 2.846 (6) | 176 (5) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+1/2, z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) −x, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Sr(C10H6NO2)2(H2O)2] |
Mr | 467.97 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 16.121 (3), 15.568 (3), 7.9607 (16) |
β (°) | 97.42 (3) |
V (Å3) | 1981.2 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.76 |
Crystal size (mm) | 0.30 × 0.28 × 0.22 |
Data collection | |
Diffractometer | Bruker APEXII area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.491, 0.582 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15104, 3551, 2571 |
Rint | 0.047 |
(sin θ/λ)max (Å−1) | 0.599 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.112, 1.19 |
No. of reflections | 3551 |
No. of parameters | 274 |
No. of restraints | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.79, −1.19 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H2W···O2i | 0.840 (10) | 1.972 (17) | 2.798 (5) | 168 (6) |
O1W—H1W···N1ii | 0.841 (10) | 2.007 (13) | 2.846 (6) | 175 (6) |
O2W—H3W···O3iii | 0.839 (10) | 1.989 (15) | 2.810 (5) | 166 (5) |
O2W—H4W···N2iv | 0.838 (10) | 2.010 (12) | 2.846 (6) | 176 (5) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) x, −y+1/2, z+1/2; (iv) −x, y−1/2, −z+1/2. |
Acknowledgements
This work was supported by the Nonprofit Industry Foundation of the National Marine Public Welfare Projects (grant No. 2000905021), the Guangdong Oceanic Fisheries Technology Promotion Project [grant No. A2009003–018(c)], the Guangdong Chinese Academy of Science comprehensive strategic cooperation project (grant No. 2009B091300121), Guangdong Province key project in the field of social development [grant No. A2009011–007(c)], the Science and Technology Department of Guangdong Province Project (grant No. 00087061110314018) and the Guangdong Natural Science Foundation (No. 9252408801000002)
References
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Haendler, H. M. (1986). Acta Cryst. C42, 147–149. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Haendler, H. M. (1996). Acta Cryst. C52, 801–803. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Hu, S., Zhang, S.-H. & Zeng, M.-H. (2007). Acta Cryst. E63, m2565. Web of Science CSD CrossRef IUCr Journals Google Scholar
Martell, A. E. & Smith, R. M. (1974). Critical Stability Constants, Vol. 1, pp. 78, 372; Vol. 2, p. 219. New York: Plenum Press. Google Scholar
Miao, D.-L., Li, S.-J., Song, W.-D., Liu, J.-H. & Li, X.-F. (2010). Acta Cryst. E66, m1441–m1442. Web of Science CSD CrossRef IUCr Journals Google Scholar
Odoko, M., Muranishi, Y. & Okabe, N. (2001). Acta Cryst. E57, m267–m269. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okabe, N. & Koizumi, M. (1997). Acta Cryst. C53, 852–854. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Okabe, N. & Makino, T. (1998). Acta Cryst. C54, 1279–1280. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Okabe, N. & Makino, T. (1999). Acta Cryst. C55, 300–302. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okabe, N. & Muranishi, Y. (2002). Acta Cryst. E58, m287–m289. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okabe, N. & Muranishi, Y. (2003a). Acta Cryst. E59, m220–m222. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okabe, N. & Muranishi, Y. (2003b). Acta Cryst. E59, m244–m246. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zevaco, T. A., Gorls, H. & Dinjus, E. (1998). Inorg. Chim. Acta, 269, 283–286. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Crystal engineering of mental-organic complexes is a very active research field. It is well known that organic ligands play a crucial role in the design and construction of desirable frameworks. Quinoline-2-carboxylic acid is a tryptophan metabolite and it is known to be a chelator of transition metal ions (Martell & Smith, 1974). The crystal structures of its metal complexes have been determined for several metal ions, including FeII (Okabe & Makino, 1998; Okabe & Muranishi (2003a), ZnII (Zevaco et al., 1998; Okabe & Muranishi (2003b), NiII (Odoko et al., 2001), VIV (Okabe & Muranishi, 2002), CuII (Haendler, 1986), MnII (Haendler, 1986; Okabe & Koizumi, 1997) and CoII (Okabe & Makino, 1999). However, to the best of our knowledge, the complexes based on the quinoline-3-carboxylate ligand are still largely unexplored(Hu et al., 2007), In our previous study, we obtained a new CaII complex with quinoline-3-carboxylate ligand (Miao et al., 2010). In this paper, we will present the synthesis and crystal structure of a new Sr(II) complex assembled from SrCl2 and quinoline-3-carboxylate ligand.
As illustrated in Fig. 1, the title complex [Sr(C10H6NO2)2 (H2O)2]n, contains a eight-coordinate SrII ion, two quinoline-3-carboxylate ligands and two terminal water molecules. Each SrII displays a distorted square-antiprismatic geametry defined by six carboxylate O atoms, from four separate quinoline-3-carboxylate ligands and two oxygen atoms from two aqual ligands. It is noted that the quinoline-3-carboxylate only one coordination mode in the title complex: each adopts bidentate chelating and bridging coordination fashion to connect two adjacent SrII ions. The bridging carboxylate O atoms (O1 and O4) [Sr—O, 2.498 (3), 2.495 (3) Å] link separate SrII centres, forming a one-dimensional chain substructure extended along c (Fig.2). The chains are linked together by O—H···N and O—H···O hydrogen bonds (Table 1) giving a three-dimensional framework structure (Fig.3).