organic compounds
2,3-Dibromo-3-(4-chlorophenyl)-1-(2-hydroxyphenyl)propan-1-one
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, P. A. College of Engineering, Mangalore 574 153, India, and cDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: hkfun@usm.my
In the title molecule, C15H11Br2ClO2, an S(6) ring motif is formed via an intramolecular O—H⋯O hydrogen bond. The dihedral angle formed between the chloro- and hydroxy-substituted benzene rings is 34.10 (15)°. In the crystal, weak intermolecular C—H⋯O hydrogen bonds link the molecules into chains along the c axis.
Related literature
For applications of chalcone compounds, see: Liu et al. (2003); Nielson et al. (1998); Rajas et al. (2002); Dinkova-Kostova et al. (1998); Goto et al. (1991); Uchida et al. (1998); Tam et al. (1989); Indira et al. (2002); Sarojini et al. (2006). For related structures, see: Butcher, Yathirajan, Anilkumar et al. (2006); Butcher, Yathirajan, Sarojini et al. (2006); Harrison et al. (2005); Yathirajan, Mayekar et al. (2007); Yathirajan, Vijesh et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536811036798/lh5331sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811036798/lh5331Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536811036798/lh5331Isup3.cml
(2E)-1-(2-Hydroxyphenyl)-3-(4-chlorophenyl)prop-2-en-1-one (0.01 mol) was treated with bromine in acetic acid (30%) until the orange colour of the solution persisted. After stirring for half an hour, the contents were poured onto crushed ice. The resulting solid mass was collected by filtration. The compound was dried and recrystallized from ethanol. Crystals suitable for
were obtained from acetone by slow evaporation (m. p. = 395–397 K). Composition: Found (Calculated) for C15H11Br2ClO2, C: 43.19 (43.05); H: 2.68 (2.65).H1O1 was located in a difference Fourier map and was fixed in its found position with Uiso(H) = 1.5 Ueq(O) [O–H = 0.7971 Å]. The remaining H atoms were positioned geometrically and refined using the riding model with Uiso(H) = 1.2 or 1.5 Ueq(C) [C–H = 0.93 to 0.98 Å]. Seven outliners were omitted for the final
-22 0 2, -21 1 2, -9 1 1, -20 0 2, 1 1 0, 2 0 0 and -5 1 8.For a structurally simple group of compounds,
display an impressive array of biological activities, among which antimalarial (Liu et al., 2003), antiprotozoal (Nielson et al., 1998), nitric oxide inhibition (Rajas et al., 2002) and anticancer activities (Dinkova-Kostova et al., 1998) have been reported in the literature. Among several organic compounds reported for non-linear optical (NLO) properties, chalcone derivatives are notable materials for their excellent blue light transmittance and good crystallizability. They provide a necessary configuration to show NLO properties, with two planar rings connected through a conjugated double bond (Goto et al., 1991; Uchida et al., 1998; Tam et al., 1989; Indira et al., 2002; Sarojini et al., 2006). The substitution of a bromo group on either of the phenyl rings can influence the non-centrosymmetric crystal packing. The bromo group can obviously improve the molecular first-order hyperpolarizabilities and can effectively reduce dipole-dipole interactions between the molecules. Chalcone derivatives usually have a lower melting temperature, which can be a drawback when we use these crystals in optical instruments. Chalcone dibromides usually have higher melting points and are thermally stable. Only a few structures of these compounds have been reported (Butcher, Yathirajan, Anilkumar et al., 2006; Butcher, Yathirajan, Sarojini et al.,2006; Harrison et al., 2005; Yathirajan, Mayekar et al., 2007; Yathirajan, Vijesh et al., 2007). In continuation to our studies on crystal structures of we report the synthesis and of the title compound.In the title compound (Fig. 1), an S(6) ring motif (Bernstein et al., 1995) is formed via the intramolecular O1—H1O1···O2 hydrogen bond (Table 1). The dihedral angle formed between the chloro-substituted benzene ring (C1–C6) and hydroxy-substituted benzene ring (C10–C15) is 34.10 (15)°.
