metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aqua­strontium]-bis­­(μ-quinoline-3-carboxyl­ato)]

aCollege of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, bSchool of Environmental Science and Engineering, Donghua University, Shanghai 200051, People's Republic of China, cCollege of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, and dCollege of Agronomy, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@163.com

(Received 29 August 2011; accepted 8 September 2011; online 14 September 2011)

The title compound, [Sr(C10H6NO2)2(H2O)2]n, contains an eight-coordinate SrII ion displaying a distorted square-anti­prismatic geometry, two quinoline-3-carboxyl­ate ligands and two terminal water mol­ecules. The SrII atom is surrounded by six carboxyl­ate O atoms from four separate quinoline-3-carboxyl­ate ligands and two O atoms from two coordinated water mol­ecules. The bridging carboxyl­ate O atoms [Sr—O = 2.498 (3) and 2.495 (3) Å] link SrII atoms, forming a chain substructure extending along the c axis. The chains are linked by O—H⋯N and O—H⋯O hydrogen bonds, giving a three-dimensional framework structure

Related literature

For a similar structure, see: Miao et al. (2010[Miao, D.-L., Li, S.-J., Song, W.-D., Liu, J.-H. & Li, X.-F. (2010). Acta Cryst. E66, m1441-m1442.]). For structures with quinoline-3-carboxyl­ate ligands, see: Okabe & Muranishi (2003a[Okabe, N. & Muranishi, Y. (2003a). Acta Cryst. E59, m220-m222.],b[Okabe, N. & Muranishi, Y. (2003b). Acta Cryst. E59, m244-m246.]); Zevaco et al. (1998[Zevaco, T. A., Gorls, H. & Dinjus, E. (1998). Inorg. Chim. Acta, 269, 283-286.]). For quinoline-3-carboxyl­ate ligands in a range of metal complexes, see: Haendler (1986[Haendler, H. M. (1986). Acta Cryst. C42, 147-149.], 1996[Haendler, H. M. (1996). Acta Cryst. C52, 801-803.]); Hu et al. (2007[Hu, S., Zhang, S.-H. & Zeng, M.-H. (2007). Acta Cryst. E63, m2565.]); Martell & Smith (1974[Martell, A. E. & Smith, R. M. (1974). Critical Stability Constants, Vol. 1, pp. 78, 372; Vol. 2, p. 219. New York: Plenum Press.]); Odoko et al. (2001[Odoko, M., Muranishi, Y. & Okabe, N. (2001). Acta Cryst. E57, m267-m269.]); Okabe & Koizumi (1997[Okabe, N. & Koizumi, M. (1997). Acta Cryst. C53, 852-854.]); Okabe & Makino (1998[Okabe, N. & Makino, T. (1998). Acta Cryst. C54, 1279-1280.], 1999[Okabe, N. & Makino, T. (1999). Acta Cryst. C55, 300-302.]); Okabe & Muranishi (2002[Okabe, N. & Muranishi, Y. (2002). Acta Cryst. E58, m287-m289.]).

[Scheme 1]

Experimental

Crystal data
  • [Sr(C10H6NO2)2(H2O)2]

  • Mr = 467.97

  • Monoclinic, P 21 /c

  • a = 16.121 (3) Å

  • b = 15.568 (3) Å

  • c = 7.9607 (16) Å

  • β = 97.42 (3)°

  • V = 1981.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.76 mm−1

  • T = 293 K

  • 0.30 × 0.28 × 0.22 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.491, Tmax = 0.582

  • 15104 measured reflections

  • 3551 independent reflections

  • 2571 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.112

  • S = 1.19

  • 3551 reflections

  • 274 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.79 e Å−3

  • Δρmin = −1.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯O2i 0.84 (1) 1.97 (2) 2.798 (5) 168 (6)
O1W—H1W⋯N1ii 0.84 (1) 2.01 (1) 2.846 (6) 175 (6)
O2W—H3W⋯O3iii 0.84 (1) 1.99 (2) 2.810 (5) 166 (5)
O2W—H4W⋯N2iv 0.84 (1) 2.01 (1) 2.846 (6) 176 (5)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Crystal engineering of mental-organic complexes is a very active research field. It is well known that organic ligands play a crucial role in the design and construction of desirable frameworks. Quinoline-2-carboxylic acid is a tryptophan metabolite and it is known to be a chelator of transition metal ions (Martell & Smith, 1974). The crystal structures of its metal complexes have been determined for several metal ions, including FeII (Okabe & Makino, 1998; Okabe & Muranishi (2003a), ZnII (Zevaco et al., 1998; Okabe & Muranishi (2003b), NiII (Odoko et al., 2001), VIV (Okabe & Muranishi, 2002), CuII (Haendler, 1986), MnII (Haendler, 1986; Okabe & Koizumi, 1997) and CoII (Okabe & Makino, 1999). However, to the best of our knowledge, the complexes based on the quinoline-3-carboxylate ligand are still largely unexplored(Hu et al., 2007), In our previous study, we obtained a new CaII complex with quinoline-3-carboxylate ligand (Miao et al., 2010). In this paper, we will present the synthesis and crystal structure of a new Sr(II) complex assembled from SrCl2 and quinoline-3-carboxylate ligand.

As illustrated in Fig. 1, the title complex [Sr(C10H6NO2)2 (H2O)2]n, contains a eight-coordinate SrII ion, two quinoline-3-carboxylate ligands and two terminal water molecules. Each SrII displays a distorted square-antiprismatic geametry defined by six carboxylate O atoms, from four separate quinoline-3-carboxylate ligands and two oxygen atoms from two aqual ligands. It is noted that the quinoline-3-carboxylate only one coordination mode in the title complex: each adopts bidentate chelating and bridging coordination fashion to connect two adjacent SrII ions. The bridging carboxylate O atoms (O1 and O4) [Sr—O, 2.498 (3), 2.495 (3) Å] link separate SrII centres, forming a one-dimensional chain substructure extended along c (Fig.2). The chains are linked together by O—H···N and O—H···O hydrogen bonds (Table 1) giving a three-dimensional framework structure (Fig.3).

Related literature top

For a similar structure, see: Miao et al. (2010). For structures with quinoline-3-carboxylate ligands, see: Okabe & Muranishi (2003a,b); Zevaco et al. (1998). For quinoline-3-carboxylate ligands in a range of metal complexes, see: Haendler (1986, 1996); Hu et al. (2007); Martell & Smith (1974); Odoko et al. (2001); Okabe & Koizumi (1997); Okabe & Makino (1998, 1999); Okabe & Muranishi (2002).

Experimental top

A mixture of SrCl2 (0.05 g, 0.2 mmol) and quinoline-3-carboxylic acid (0.04 g, 0.2 mmol) in 12 ml of distilled water was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 394 K for 2 days. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement top

Water H atoms were located in a difference Fourier map and were allowed to ride on the parent atom, with Uiso(H) = 1.5Ueq(O). Carboxyl H atoms were located in a difference map and refined with distance restraints, Uiso(H) = 1.5Ueq(O). Other H atoms were placed at calculated positions and were treated as riding on parent atoms with C—H = 0.96 (methyl), 0.97 (methylene) and N—H = 0.86 Å, Uiso(H) = 1.2 or 1.5Ueq(C,N). The propyl groups of H3pimda are disordered over two sites with refined occupancies of 0.768 (6):0.232 (6) and 0.642 (8):0.358 (8). C—C distance restraints of disordered components were applied. The O3W water molecule is located close to an inversion center, its occupancy factor was refined to 0.49 (1) and was fixed as 0.5 at the final refinements.

Structure description top

Crystal engineering of mental-organic complexes is a very active research field. It is well known that organic ligands play a crucial role in the design and construction of desirable frameworks. Quinoline-2-carboxylic acid is a tryptophan metabolite and it is known to be a chelator of transition metal ions (Martell & Smith, 1974). The crystal structures of its metal complexes have been determined for several metal ions, including FeII (Okabe & Makino, 1998; Okabe & Muranishi (2003a), ZnII (Zevaco et al., 1998; Okabe & Muranishi (2003b), NiII (Odoko et al., 2001), VIV (Okabe & Muranishi, 2002), CuII (Haendler, 1986), MnII (Haendler, 1986; Okabe & Koizumi, 1997) and CoII (Okabe & Makino, 1999). However, to the best of our knowledge, the complexes based on the quinoline-3-carboxylate ligand are still largely unexplored(Hu et al., 2007), In our previous study, we obtained a new CaII complex with quinoline-3-carboxylate ligand (Miao et al., 2010). In this paper, we will present the synthesis and crystal structure of a new Sr(II) complex assembled from SrCl2 and quinoline-3-carboxylate ligand.