In the crystal packing (Fig. 2), intermolecular C11—H11A···O2i hydrogen bonds (Table 1) link the molecules into chains along the c axis.
For applications of chalcone compounds, see: Liu et al. (2003); Nielson et al. (1998); Rajas et al. (2002); Dinkova-Kostova et al. (1998); Goto et al. (1991); Uchida et al. (1998); Tam et al. (1989); Indira et al. (2002); Sarojini et al. (2006). For related structures, see: Butcher, Yathirajan, Anilkumar et al. (2006); Butcher, Yathirajan, Sarojini et al. (2006); Harrison et al. (2005); Yathirajan, Mayekar et al. (2007); Yathirajan, Vijesh et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C15H11Br2ClO2 | F(000) = 1632 |
Mr = 418.51 | Dx = 1.860 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 4431 reflections |
a = 29.075 (3) Å | θ = 2.9–29.1° |
b = 9.2358 (10) Å | µ = 5.60 mm−1 |
c = 11.4374 (12) Å | T = 297 K |
β = 103.290 (2)° | Block, yellow |
V = 2989.0 (6) Å3 | 0.39 × 0.36 × 0.22 mm |
Z = 8 |
Bruker SMART APEXII DUO CCD area-detector diffractometer | 5375 independent reflections |
Radiation source: fine-focus sealed tube | 3337 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
φ and ω scans | θmax = 32.6°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −43→39 |
Tmin = 0.218, Tmax = 0.379 | k = −13→13 |
16663 measured reflections | l = −13→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0657P)2] where P = (Fo2 + 2Fc2)/3 |
5375 reflections | (Δ/σ)max = 0.001 |
181 parameters | Δρmax = 0.61 e Å−3 |
0 restraints | Δρmin = −0.47 e Å−3 |
C15H11Br2ClO2 | V = 2989.0 (6) Å3 |
Mr = 418.51 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 29.075 (3) Å | µ = 5.60 mm−1 |
b = 9.2358 (10) Å | T = 297 K |
c = 11.4374 (12) Å | 0.39 × 0.36 × 0.22 mm |
β = 103.290 (2)° |
Bruker SMART APEXII DUO CCD area-detector diffractometer | 5375 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 3337 reflections with I > 2σ(I) |
Tmin = 0.218, Tmax = 0.379 | Rint = 0.034 |
16663 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.61 e Å−3 |
5375 reflections | Δρmin = −0.47 e Å−3 |
181 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.04064 (3) | 0.29705 (9) | 0.14615 (9) | 0.0677 (2) | |
Br1 | 0.191164 (10) | 0.81997 (3) | 0.36623 (3) | 0.05335 (11) | |
Br2 | 0.046011 (11) | 0.98145 (4) | 0.41259 (3) | 0.06342 (12) | |
O1 | 0.19186 (10) | 1.3218 (2) | 0.57890 (18) | 0.0611 (6) | |
H1O1 | 0.1812 | 1.2476 | 0.5965 | 0.092* | |
O2 | 0.15388 (9) | 1.0666 (2) | 0.55101 (17) | 0.0574 (5) | |
C1 | 0.06311 (12) | 0.7159 (3) | 0.2247 (3) | 0.0545 (7) | |
H1A | 0.0577 | 0.8040 | 0.1845 | 0.065* | |
C2 | 0.04955 (11) | 0.5874 (3) | 0.1622 (3) | 0.0553 (7) | |
H2A | 0.0355 | 0.5891 | 0.0805 | 0.066* | |
C3 | 0.05732 (10) | 0.4580 (3) | 0.2236 (3) | 0.0480 (6) | |
C4 | 0.07828 (10) | 0.4529 (3) | 0.3435 (3) | 0.0480 (6) | |