As illustrated in Fig. 1, the title complex [Sr(C10H6NO2)2 (H2O)2]n, contains a eight-coordinate SrII ion, two quinoline-3-carboxylate ligands and two terminal water molecules. Each SrII displays a distorted square-antiprismatic geametry defined by six carboxylate O atoms, from four separate quinoline-3-carboxylate ligands and two oxygen atoms from two aqual ligands. It is noted that the quinoline-3-carboxylate only one coordination mode in the title complex: each adopts bidentate chelating and bridging coordination fashion to connect two adjacent SrII ions. The bridging carboxylate O atoms (O1 and O4) [Sr—O, 2.498 (3), 2.495 (3) Å] link separate SrII centres, forming a one-dimensional chain substructure extended along c (Fig.2). The chains are linked together by O—H···N and O—H···O hydrogen bonds (Table 1) giving a three-dimensional framework structure (Fig.3).

For a similar structure, see: Miao et al. (2010). For structures with quinoline-3-carboxylate ligands, see: Okabe & Muranishi (2003a,b); Zevaco et al. (1998). For quinoline-3-carboxylate ligands in a range of metal complexes, see: Haendler (1986, 1996); Hu et al. (2007); Martell & Smith (1974); Odoko et al. (2001); Okabe & Koizumi (1997); Okabe & Makino (1998, 1999); Okabe & Muranishi (2002).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The one-dimensional chain substructure of (I) extending along the c axis.
[Figure 3] Fig. 3. The three-dimensional hydrogen-bonded structure of (I).
catena-Poly[[diaquastrontium]-bis(µ-quinoline-3-carboxylato)] top
Crystal data top
[Sr(C10H6NO2)2(H2O)2]Z = 4
Mr = 467.97F(000) = 944
Monoclinic, P21/cDx = 1.569 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 16.121 (3) ŵ = 2.76 mm1
b = 15.568 (3) ÅT = 293 K
c = 7.9607 (16) ÅBlock, colorless
β = 97.42 (3)°0.30 × 0.28 × 0.22 mm
V = 1981.2 (7) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
3551 independent reflections
Radiation source: fine-focus sealed tube2571 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
φ and ω scanθmax = 25.2°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1919
Tmin = 0.491, Tmax = 0.582k = 1818
15104 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.0192P)2 + 6.2168P]
where P = (Fo2 + 2Fc2)/3
3551 reflections(Δ/σ)max < 0.001
274 parametersΔρmax = 0.79 e Å3
6 restraintsΔρmin = 1.19 e Å3
Crystal data top
[Sr(C10H6NO2)2(H2O)2]V = 1981.2 (7) Å3
Mr = 467.97Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.121 (3) ŵ = 2.76 mm1
b = 15.568 (3) ÅT = 293 K
c = 7.9607 (16) Å0.30 × 0.28 × 0.22 mm
β = 97.42 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
3551 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2571 reflections with I > 2σ(I)
Tmin = 0.491, Tmax = 0.582Rint = 0.047
15104 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0376 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.19Δρmax = 0.79 e Å3
3551 reflectionsΔρmin = 1.19 e Å3
274 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3837 (3)0.4533 (3)0.1246 (6)0.0332 (11)
C20.3401 (3)0.5067 (3)0.0107 (6)0.0365 (12)
H20.29150.48740.05400.044*
C30.3245 (4)0.6518 (4)0.1203 (8)0.0556 (16)
H30.27420.63650.18400.067*
C40.3558 (5)0.7327 (4)0.1338 (9)0.0653 (19)
H40.32630.77280.20470.078*
C50.4321 (5)0.7549 (4)0.0410 (8)0.0629 (19)
H50.45370.80960.05390.076*
C60.4753 (4)0.6996 (4)0.0668 (7)0.0506 (15)
H60.52580.71640.12810.061*
C70.4575 (3)0.4845 (3)0.2190 (7)0.0390 (13)
H70.48610.44850.30000.047*
C80.3683 (3)0.5914 (3)0.0099 (7)0.0388 (13)
C90.4441 (3)0.6161 (3)0.0865 (7)0.0378 (13)
C100.3537 (3)0.3649 (3)0.1549 (6)0.0281 (11)
C110.0395 (3)0.3680 (3)0.3787 (6)0.0351 (12)
C120.0123 (3)0.3445 (4)0.5246 (7)0.0441 (14)
H120.04460.30780.59880.053*
C130.0952 (4)0.3567 (5)0.7191 (9)0.077 (2)
H130.06510.32030.79730.093*
C140.1681 (5)0.3917 (6)0.7537 (11)0.093 (3)
H140.18730.38020.85660.112*
C150.2145 (5)0.4451 (5)0.6353 (10)0.076 (2)
H150.26490.46790.65960.091*
C160.1873 (4)0.4638 (4)0.4872 (9)0.0564 (17)
H160.21880.49950.40980.068*
C170.0119 (4)0.4216 (4)0.2672 (7)0.0466 (14)
H170.00640.43590.16460.056*
C180.0649 (4)0.3751 (4)0.5657 (7)0.0469 (14)
C190.1115 (4)0.4298 (4)0.4488 (7)0.0439 (14)
C200.1226 (3)0.3383 (3)0.3324 (7)0.0358 (12)
N10.4882 (3)0.5620 (3)0.1991 (6)0.0419 (11)
N20.0843 (3)0.4528 (3)0.2993 (6)0.0518 (13)
O10.3147 (2)0.3241 (2)0.0321 (4)0.0353 (8)
O20.3661 (2)0.3348 (2)0.3017 (4)0.0379 (9)
O30.1346 (2)0.3385 (3)0.1807 (4)0.0486 (10)
O40.1760 (2)0.3101 (2)0.4499 (4)0.0363 (8)
O1W0.3523 (2)0.1106 (3)0.1318 (5)0.0446 (10)
H2W0.355 (3)0.119 (4)0.028 (2)0.067*
H1W0.3984 (18)0.093 (4)0.182 (5)0.067*
O2W0.1494 (3)0.1094 (3)0.3479 (5)0.0535 (11)
H3W0.141 (4)0.117 (3)0.448 (3)0.080*
H4W0.129 (4)0.063 (2)0.308 (6)0.080*
Sr10.25124 (3)0.21557 (3)0.23948 (6)0.02880 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.037 (3)0.030 (3)0.033 (3)0.003 (2)0.003 (2)0.006 (2)
C20.033 (3)0.044 (3)0.032 (3)0.009 (2)0.004 (2)0.004 (2)
C30.062 (4)0.054 (4)0.048 (4)0.007 (3)0.006 (3)0.010 (3)
C40.085 (5)0.049 (4)0.062 (4)0.004 (3)0.011 (4)0.022 (3)
C50.085 (5)0.047 (4)0.059 (4)0.022 (4)0.020 (4)0.004 (3)
C60.057 (4)0.048 (4)0.047 (4)0.013 (3)0.009 (3)0.004 (3)
C70.037 (3)0.042 (3)0.036 (3)0.006 (2)0.004 (2)0.004 (2)
C80.040 (3)0.036 (3)0.042 (3)0.005 (2)0.010 (3)0.003 (2)
C90.041 (3)0.034 (3)0.039 (3)0.010 (2)0.009 (3)0.005 (2)
C100.021 (3)0.039 (3)0.027 (3)0.002 (2)0.014 (2)0.008 (2)