H4A | 0.0835 | 0.3645 | 0.3832 | 0.058* | |
C5 | 0.09170 (10) | 0.5816 (3) | 0.4055 (3) | 0.0469 (6) | |
H5A | 0.1056 | 0.5791 | 0.4873 | 0.056* | |
C6 | 0.08443 (9) | 0.7138 (3) | 0.3460 (2) | 0.0422 (5) | |
C7 | 0.10038 (10) | 0.8494 (3) | 0.4158 (3) | 0.0444 (6) | |
H7A | 0.1148 | 0.8237 | 0.4993 | 0.053* | |
C8 | 0.13502 (9) | 0.9403 (3) | 0.3658 (2) | 0.0417 (5) | |
H8A | 0.1204 | 0.9719 | 0.2839 | 0.050* | |
C9 | 0.15471 (10) | 1.0703 (3) | 0.4438 (2) | 0.0421 (5) | |
C10 | 0.17415 (9) | 1.1927 (2) | 0.3898 (2) | 0.0376 (5) | |
C11 | 0.17591 (11) | 1.1946 (3) | 0.2682 (2) | 0.0481 (6) | |
H11A | 0.1641 | 1.1165 | 0.2191 | 0.058* | |
C12 | 0.19496 (12) | 1.3112 (3) | 0.2210 (3) | 0.0550 (7) | |
H12A | 0.1959 | 1.3116 | 0.1403 | 0.066* | |
C13 | 0.21269 (11) | 1.4279 (3) | 0.2937 (3) | 0.0545 (7) | |
H13A | 0.2253 | 1.5066 | 0.2611 | 0.065* | |
C14 | 0.21187 (10) | 1.4284 (3) | 0.4115 (3) | 0.0516 (7) | |
H14A | 0.2242 | 1.5071 | 0.4593 | 0.062* | |
C15 | 0.19263 (10) | 1.3118 (3) | 0.4619 (2) | 0.0428 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0831 (6) | 0.0495 (4) | 0.0769 (5) | −0.0197 (4) | 0.0312 (4) | −0.0233 (4) |
Br1 | 0.05194 (17) | 0.04197 (15) | 0.0691 (2) | 0.00312 (11) | 0.02003 (14) | −0.00637 (12) |
Br2 | 0.05503 (19) | 0.05123 (18) | 0.0874 (3) | 0.00816 (13) | 0.02336 (16) | −0.00960 (15) |
O1 | 0.0985 (17) | 0.0433 (10) | 0.0428 (11) | −0.0141 (10) | 0.0186 (11) | −0.0098 (8) |
O2 | 0.0898 (16) | 0.0454 (10) | 0.0388 (10) | −0.0148 (10) | 0.0190 (10) | −0.0032 (8) |
C1 | 0.0681 (18) | 0.0395 (13) | 0.0523 (17) | −0.0053 (13) | 0.0062 (14) | 0.0032 (12) |
C2 | 0.0684 (18) | 0.0489 (15) | 0.0468 (16) | −0.0067 (13) | 0.0092 (13) | −0.0065 (12) |
C3 | 0.0495 (14) | 0.0417 (13) | 0.0570 (17) | −0.0074 (11) | 0.0206 (12) | −0.0129 (12) |
C4 | 0.0531 (15) | 0.0315 (11) | 0.0615 (18) | −0.0039 (10) | 0.0174 (13) | 0.0012 (11) |
C5 | 0.0507 (14) | 0.0390 (12) | 0.0507 (15) | −0.0021 (11) | 0.0111 (11) | 0.0028 (11) |
C6 | 0.0475 (13) | 0.0345 (11) | 0.0454 (14) | −0.0047 (10) | 0.0121 (11) | −0.0022 (10) |
C7 | 0.0536 (14) | 0.0328 (11) | 0.0476 (14) | −0.0016 (10) | 0.0132 (11) | 0.0000 (10) |
C8 | 0.0507 (13) | 0.0330 (11) | 0.0418 (13) | −0.0013 (10) | 0.0118 (11) | −0.0011 (9) |
C9 | 0.0561 (14) | 0.0320 (10) | 0.0365 (13) | −0.0020 (10) | 0.0076 (11) | −0.0007 (9) |
C10 | 0.0464 (12) | 0.0305 (10) | 0.0354 (12) | −0.0008 (9) | 0.0083 (10) | −0.0001 (9) |
C11 | 0.0611 (16) | 0.0437 (13) | 0.0388 (14) | −0.0058 (12) | 0.0100 (12) | −0.0031 (10) |
C12 | 0.0691 (18) | 0.0549 (16) | 0.0433 (15) | −0.0072 (14) | 0.0178 (13) | 0.0084 (12) |
C13 | 0.0631 (17) | 0.0412 (13) | 0.0581 (18) | −0.0073 (12) | 0.0119 (14) | 0.0105 (12) |
C14 | 0.0586 (16) | 0.0306 (11) | 0.0623 (18) | −0.0067 (11) | 0.0077 (13) | −0.0024 (11) |
C15 | 0.0513 (14) | 0.0319 (11) | 0.0432 (14) | 0.0005 (10) | 0.0065 (11) | −0.0002 (9) |
Cl1—C3 | 1.741 (3) | C6—C7 | 1.501 (3) |
Br1—C8 | 1.974 (3) | C7—C8 | 1.520 (4) |
Br2—C7 | 1.990 (3) | C7—H7A | 0.9800 |
O1—C15 | 1.347 (3) | C8—C9 | 1.527 (3) |
O1—H1O1 | 0.7971 | C8—H8A | 0.9800 |
O2—C9 | 1.232 (3) | C9—C10 | 1.463 (3) |
C1—C6 | 1.383 (4) | C10—C11 | 1.403 (4) |
C1—C2 | 1.395 (4) | C10—C15 | 1.406 (3) |
C1—H1A | 0.9300 | C11—C12 | 1.376 (4) |
C2—C3 | 1.378 (4) | C11—H11A | 0.9300 |
C2—H2A | 0.9300 | C12—C13 | 1.386 (4) |
C3—C4 | 1.367 (4) | C12—H12A | 0.9300 |
C4—C5 | 1.393 (4) | C13—C14 | 1.353 (4) |
C4—H4A | 0.9300 | C13—H13A | 0.9300 |
C5—C6 | 1.390 (4) | C14—C15 | 1.398 (4) |
C5—H5A | 0.9300 | C14—H14A | 0.9300 |
C15—O1—H1O1 | 106.8 | C7—C8—Br1 | 107.91 (17) |
C6—C1—C2 | 120.7 (3) | C9—C8—Br1 | 104.04 (17) |
C6—C1—H1A | 119.6 | C7—C8—H8A | 110.2 |
C2—C1—H1A | 119.6 | C9—C8—H8A | 110.2 |
C3—C2—C1 | 118.9 (3) | Br1—C8—H8A | 110.2 |
C3—C2—H2A | 120.6 | O2—C9—C10 | 122.7 (2) |
C1—C2—H2A | 120.6 | O2—C9—C8 | 118.0 (2) |
C4—C3—C2 | 121.6 (2) | C10—C9—C8 | 119.3 (2) |
C4—C3—Cl1 | 119.2 (2) | C11—C10—C15 | 118.4 (2) |
C2—C3—Cl1 | 119.2 (2) | C11—C10—C9 | 122.3 (2) |
C3—C4—C5 | 119.3 (3) | C15—C10—C9 | 119.3 (2) |
C3—C4—H4A | 120.3 | C12—C11—C10 | 120.6 (3) |
C5—C4—H4A | 120.3 | C12—C11—H11A | 119.7 |
C6—C5—C4 | 120.4 (3) | C10—C11—H11A | 119.7 |
C6—C5—H5A | 119.8 | C11—C12—C13 | 120.0 (3) |
C4—C5—H5A | 119.8 | C11—C12—H12A | 120.0 |
C1—C6—C5 | 119.1 (2) | C13—C12—H12A | 120.0 |
C1—C6—C7 | 122.3 (2) | C14—C13—C12 | 120.7 (3) |
C5—C6—C7 | 118.6 (2) | C14—C13—H13A | 119.6 |
C6—C7—C8 | 114.2 (2) | C12—C13—H13A | 119.6 |
C6—C7—Br2 | 110.76 (19) | C13—C14—C15 | 120.5 (3) |
C8—C7—Br2 | 104.30 (16) | C13—C14—H14A | 119.7 |
C6—C7—H7A | 109.1 | C15—C14—H14A | 119.7 |
C8—C7—H7A | 109.1 | O1—C15—C14 | 117.2 (2) |
Br2—C7—H7A | 109.1 | O1—C15—C10 | 123.0 (2) |
C7—C8—C9 | 113.9 (2) | C14—C15—C10 | 119.7 (3) |
C6—C1—C2—C3 | 0.7 (5) | Br1—C8—C9—O2 | −94.9 (3) |
C1—C2—C3—C4 | −0.6 (5) | C7—C8—C9—C10 | −158.4 (2) |
C1—C2—C3—Cl1 | −179.8 (3) | Br1—C8—C9—C10 | 84.4 (2) |
C2—C3—C4—C5 | 0.7 (4) | O2—C9—C10—C11 | 178.6 (3) |
Cl1—C3—C4—C5 | 179.9 (2) | C8—C9—C10—C11 | −0.7 (4) |
C3—C4—C5—C6 | −0.8 (4) | O2—C9—C10—C15 | −0.2 (4) |
C2—C1—C6—C5 | −0.8 (5) | C8—C9—C10—C15 | −179.5 (2) |
C2—C1—C6—C7 | 178.8 (3) | C15—C10—C11—C12 | −0.5 (4) |
C4—C5—C6—C1 | 0.9 (4) | C9—C10—C11—C12 | −179.3 (3) |
C4—C5—C6—C7 | −178.7 (3) | C10—C11—C12—C13 | 0.1 (5) |
C1—C6—C7—C8 | −56.8 (4) | C11—C12—C13—C14 | 0.5 (5) |
C5—C6—C7—C8 | 122.8 (3) | C12—C13—C14—C15 | −0.7 (5) |
C1—C6—C7—Br2 | 60.6 (3) | C13—C14—C15—O1 | −178.2 (3) |
C5—C6—C7—Br2 | −119.8 (2) | C13—C14—C15—C10 | 0.3 (4) |
C6—C7—C8—C9 | −174.5 (2) | C11—C10—C15—O1 | 178.7 (3) |
Br2—C7—C8—C9 | 64.5 (2) | C9—C10—C15—O1 | −2.5 (4) |
C6—C7—C8—Br1 | −59.5 (3) | C11—C10—C15—C14 | 0.3 (4) |
Br2—C7—C8—Br1 | 179.45 (11) | C9—C10—C15—C14 | 179.2 (3) |
C7—C8—C9—O2 | 22.3 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···O2 | 0.80 | 1.87 | 2.591 (3) | 150 |
C11—H11A···O2i | 0.93 | 2.53 | 3.416 (4) | 160 |
Symmetry code: (i) x, −y+2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C15H11Br2ClO2 |
Mr | 418.51 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 297 |
a, b, c (Å) | 29.075 (3), 9.2358 (10), 11.4374 (12) |
β (°) | 103.290 (2) |
V (Å3) | 2989.0 (6) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 5.60 |
Crystal size (mm) | 0.39 × 0.36 × 0.22 |
Data collection | |
Diffractometer | Bruker SMART APEXII DUO CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.218, 0.379 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16663, 5375, 3337 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.757 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.122, 1.04 |
No. of reflections | 5375 |
No. of parameters | 181 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.61, −0.47 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···O2 | 0.80 | 1.87 | 2.591 (3) | 150 |
C11—H11A···O2i | 0.93 | 2.53 | 3.416 (4) | 160.3 |
Symmetry code: (i) x, −y+2, z−1/2. |
Acknowledgements
HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a research fellowship. VMK thanks P. A. College of Engineering for research facilities.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Butcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o2525–o2527. CSD CrossRef IUCr Journals Google Scholar
Butcher, R. J., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Mithun, A. (2006). Acta Cryst. E62, o1629–o1630. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dinkova-Kostova, A. T., Abey-gunawardana, C. & Talalay, P. (1998). J. Med. Chem. 41, 5287–5296. Web of Science CrossRef CAS PubMed Google Scholar
Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688–698. CrossRef CAS Web of Science Google Scholar
Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Anilkumar, H. G. (2005). Acta Cryst. C61, o728–o730. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Indira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214. Web of Science CrossRef CAS Google Scholar
Liu, M., Wilairat, P., Cropft, S. L., Tan, A. L. C. & Go, M. I. (2003). Bioorg. Med. Chem. 11, 2729–2738. Web of Science CrossRef PubMed CAS Google Scholar
Nielson, S. F., Christensen, S. B., Cruciani, G., Kharazmi, A. & Liljefors, T. (1998). J. Med. Chem. 41, 4819–4832. Web of Science CrossRef PubMed Google Scholar
Rajas, J., Paya, M., Domingues, J. N. & Ferrandiz, M. L. (2002). Bioorg. Med. Chem. Lett. 12, 1951–1954. Web of Science CrossRef PubMed Google Scholar
Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54–59. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tam, W., Guerin, B., Calabrese, J. C. & Stevenson, S. H. (1989). Chem. Phys. Lett. 154, 93–96. CSD CrossRef CAS Web of Science Google Scholar
Uchida, T., Kozowa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1988). Mol. Cryst. Liq. Cryst. 315, 135–140. Web of Science CrossRef Google Scholar
Yathirajan, H. S., Mayekar, A. N., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o827–o828. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yathirajan, H. S., Vijesh, A. M., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o2198–o2199. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
For a structurally simple group of compounds, chalcones display an impressive array of biological activities, among which antimalarial (Liu et al., 2003), antiprotozoal (Nielson et al., 1998), nitric oxide inhibition (Rajas et al., 2002) and anticancer activities (Dinkova-Kostova et al., 1998) have been reported in the literature. Among several organic compounds reported for non-linear optical (NLO) properties, chalcone derivatives are notable materials for their excellent blue light transmittance and good crystallizability. They provide a necessary configuration to show NLO properties, with two planar rings connected through a conjugated double bond (Goto et al., 1991; Uchida et al., 1998; Tam et al., 1989; Indira et al., 2002; Sarojini et al., 2006). The substitution of a bromo group on either of the phenyl rings can influence the non-centrosymmetric crystal packing. The bromo group can obviously improve the molecular first-order hyperpolarizabilities and can effectively reduce dipole-dipole interactions between the molecules. Chalcone derivatives usually have a lower melting temperature, which can be a drawback when we use these crystals in optical instruments. Chalcone dibromides usually have higher melting points and are thermally stable. Only a few structures of these compounds have been reported (Butcher, Yathirajan, Anilkumar et al., 2006; Butcher, Yathirajan, Sarojini et al.,2006; Harrison et al., 2005; Yathirajan, Mayekar et al., 2007; Yathirajan, Vijesh et al., 2007). In continuation to our studies on crystal structures of chalcones, we report the synthesis and crystal structure of the title compound.
In the title compound (Fig. 1), an S(6) ring motif (Bernstein et al., 1995) is formed via the intramolecular O1—H1O1···O2 hydrogen bond (Table 1). The dihedral angle formed between the chloro-substituted benzene ring (C1–C6) and hydroxy-substituted benzene ring (C10–C15) is 34.10 (15)°.
In the crystal packing (Fig. 2), intermolecular C11—H11A···O2i hydrogen bonds (Table 1) link the molecules into chains along the c axis.