C110.031 (3)0.042 (3)0.031 (3)0.005 (2)0.001 (2)0.004 (2)
C120.036 (3)0.058 (4)0.037 (3)0.009 (3)0.001 (2)0.007 (3)
C130.056 (5)0.120 (6)0.060 (5)0.024 (4)0.023 (4)0.025 (4)
C140.074 (6)0.140 (8)0.072 (6)0.022 (5)0.035 (5)0.009 (5)
C150.049 (4)0.095 (6)0.086 (6)0.016 (4)0.024 (4)0.005 (5)
C160.044 (4)0.061 (4)0.067 (4)0.016 (3)0.016 (3)0.009 (3)
C170.048 (4)0.055 (4)0.037 (3)0.015 (3)0.006 (3)0.009 (3)
C180.038 (3)0.059 (4)0.044 (4)0.007 (3)0.006 (3)0.005 (3)
C190.038 (3)0.044 (3)0.051 (4)0.001 (2)0.008 (3)0.004 (3)
C200.037 (3)0.035 (3)0.034 (3)0.004 (2)0.000 (2)0.002 (2)
N10.039 (3)0.046 (3)0.040 (3)0.012 (2)0.000 (2)0.005 (2)
N20.044 (3)0.055 (3)0.056 (3)0.019 (2)0.004 (2)0.007 (2)
O10.042 (2)0.0345 (19)0.0281 (19)0.0058 (15)0.0005 (16)0.0059 (14)
O20.047 (2)0.047 (2)0.0189 (18)0.0094 (17)0.0002 (15)0.0023 (15)
O30.055 (3)0.068 (3)0.024 (2)0.023 (2)0.0086 (18)0.0050 (17)
O40.033 (2)0.051 (2)0.0246 (18)0.0092 (16)0.0020 (15)0.0017 (15)
O1W0.044 (2)0.056 (2)0.033 (2)0.0159 (19)0.0027 (18)0.0034 (18)
O2W0.066 (3)0.063 (3)0.032 (2)0.029 (2)0.009 (2)0.0082 (19)
Sr10.0294 (3)0.0317 (2)0.0244 (3)0.0002 (2)0.00020 (17)0.00050 (19)
Geometric parameters (Å, º) top
C1—C21.357 (7)C14—C151.398 (11)
C1—C71.409 (7)C14—H140.9300
C1—C101.488 (7)C15—C161.342 (9)
C2—C81.412 (7)C15—H150.9300
C2—H20.9300C16—C191.400 (8)
C3—C41.366 (8)C16—H160.9300
C3—C81.412 (8)C17—N21.320 (7)
C3—H30.9300C17—H170.9300
C4—C51.394 (9)C18—C191.406 (8)
C4—H40.9300C19—N21.368 (7)
C5—C61.345 (9)C20—O31.247 (6)
C5—H50.9300C20—O41.265 (6)
C6—C91.411 (7)O1—Sr1i2.498 (3)
C6—H60.9300O1—Sr12.658 (3)
C7—N11.322 (6)O2—Sr12.624 (3)
C7—H70.9300O3—Sr12.682 (4)
C8—C91.410 (7)O4—Sr1ii2.495 (3)
C9—N11.362 (7)O4—Sr12.640 (3)
C10—O21.251 (6)O1W—Sr12.534 (4)
C10—O11.263 (5)O1W—H2W0.840 (10)
C11—C121.344 (7)O1W—H1W0.841 (10)
C11—C171.407 (7)O2W—Sr12.557 (4)
C11—C201.508 (7)O2W—H3W0.839 (10)
C12—C181.410 (8)O2W—H4W0.838 (10)
C12—H120.9300Sr1—O4i2.495 (3)
C13—C141.356 (10)Sr1—O1ii2.498 (3)
C13—C181.402 (8)Sr1—H2W2.93 (4)
C13—H130.9300
C2—C1—C7118.3 (5)C20—O3—Sr191.3 (3)
C2—C1—C10121.6 (5)C20—O4—Sr1ii160.4 (3)
C7—C1—C10120.1 (5)C20—O4—Sr192.8 (3)
C1—C2—C8120.3 (5)Sr1ii—O4—Sr1106.78 (12)
C1—C2—H2119.9Sr1—O1W—H2W110 (4)
C8—C2—H2119.9Sr1—O1W—H1W128 (4)
C4—C3—C8120.2 (6)H2W—O1W—H1W111.6 (14)
C4—C3—H3119.9Sr1—O2W—H3W115 (4)
C8—C3—H3119.9Sr1—O2W—H4W132 (3)
C3—C4—C5119.8 (6)H3W—O2W—H4W111.9 (14)
C3—C4—H4120.1O4i—Sr1—O1ii156.08 (11)
C5—C4—H4120.1O4i—Sr1—O1W80.89 (12)
C6—C5—C4121.9 (6)O1ii—Sr1—O1W87.25 (11)
C6—C5—H5119.1O4i—Sr1—O2W87.22 (12)
C4—C5—H5119.1O1ii—Sr1—O2W74.30 (13)
C5—C6—C9119.9 (6)O1W—Sr1—O2W99.57 (14)
C5—C6—H6120.1O4i—Sr1—O2122.32 (11)
C9—C6—H6120.1O1ii—Sr1—O278.73 (11)
N1—C7—C1123.7 (5)O1W—Sr1—O292.94 (13)
N1—C7—H7118.2O2W—Sr1—O2149.55 (11)
C1—C7—H7118.2O4i—Sr1—O4117.83 (13)
C9—C8—C2117.4 (5)O1ii—Sr1—O473.29 (10)
C9—C8—C3119.1 (5)O1W—Sr1—O4160.47 (11)
C2—C8—C3123.5 (5)O2W—Sr1—O477.18 (13)
N1—C9—C8122.1 (5)O2—Sr1—O481.79 (11)
N1—C9—C6118.7 (5)O4i—Sr1—O173.02 (10)
C8—C9—C6119.2 (5)O1ii—Sr1—O1126.30 (13)
O2—C10—O1122.6 (4)O1W—Sr1—O183.32 (12)
O2—C10—C1118.7 (4)O2W—Sr1—O1159.40 (12)
O1—C10—C1118.6 (4)O2—Sr1—O149.34 (10)
C12—C11—C17118.4 (5)O4—Sr1—O1106.60 (10)
C12—C11—C20121.8 (5)O4i—Sr1—O372.94 (12)
C17—C11—C20119.8 (5)O1ii—Sr1—O3122.19 (11)
C11—C12—C18120.3 (5)O1W—Sr1—O3150.27 (11)
C11—C12—H12119.9O2W—Sr1—O393.09 (14)
C18—C12—H12119.9O2—Sr1—O389.40 (12)
C14—C13—C18120.2 (7)O4—Sr1—O348.96 (10)
C14—C13—H13119.9O1—Sr1—O375.85 (11)
C18—C13—H13119.9O4i—Sr1—Sr1ii150.83 (8)
C13—C14—C15120.3 (7)O1ii—Sr1—Sr1ii38.27 (8)
C13—C14—H14119.8O1W—Sr1—Sr1ii125.06 (9)
C15—C14—H14119.8O2W—Sr1—Sr1ii76.24 (9)
C16—C15—C14120.9 (7)O2—Sr1—Sr1ii73.85 (8)
C16—C15—H15119.5O4—Sr1—Sr1ii35.41 (7)
C14—C15—H15119.5O1—Sr1—Sr1ii118.86 (7)
C15—C16—C19120.2 (6)O3—Sr1—Sr1ii83.99 (8)
C15—C16—H16119.9O4i—Sr1—Sr1i37.81 (8)
C19—C16—H16119.9O1ii—Sr1—Sr1i156.01 (8)
N2—C17—C11124.0 (5)O1W—Sr1—Sr1i76.17 (9)
N2—C17—H17118.0O2W—Sr1—Sr1i125.03 (9)
C11—C17—H17118.0O2—Sr1—Sr1i84.84 (7)
C13—C18—C19118.9 (6)O4—Sr1—Sr1i121.68 (7)
C13—C18—C12123.4 (6)O1—Sr1—Sr1i35.59 (7)
C19—C18—C12117.6 (5)O3—Sr1—Sr1i74.54 (8)
N2—C19—C16118.5 (6)Sr1ii—Sr1—Sr1i149.85 (2)
N2—C19—C18122.0 (5)O4i—Sr1—H2W68.4 (7)
C16—C19—C18119.4 (6)O1ii—Sr1—H2W102.4 (5)
O3—C20—O4122.8 (5)O1W—Sr1—H2W15.7 (6)
O3—C20—C11119.3 (5)O2W—Sr1—H2W107.5 (11)
O4—C20—C11117.8 (5)O2—Sr1—H2W91.7 (11)
C7—N1—C9118.1 (4)O4—Sr1—H2W172.8 (10)
C17—N2—C19117.6 (5)O1—Sr1—H2W71.0 (10)
C10—O1—Sr1i161.6 (3)O3—Sr1—H2W134.7 (6)
C10—O1—Sr191.8 (3)Sr1ii—Sr1—H2W139.3 (6)
Sr1i—O1—Sr1106.14 (12)Sr1i—Sr1—H2W60.5 (6)
C10—O2—Sr193.7 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O2i0.84 (1)1.97 (2)2.798 (5)168 (6)
O1W—H1W···N1iii0.84 (1)2.01 (1)2.846 (6)175 (6)
O2W—H3W···O3ii0.84 (1)1.99 (2)2.810 (5)166 (5)
O2W—H4W···N2iv0.84 (1)2.01 (1)2.846 (6)176 (5)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Sr(C10H6NO2)2(H2O)2]
Mr467.97
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)16.121 (3), 15.568 (3), 7.9607 (16)
β (°) 97.42 (3)
V3)1981.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.76
Crystal size (mm)0.30 × 0.28 × 0.22
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.491, 0.582
No. of measured, independent and
observed [I > 2σ(I)] reflections
15104, 3551, 2571
Rint0.047
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.112, 1.19
No. of reflections3551
No. of parameters274
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.79, 1.19

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O2i0.840 (10)1.972 (17)2.798 (5)168 (6)
O1W—H1W···N1ii0.841 (10)2.007 (13)2.846 (6)175 (6)
O2W—H3W···O3iii0.839 (10)1.989 (15)2.810 (5)166 (5)
O2W—H4W···N2iv0.838 (10)2.010 (12)2.846 (6)176 (5)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Nonprofit Industry Foundation of the National Marine Public Welfare Projects (grant No. 2000905021), the Guangdong Oceanic Fisheries Technology Promotion Project [grant No. A2009003–018(c)], the Guangdong Chinese Academy of Science comprehensive strategic cooperation project (grant No. 2009B091300121), Guangdong Province key project in the field of social development [grant No. A2009011–007(c)], the Science and Technology Department of Guangdong Province Project (grant No. 00087061110314018) and the Guangdong Natural Science Foundation (No. 9252408801000002)

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHaendler, H. M. (1986). Acta Cryst. C42, 147–149.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHaendler, H. M. (1996). Acta Cryst. C52, 801–803.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHu, S., Zhang, S.-H. & Zeng, M.-H. (2007). Acta Cryst. E63, m2565.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMartell, A. E. & Smith, R. M. (1974). Critical Stability Constants, Vol. 1, pp. 78, 372; Vol. 2, p. 219. New York: Plenum Press.  Google Scholar
First citationMiao, D.-L., Li, S.-J., Song, W.-D., Liu, J.-H. & Li, X.-F. (2010). Acta Cryst. E66, m1441–m1442.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOdoko, M., Muranishi, Y. & Okabe, N. (2001). Acta Cryst. E57, m267–m269.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkabe, N. & Koizumi, M. (1997). Acta Cryst. C53, 852–854.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOkabe, N. & Makino, T. (1998). Acta Cryst. C54, 1279–1280.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOkabe, N. & Makino, T. (1999). Acta Cryst. C55, 300–302.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkabe, N. & Muranishi, Y. (2002). Acta Cryst. E58, m287–m289.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkabe, N. & Muranishi, Y. (2003a). Acta Cryst. E59, m220–m222.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkabe, N. & Muranishi, Y. (2003b). Acta Cryst. E59, m244–m246.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZevaco, T. A., Gorls, H. & Dinjus, E. (1998). Inorg. Chim. Acta, 269, 283–286.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds