metal-organic compounds
Chloridodiphenyl{[1-(1,3-thiazol-2-yl-κN)ethylidene]-4-phenylthiosemicarbazidato-κ2N1,S}tin(IV) methanol monosolvate
aDepartment of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: ramaiyer.venkatraman@jsums.edu
The title compound, [Sn(C6H5)2(C12H11N4S2)Cl]·CH4O, is formed during the reaction between 2-acetylthiazole 4-phenylthiosemicarbazone (Hacthptsc) and diphenyltin(IV) dichloride in methanol. In the the Sn atom exhibits an octahedral geometry with the [N2S] anionic tridentate thiosemicarbazone ligand having chloride trans to the central N and the two phenyl groups trans to each other. The Sn—Cl distance is 2.5929 (6), Sn—S is 2.4896 (6) and Sn—N to the central N is 2.3220 (16) Å. The MeOH molecules link the Sn complexes into one-dimensional chains via N—H⋯O and O—H⋯Cl hydrogen bonds.
Related literature
For the biological activity and structural characteristics of tin compounds of thiosemicarbazones, see: Teoh et al. (1999); Gielen et al. (2005); Chaudhary et al. (2009); Bamgboye & Bamgboye (1988); Barberi et al. (1993); Casas et al. (1994, 1996, 1997); De Sousa et al. (2001); Li et al. (2011); Macias et al. (1989); Huheey et al. (1993). For related structures, see: Venkatraman et al. (2004, 2007, 2009); Swesi et al. (2006a,b,c); Sreekanth & Kurup (2004); Mendes et al. (2008); Li et al. (2011). For standard bond lengths, see: Allen et al. (1979); Davies (1998); Dey et al. (2003). For graph-set analysis, see: Etter (1990).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 2000); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536811037627/zk2029sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811037627/zk2029Isup2.hkl
Equimolar amounts of diphenyltin dichloride and 2-acetylthiazole 4-phenylthiosemicarbazone in dry methanol were refluxed for a period of 2 h and then allowed to cool to room temperature in presence of air. Yellow crystals of the tin complex (1) appeared in about a week.
All H atoms on C were placed in calculated positions, guided by difference maps, with C—H bond distances 0.93–0.96 Å. N—H and solvent O—H hydrogen coordinates were refined. Displacement parameters for H atoms were assigned as Uiso=1.2Ueq (1.5 for Me and OH). A torsional parameter was refined for each methyl group.
Metal complexes of heterocyclic thiosemicarbazones have been the subject of intensive research for the past three decades. Among the non-transitional metals, organotin(IV) based compounds received prominence due to their structural features and potent biological activity (Teoh et al., 1999; Gielen et al., 2005; Chaudhary et al., 2009; Bamgboye & Bamgboye, 1988; Barberi et al., 1993; Casas et al., 1994; Casas, et al., 1996; Casas et al., 1997; De Sousa et al., 2001; Li et al., 2011). Continuing with this type of study (Venkatraman et al., 2009; Venkatraman et al., 2007; Swesi et al., 2006a,b,c; Venkatraman et al., 2004), we describe here the structure of a diphenyltin chloro derivative of thiazole-2-carbaldehyde N(4)-phenyl-3-thiosemicarbazone.
The tin atom is coordinated by the tridentate ligand through the thiazole ring nitrogen, the azomethine nitrogen and thiolate sulfur atom. The octahedral complex also contains one chloro ligand trans to the central N atom of the tridentate ligand and two diphenyl groups trans to each other, as shown in Fig. 1. The tridentate ligand is reasonably planar, its 18 nonhydrogen atoms having a mean deviation of 0.082 Å from coplanarity, and a maximum of 0.176 (3) Å for methyl group C5. The bite angles of the 5-membered chelate rings are N1—Sn1—S1, 76.39 (4)° and N1—Sn1—N3, 67.57 (6)°. The two phenyl groups form a trans angle C13—Sn1—C19 154.86 (8)°, and the chloro ligand forms a trans angle N1—Sn1—Cl1 165.94 (4)°. The Sn—Cl bond is in the range of normal covalent radii (2.37–2.60 Å, Casas et al., 1997; Davies, 1998). The Sn—C (phenyl) distances are similar to those in other tin complexes reported by us earlier(Venkatraman et al., 2004; 2007; 2009; Swesi et al., 2006a,b,c). The bond length Sn—C increases with an increase in
being longer in the title compound than in four-coordinate Ph2SnCl2 [2.122 (2) Å] and is higher than expected (Dey et al., 2003). The C—S bond distance of 1.755 (2) Å is slightly shorter than a C—S single bond (1.81 Å) but longer than a C—S double bond (1.62 Å) (Macias et al., 1989; Huheey et al., 1993). The relatively shorter bond length of Sn—N1 (imine) (2.3322 Å) compared with Sn—N3 (thiazole) is attributed stronger base nature of thiazole nitrogen (Sreekanth & Kurup, 2004; Mendes et al., 2008; Li et al., 2011).Two types of intermolecular hydrogen bonds are present, each involving both the Sn complex and the methanol solvent molecule. The amino N4—H group donates to methanol O1, and the methanol O1—H donates to the chloro ligand at 1/2 + x, 1/2 - y, 1/2 + z. The combination of the two hydrogen bonds forms chains of alternating Sn complexes and methanol molecules in the [1 0 1] direction, having graph set C22(8) (Etter, 1990), as shown in Fig. 2.
For the biological activity and structural characteristics of tin compounds of thiosemicarbazones, see: Teoh et al. (1999); Gielen et al. (2005); Chaudhary et al. (2009); Bamgboye & Bamgboye (1988); Barberi et al. (1993); Casas et al. (1994, 1996, 1997); De Sousa et al. (2001); Li et al. (2011); Macias et al. (1989); Huheey et al. (1993). For related structures, see: Venkatraman et al. (2004, 2007, 2009); Swesi et al. (2006a,b,c); Sreekanth Sreekanth & Kurup (2004); Mendes et al. (2008); Li et al. (2011). For reference bond lengths [ok as edited?], see: Allen et al. (1979); Davies (1998); Dey et al. (2003). For graph-set analysis, see: Etter (1990).
Data collection: COLLECT (Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Sn(C6H5)2(C12H11N4S2)Cl]·CH4O | F(000) = 1240 |
Mr = 615.75 | Dx = 1.526 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 7958 reflections |
a = 8.5971 (10) Å | θ = 2.5–32.0° |
b = 20.182 (3) Å | µ = 1.23 mm−1 |
c = 15.794 (2) Å | T = 297 K |
β = 102.050 (7)° | Fragment, yellow |
V = 2680.0 (6) Å3 | 0.30 × 0.20 × 0.17 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 8479 independent reflections |
Radiation source: fine-focus sealed tube | 6194 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ω and φ scans | θmax = 32.0°, θmin = 2.6° |
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) | h = −12→12 |
Tmin = 0.709, Tmax = 0.818 | k = −28→25 |
31922 measured reflections | l = −23→23 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.032 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.070 | w = 1/[σ2(Fo2) + (0.0236P)2 + 0.9273P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.002 |
8479 reflections | Δρmax = 0.35 e Å−3 |
316 parameters | Δρmin = −0.58 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00176 (19) |
[Sn(C6H5)2(C12H11N4S2)Cl]·CH4O | V = 2680.0 (6) Å3 |
Mr = 615.75 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.5971 (10) Å | µ = 1.23 mm−1 |
b = 20.182 (3) Å | T = 297 K |
c = 15.794 (2) Å | 0.30 × 0.20 × 0.17 mm |
β = 102.050 (7)° |
Nonius KappaCCD diffractometer | 8479 independent reflections |
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) | 6194 reflections with I > 2σ(I) |
Tmin = 0.709, Tmax = 0.818 | Rint = 0.027 |
31922 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.070 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | Δρmax = 0.35 e Å−3 |
8479 reflections | Δρmin = −0.58 e Å−3 |
316 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sn1 | 0.400041 (15) | 0.263309 (7) | 0.526902 (8) | 0.03515 (5) | |
Cl1 | 0.66803 (7) | 0.21480 (4) | 0.50486 (4) | 0.06294 (17) | |
S1 | 0.35758 (7) | 0.31789 (3) | 0.38254 (3) | 0.04796 (14) | |
S2 | 0.09795 (9) | 0.29250 (4) | 0.75637 (4) | 0.06512 (19) | |
N1 | 0.17015 (18) | 0.32507 (8) | 0.52098 (10) | 0.0356 (4) | |
N2 | 0.10480 (19) | 0.36198 (9) | 0.44956 (11) | 0.0403 (4) | |
N3 | 0.2829 (2) | 0.24841 (9) | 0.66321 (12) | 0.0419 (4) | |
N4 | 0.1258 (2) | 0.39796 (10) | 0.31437 (12) | 0.0426 (4) | |
H4N | 0.175 (3) | 0.3937 (12) | 0.2732 (15) | 0.051* | |
C1 | 0.1632 (2) | 0.28859 (11) | 0.66081 (13) | 0.0396 (4) | |
C2 | 0.2388 (3) | 0.23643 (14) | 0.80026 (17) | 0.0615 (7) | |
H2 | 0.2540 | 0.2202 | 0.8565 | 0.074* | |
C3 | 0.3249 (3) | 0.21897 (13) | 0.74245 (15) | 0.0540 (6) | |
H3 | 0.4080 | 0.1887 | 0.7554 | 0.065* | |
C4 | 0.0950 (2) | 0.32769 (11) | 0.58439 (13) | 0.0402 (5) | |
C5 | −0.0537 (3) | 0.36652 (15) | 0.58116 (17) | 0.0617 (7) | |
H5A | −0.0412 | 0.4101 | 0.5590 | 0.092* | |
H5B | −0.0746 | 0.3700 | 0.6384 | 0.092* | |
H5C | −0.1410 | 0.3445 | 0.5440 | 0.092* | |
C6 | 0.1826 (2) | 0.36139 (10) | 0.38687 (13) | 0.0367 (4) | |
C7 | −0.0056 (2) | 0.44193 (11) | 0.29689 (14) | 0.0430 (5) | |
C8 | −0.0943 (4) | 0.46150 (16) | 0.35598 (19) | 0.0756 (9) | |
H8 | −0.0706 | 0.4451 | 0.4122 | 0.091* | |
C9 | −0.2185 (4) | 0.50555 (18) | 0.3312 (2) | 0.0845 (10) | |
H9 | −0.2779 | 0.5181 | 0.3715 | 0.101* | |
C10 | −0.2564 (3) | 0.53100 (16) | 0.2506 (2) | 0.0739 (8) | |
H10 | −0.3395 | 0.5611 | 0.2354 | 0.089* | |
C11 | −0.1695 (3) | 0.51142 (17) | 0.1920 (2) | 0.0796 (9) | |
H11 | −0.1941 | 0.5281 | 0.1360 | 0.096* | |
C12 | −0.0455 (3) | 0.46717 (15) | 0.21483 (17) | 0.0631 (7) | |
H12 | 0.0118 | 0.4543 | 0.1738 | 0.076* | |
C13 | 0.2818 (3) | 0.17040 (12) | 0.49558 (13) | 0.0445 (5) | |
C14 | 0.1166 (3) | 0.16993 (15) | 0.47549 (18) | 0.0676 (8) | |
H14 | 0.0612 | 0.2091 | 0.4787 | 0.081* | |
C15 | 0.0335 (4) | 0.11204 (19) | 0.4508 (2) | 0.0847 (10) | |
H15 | −0.0771 | 0.1127 | 0.4377 | 0.102* | |
C16 | 0.1118 (5) | 0.05441 (17) | 0.4454 (2) | 0.0839 (10) | |
H16 | 0.0553 | 0.0156 | 0.4288 | 0.101* | |
C17 | 0.2748 (5) | 0.05366 (15) | 0.4646 (2) | 0.0842 (10) | |
H17 | 0.3289 | 0.0142 | 0.4609 | 0.101* | |
C18 | 0.3598 (4) | 0.11156 (13) | 0.48954 (17) | 0.0652 (7) | |
H18 | 0.4704 | 0.1105 | 0.5023 | 0.078* | |
C19 | 0.5337 (2) | 0.33492 (11) | 0.61156 (13) | 0.0408 (5) | |
C20 | 0.6194 (3) | 0.31871 (15) | 0.69410 (15) | 0.0557 (6) | |
H20 | 0.6246 | 0.2749 | 0.7127 | 0.067* | |
C21 | 0.6963 (3) | 0.36751 (19) | 0.74819 (17) | 0.0714 (9) | |
H21 | 0.7518 | 0.3564 | 0.8034 | 0.086* | |
C22 | 0.6916 (3) | 0.43192 (19) | 0.7215 (2) | 0.0784 (10) | |
H22 | 0.7428 | 0.4645 | 0.7588 | 0.094* | |
C23 | 0.6124 (3) | 0.44858 (15) | 0.6407 (2) | 0.0732 (8) | |
H23 | 0.6114 | 0.4924 | 0.6223 | 0.088* | |
C24 | 0.5321 (3) | 0.39994 (13) | 0.58489 (17) | 0.0544 (6) | |
H24 | 0.4776 | 0.4116 | 0.5297 | 0.065* | |
O1 | 0.2782 (3) | 0.38699 (13) | 0.16545 (14) | 0.0795 (7) | |
H1S | 0.252 (5) | 0.357 (2) | 0.137 (3) | 0.119* | |
C25 | 0.4439 (4) | 0.38909 (18) | 0.1816 (2) | 0.0845 (10) | |
H25A | 0.4819 | 0.4219 | 0.2250 | 0.127* | |
H25B | 0.4780 | 0.4003 | 0.1292 | 0.127* | |
H25C | 0.4860 | 0.3465 | 0.2016 | 0.127* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.03442 (8) | 0.03828 (8) | 0.03287 (8) | 0.00389 (6) | 0.00732 (5) | −0.00039 (6) |
Cl1 | 0.0524 (3) | 0.0723 (4) | 0.0704 (4) | 0.0224 (3) | 0.0273 (3) | 0.0048 (3) |
S1 | 0.0483 (3) | 0.0618 (4) | 0.0370 (3) | 0.0164 (3) | 0.0163 (2) | 0.0096 (2) |
S2 | 0.0809 (4) | 0.0739 (5) | 0.0516 (4) | 0.0144 (4) | 0.0391 (3) | 0.0095 (3) |
N1 | 0.0337 (8) | 0.0375 (9) | 0.0366 (9) | 0.0025 (7) | 0.0096 (7) | 0.0025 (7) |
N2 | 0.0351 (8) | 0.0463 (11) | 0.0394 (9) | 0.0050 (7) | 0.0072 (7) | 0.0068 (8) |
N3 | 0.0436 (9) | 0.0452 (11) | 0.0387 (10) | 0.0031 (8) | 0.0129 (8) | 0.0029 (7) |
N4 | 0.0435 (10) | 0.0478 (11) | 0.0363 (10) | 0.0051 (8) | 0.0078 (8) | 0.0054 (8) |
C1 | 0.0424 (10) | 0.0421 (11) | 0.0380 (11) | −0.0025 (9) | 0.0171 (9) | −0.0008 (9) |
C2 | 0.0757 (17) | 0.0685 (18) | 0.0436 (13) | 0.0027 (14) | 0.0202 (12) | 0.0133 (12) |
C3 | 0.0571 (14) | 0.0582 (16) | 0.0458 (13) | 0.0055 (12) | 0.0089 (11) | 0.0108 (11) |
C4 | 0.0361 (10) | 0.0438 (12) | 0.0431 (11) | −0.0001 (9) | 0.0137 (9) | 0.0022 (9) |
C5 | 0.0471 (13) | 0.0786 (19) | 0.0665 (17) | 0.0212 (13) | 0.0285 (12) | 0.0139 (14) |
C6 | 0.0356 (10) | 0.0370 (11) | 0.0359 (10) | −0.0009 (8) | 0.0038 (8) | 0.0009 (8) |
C7 | 0.0411 (11) | 0.0379 (12) | 0.0463 (12) | −0.0010 (9) | 0.0004 (9) | 0.0034 (10) |
C8 | 0.086 (2) | 0.079 (2) | 0.0632 (18) | 0.0403 (17) | 0.0187 (15) | 0.0179 (15) |
C9 | 0.084 (2) | 0.088 (2) | 0.083 (2) | 0.0415 (18) | 0.0211 (17) | 0.0145 (19) |
C10 | 0.0612 (16) | 0.0656 (19) | 0.085 (2) | 0.0173 (14) | −0.0066 (15) | 0.0078 (16) |
C11 | 0.0730 (19) | 0.090 (2) | 0.0663 (19) | 0.0237 (17) | −0.0076 (15) | 0.0245 (17) |
C12 | 0.0585 (14) | 0.0755 (19) | 0.0516 (15) | 0.0139 (13) | 0.0030 (12) | 0.0135 (13) |
C13 | 0.0581 (13) | 0.0454 (13) | 0.0306 (10) | −0.0060 (10) | 0.0104 (9) | −0.0026 (9) |
C14 | 0.0623 (16) | 0.0642 (18) | 0.080 (2) | −0.0180 (13) | 0.0245 (14) | −0.0305 (15) |
C15 | 0.083 (2) | 0.093 (3) | 0.084 (2) | −0.041 (2) | 0.0294 (17) | −0.0394 (19) |
C16 | 0.129 (3) | 0.066 (2) | 0.0580 (18) | −0.045 (2) | 0.0219 (19) | −0.0142 (15) |
C17 | 0.143 (3) | 0.0404 (16) | 0.0615 (19) | −0.0015 (18) | 0.0033 (19) | −0.0003 (13) |
C18 | 0.0880 (19) | 0.0441 (15) | 0.0547 (15) | 0.0070 (14) | −0.0050 (13) | 0.0002 (12) |
C19 | 0.0299 (9) | 0.0526 (14) | 0.0417 (11) | −0.0009 (9) | 0.0115 (8) | −0.0092 (10) |
C20 | 0.0470 (12) | 0.0766 (18) | 0.0439 (13) | −0.0096 (12) | 0.0106 (10) | −0.0023 (12) |
C21 | 0.0528 (15) | 0.119 (3) | 0.0429 (14) | −0.0235 (16) | 0.0124 (11) | −0.0221 (16) |
C22 | 0.0642 (17) | 0.098 (3) | 0.077 (2) | −0.0290 (17) | 0.0238 (16) | −0.0406 (19) |
C23 | 0.0661 (17) | 0.0568 (18) | 0.098 (2) | −0.0130 (14) | 0.0212 (16) | −0.0207 (16) |
C24 | 0.0479 (12) | 0.0528 (15) | 0.0614 (15) | 0.0000 (11) | 0.0089 (11) | −0.0047 (12) |
O1 | 0.0758 (14) | 0.1003 (19) | 0.0638 (14) | 0.0098 (13) | 0.0178 (11) | −0.0101 (11) |
C25 | 0.084 (2) | 0.095 (3) | 0.080 (2) | −0.0011 (19) | 0.0276 (17) | 0.0158 (18) |
Sn1—C19 | 2.134 (2) | C10—H10 | 0.9300 |
Sn1—C13 | 2.141 (2) | C11—C12 | 1.379 (4) |
Sn1—N1 | 2.3220 (16) | C11—H11 | 0.9300 |
Sn1—S1 | 2.4896 (6) | C12—H12 | 0.9300 |
Sn1—N3 | 2.5779 (18) | C13—C18 | 1.377 (3) |
Sn1—Cl1 | 2.5929 (6) | C13—C14 | 1.389 (3) |
S1—C6 | 1.755 (2) | C14—C15 | 1.383 (4) |
S2—C2 | 1.696 (3) | C14—H14 | 0.9300 |
S2—C1 | 1.718 (2) | C15—C16 | 1.355 (5) |
N1—C4 | 1.301 (2) | C15—H15 | 0.9300 |
N1—N2 | 1.371 (2) | C16—C17 | 1.371 (5) |
N2—C6 | 1.306 (2) | C16—H16 | 0.9300 |
N3—C1 | 1.304 (3) | C17—C18 | 1.391 (4) |
N3—C3 | 1.364 (3) | C17—H17 | 0.9300 |
N4—C6 | 1.364 (3) | C18—H18 | 0.9300 |
N4—C7 | 1.418 (3) | C19—C24 | 1.377 (3) |
N4—H4N | 0.85 (2) | C19—C20 | 1.396 (3) |
C1—C4 | 1.459 (3) | C20—C21 | 1.379 (4) |
C2—C3 | 1.337 (3) | C20—H20 | 0.9300 |
C2—H2 | 0.9300 | C21—C22 | 1.364 (5) |
C3—H3 | 0.9300 | C21—H21 | 0.9300 |
C4—C5 | 1.491 (3) | C22—C23 | 1.358 (4) |
C5—H5A | 0.9600 | C22—H22 | 0.9300 |
C5—H5B | 0.9600 | C23—C24 | 1.401 (4) |
C5—H5C | 0.9600 | C23—H23 | 0.9300 |
C7—C12 | 1.368 (3) | C24—H24 | 0.9300 |
C7—C8 | 1.380 (3) | O1—C25 | 1.395 (4) |
C8—C9 | 1.382 (4) | O1—H1S | 0.76 (4) |
C8—H8 | 0.9300 | C25—H25A | 0.9600 |
C9—C10 | 1.348 (4) | C25—H25B | 0.9600 |
C9—H9 | 0.9300 | C25—H25C | 0.9600 |
C10—C11 | 1.363 (4) | ||
C19—Sn1—C13 | 154.86 (8) | C10—C9—H9 | 118.9 |
C19—Sn1—N1 | 90.24 (7) | C8—C9—H9 | 118.9 |
C13—Sn1—N1 | 95.85 (8) | C9—C10—C11 | 118.1 (3) |
C19—Sn1—S1 | 103.35 (6) | C9—C10—H10 | 120.9 |
C13—Sn1—S1 | 101.78 (6) | C11—C10—H10 | 120.9 |
N1—Sn1—S1 | 76.39 (4) | C10—C11—C12 | 120.9 (3) |
C19—Sn1—N3 | 78.98 (7) | C10—C11—H11 | 119.5 |
C13—Sn1—N3 | 80.88 (7) | C12—C11—H11 | 119.5 |
N1—Sn1—N3 | 67.57 (6) | C7—C12—C11 | 121.0 (3) |
S1—Sn1—N3 | 143.93 (4) | C7—C12—H12 | 119.5 |
C19—Sn1—Cl1 | 87.85 (5) | C11—C12—H12 | 119.5 |
C13—Sn1—Cl1 | 91.74 (6) | C18—C13—C14 | 117.9 (2) |
N1—Sn1—Cl1 | 165.94 (4) | C18—C13—Sn1 | 123.85 (18) |
S1—Sn1—Cl1 | 90.49 (2) | C14—C13—Sn1 | 118.16 (19) |
N3—Sn1—Cl1 | 125.54 (4) | C15—C14—C13 | 120.9 (3) |
C6—S1—Sn1 | 98.55 (7) | C15—C14—H14 | 119.5 |
C2—S2—C1 | 89.55 (12) | C13—C14—H14 | 119.5 |
C4—N1—N2 | 115.29 (16) | C16—C15—C14 | 120.6 (3) |
C4—N1—Sn1 | 123.10 (14) | C16—C15—H15 | 119.7 |
N2—N1—Sn1 | 121.61 (11) | C14—C15—H15 | 119.7 |
C6—N2—N1 | 115.61 (16) | C15—C16—C17 | 119.6 (3) |
C1—N3—C3 | 110.72 (19) | C15—C16—H16 | 120.2 |
C1—N3—Sn1 | 110.27 (13) | C17—C16—H16 | 120.2 |
C3—N3—Sn1 | 137.91 (15) | C16—C17—C18 | 120.4 (3) |
C6—N4—C7 | 129.29 (18) | C16—C17—H17 | 119.8 |
C6—N4—H4N | 115.9 (16) | C18—C17—H17 | 119.8 |
C7—N4—H4N | 114.8 (16) | C13—C18—C17 | 120.6 (3) |
N3—C1—C4 | 122.62 (17) | C13—C18—H18 | 119.7 |
N3—C1—S2 | 113.78 (16) | C17—C18—H18 | 119.7 |
C4—C1—S2 | 123.59 (16) | C24—C19—C20 | 118.6 (2) |
C3—C2—S2 | 110.3 (2) | C24—C19—Sn1 | 118.94 (17) |
C3—C2—H2 | 124.9 | C20—C19—Sn1 | 122.45 (19) |
S2—C2—H2 | 124.9 | C21—C20—C19 | 120.2 (3) |
C2—C3—N3 | 115.7 (2) | C21—C20—H20 | 119.9 |
C2—C3—H3 | 122.2 | C19—C20—H20 | 119.9 |
N3—C3—H3 | 122.2 | C22—C21—C20 | 120.7 (3) |
N1—C4—C1 | 115.86 (18) | C22—C21—H21 | 119.7 |
N1—C4—C5 | 123.70 (19) | C20—C21—H21 | 119.7 |
C1—C4—C5 | 120.43 (18) | C23—C22—C21 | 120.2 (3) |
C4—C5—H5A | 109.5 | C23—C22—H22 | 119.9 |
C4—C5—H5B | 109.5 | C21—C22—H22 | 119.9 |
H5A—C5—H5B | 109.5 | C22—C23—C24 | 120.2 (3) |
C4—C5—H5C | 109.5 | C22—C23—H23 | 119.9 |
H5A—C5—H5C | 109.5 | C24—C23—H23 | 119.9 |
H5B—C5—H5C | 109.5 | C19—C24—C23 | 120.2 (3) |
N2—C6—N4 | 118.77 (18) | C19—C24—H24 | 119.9 |
N2—C6—S1 | 127.81 (16) | C23—C24—H24 | 119.9 |
N4—C6—S1 | 113.42 (15) | C25—O1—H1S | 107 (3) |
C12—C7—C8 | 118.0 (2) | O1—C25—H25A | 109.5 |
C12—C7—N4 | 116.7 (2) | O1—C25—H25B | 109.5 |
C8—C7—N4 | 125.3 (2) | H25A—C25—H25B | 109.5 |
C7—C8—C9 | 119.7 (3) | O1—C25—H25C | 109.5 |
C7—C8—H8 | 120.1 | H25A—C25—H25C | 109.5 |
C9—C8—H8 | 120.1 | H25B—C25—H25C | 109.5 |
C10—C9—C8 | 122.2 (3) | ||
C19—Sn1—S1—C6 | −87.39 (9) | Sn1—S1—C6—N2 | −0.3 (2) |
C13—Sn1—S1—C6 | 92.81 (9) | Sn1—S1—C6—N4 | 179.95 (14) |
N1—Sn1—S1—C6 | −0.44 (8) | C6—N4—C7—C12 | −173.6 (2) |
N3—Sn1—S1—C6 | 2.17 (11) | C6—N4—C7—C8 | 7.1 (4) |
Cl1—Sn1—S1—C6 | −175.30 (7) | C12—C7—C8—C9 | −0.3 (5) |
C19—Sn1—N1—C4 | −74.56 (18) | N4—C7—C8—C9 | 179.0 (3) |
C13—Sn1—N1—C4 | 81.01 (17) | C7—C8—C9—C10 | −0.5 (6) |
S1—Sn1—N1—C4 | −178.25 (17) | C8—C9—C10—C11 | 0.9 (6) |
N3—Sn1—N1—C4 | 3.41 (16) | C9—C10—C11—C12 | −0.4 (5) |
Cl1—Sn1—N1—C4 | −156.65 (15) | C8—C7—C12—C11 | 0.7 (4) |
C19—Sn1—N1—N2 | 104.97 (15) | N4—C7—C12—C11 | −178.6 (3) |
C13—Sn1—N1—N2 | −99.46 (15) | C10—C11—C12—C7 | −0.4 (5) |
S1—Sn1—N1—N2 | 1.28 (14) | C19—Sn1—C13—C18 | −76.4 (3) |
N3—Sn1—N1—N2 | −177.06 (16) | N1—Sn1—C13—C18 | −179.58 (19) |
Cl1—Sn1—N1—N2 | 22.9 (3) | S1—Sn1—C13—C18 | 103.14 (19) |
C4—N1—N2—C6 | 177.74 (19) | N3—Sn1—C13—C18 | −113.5 (2) |
Sn1—N1—N2—C6 | −1.8 (2) | Cl1—Sn1—C13—C18 | 12.27 (19) |
C19—Sn1—N3—C1 | 88.85 (16) | C19—Sn1—C13—C14 | 107.3 (2) |
C13—Sn1—N3—C1 | −106.27 (16) | N1—Sn1—C13—C14 | 4.12 (19) |
N1—Sn1—N3—C1 | −6.02 (14) | S1—Sn1—C13—C14 | −73.16 (18) |
S1—Sn1—N3—C1 | −8.76 (19) | N3—Sn1—C13—C14 | 70.24 (18) |
Cl1—Sn1—N3—C1 | 168.14 (13) | Cl1—Sn1—C13—C14 | −164.03 (18) |
C19—Sn1—N3—C3 | −77.5 (2) | C18—C13—C14—C15 | 0.4 (4) |
C13—Sn1—N3—C3 | 87.4 (2) | Sn1—C13—C14—C15 | 176.9 (2) |
N1—Sn1—N3—C3 | −172.3 (2) | C13—C14—C15—C16 | −0.2 (5) |
S1—Sn1—N3—C3 | −175.08 (19) | C14—C15—C16—C17 | −0.1 (5) |
Cl1—Sn1—N3—C3 | 1.8 (2) | C15—C16—C17—C18 | 0.1 (5) |
C3—N3—C1—C4 | 178.9 (2) | C14—C13—C18—C17 | −0.4 (4) |
Sn1—N3—C1—C4 | 8.7 (3) | Sn1—C13—C18—C17 | −176.7 (2) |
C3—N3—C1—S2 | 0.5 (2) | C16—C17—C18—C13 | 0.2 (5) |
Sn1—N3—C1—S2 | −169.73 (10) | C13—Sn1—C19—C24 | −161.17 (19) |
C2—S2—C1—N3 | −0.6 (2) | N1—Sn1—C19—C24 | −56.77 (17) |
C2—S2—C1—C4 | −179.0 (2) | S1—Sn1—C19—C24 | 19.30 (17) |
C1—S2—C2—C3 | 0.5 (2) | N3—Sn1—C19—C24 | −123.84 (17) |
S2—C2—C3—N3 | −0.3 (3) | Cl1—Sn1—C19—C24 | 109.30 (16) |
C1—N3—C3—C2 | −0.1 (3) | C13—Sn1—C19—C20 | 17.0 (3) |
Sn1—N3—C3—C2 | 166.14 (19) | N1—Sn1—C19—C20 | 121.42 (17) |
N2—N1—C4—C1 | 179.97 (17) | S1—Sn1—C19—C20 | −162.51 (16) |
Sn1—N1—C4—C1 | −0.5 (3) | N3—Sn1—C19—C20 | 54.35 (16) |
N2—N1—C4—C5 | 1.2 (3) | Cl1—Sn1—C19—C20 | −72.51 (16) |
Sn1—N1—C4—C5 | −179.29 (18) | C24—C19—C20—C21 | 2.0 (3) |
N3—C1—C4—N1 | −6.4 (3) | Sn1—C19—C20—C21 | −176.23 (17) |
S2—C1—C4—N1 | 171.93 (17) | C19—C20—C21—C22 | −0.9 (4) |
N3—C1—C4—C5 | 172.5 (2) | C20—C21—C22—C23 | −0.8 (4) |
S2—C1—C4—C5 | −9.2 (3) | C21—C22—C23—C24 | 1.4 (4) |
N1—N2—C6—N4 | −178.91 (18) | C20—C19—C24—C23 | −1.4 (3) |
N1—N2—C6—S1 | 1.4 (3) | Sn1—C19—C24—C23 | 176.88 (18) |
C7—N4—C6—N2 | 4.4 (3) | C22—C23—C24—C19 | −0.3 (4) |
C7—N4—C6—S1 | −175.87 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4N···O1 | 0.85 (2) | 2.08 (2) | 2.930 (3) | 175 (2) |
O1—H1S···Cl1i | 0.76 (4) | 2.52 (4) | 3.248 (2) | 162 (4) |
Symmetry code: (i) x−1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Sn(C6H5)2(C12H11N4S2)Cl]·CH4O |
Mr | 615.75 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 297 |
a, b, c (Å) | 8.5971 (10), 20.182 (3), 15.794 (2) |
β (°) | 102.050 (7) |
V (Å3) | 2680.0 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.23 |
Crystal size (mm) | 0.30 × 0.20 × 0.17 |
Data collection | |
Diffractometer | Nonius KappaCCD |
Absorption correction | Multi-scan (SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.709, 0.818 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 31922, 8479, 6194 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.746 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.070, 1.01 |
No. of reflections | 8479 |
No. of parameters | 316 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.35, −0.58 |
Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4N···O1 | 0.85 (2) | 2.08 (2) | 2.930 (3) | 175 (2) |
O1—H1S···Cl1i | 0.76 (4) | 2.52 (4) | 3.248 (2) | 162 (4) |
Symmetry code: (i) x−1/2, −y+1/2, z−1/2. |
Acknowledgements
Purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.
References
Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., Hummelink, T., Hummelink-Peters, B. G., Kennard, O., Motherwell, W. D. S., Rodgers, J. R. & Watson, D. G. (1979). Acta Cryst. B35, 2331–2339. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bamgboye, T. T. & Bamgboye, O. A. (1988). Inorg. Chim. Acta, 144, 249–252. CrossRef CAS Web of Science Google Scholar
Barberi, R. S., Beraldo, H. O., Filgueiras, C. A. L., Abras, A., Nixon, J. F. & Hitchcock, P. B. (1993). Inorg. Chim. Acta, 206, 169–172. Google Scholar
Casas, J. S., Castineiras, A., Couce, M. D., Martinez, G., Sordo, J. & Varela, J. M. (1996). J. Organomet. Chem. 517, 165–172. CSD CrossRef CAS Web of Science Google Scholar
Casas, J. S., Castineiras, A., Martinez, E. G., Gonzalez, A. S., Sanchez, A. & Sordo, J. (1997). Polyhedron, 16, 795–800. CSD CrossRef CAS Web of Science Google Scholar
Casas, J. S., Castineiras, A., Sanchez, A., Sordo, J., Vazquez-Lopez, A., Rodriguez-Argiuelles, M. C. & Russo. U. (1994). Inorg. Chim. Acta, 221, 61–68. Google Scholar
Chaudhary, P., Swami, M., Sharma, D. K. & Singh, R. V. (2009). Appl. Organomet. Chem. 23, 140–149. Web of Science CrossRef CAS Google Scholar
Davies, A. G. (1998). Radical Chemistry of Tin, 2nd ed., edited by P. J. Smith, pp. 265–289. London: Blackie. Google Scholar
De Sousa, G. F., Francisco, R. H. P., Gambardella, M. T. P., Santos, R. H. A. & Abras, A. (2001). J. Braz. Chem. Soc. 12, 722–728. CAS Google Scholar
Dey, D. K., Samanta, B., Lycka, A. & Dahlenburg, L. (2003). Z. Naturforsch. Teil B, 58, 336–344. CAS Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gielen, M., Biesemans, R. & Willen, R. (2005). Appl. Organomet. Chem. 19, 440–450. Web of Science CrossRef CAS Google Scholar
Huheey, J. E., Keiter, E. A. & Keitar, R. L. (1993). Inorganic Chemistry. Principles of Structure and Reactivity, 4th ed. New York: Harper Collins. Google Scholar
Li, M. X., Zhang, D., Zhang, L. Z., Niu, J. Y. & Ji, B. S. (2011). J. Organomet. Chem. 696, 852–858. Web of Science CSD CrossRef CAS Google Scholar
Macias, A., Rodriguez-Arguelles, M. C., Suarez, M. I., Casas, J. S. & Sordo, J. (1989). J. Chem. Soc. Dalton Trans. pp. 1787–1791. Google Scholar
Mendes, I. C., Moreira, J. P., Ardission, J. D., dos Santos, R. G., da Silva, P. R. O., Garcia, I., Castineiras, A. & Beraldo, H. (2008). J. Med. Chem. 43, 1454–1461. CrossRef CAS Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sreekanth, A. & Kurup, M. R. P. (2004). Polyhedron, 23, 969–978. Web of Science CSD CrossRef CAS Google Scholar
Swesi, A. T., Farina, Y., Venkatraman, R. & Ng, S. W. (2006a). Acta Cryst. E62, m3016–m3017. Web of Science CSD CrossRef IUCr Journals Google Scholar
Swesi, A. T., Farina, Y., Venkatraman, R. & Ng, S. W. (2006b). Acta Cryst. E62, m3018–m3019. Web of Science CSD CrossRef IUCr Journals Google Scholar
Swesi, A. T., Farina, Y., Venkatraman, R. & Ng, S. W. (2006c). Acta Cryst. E62, m3020–m3021. Web of Science CSD CrossRef IUCr Journals Google Scholar
Teoh, S. G., Ang, S. H. & Ong, C. W. (1999). J. Organomet. Chem. 580, 17–21. Web of Science CSD CrossRef CAS Google Scholar
Venkatraman, R., Ray, P. C. & Fronczek, F. R. (2004). Acta Cryst. E60, m1035–m1037. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Venkatraman, R., Sitole, L., Adams, T. D., Cameron, J. A. & Fronczek, F. R. (2007). Acta Cryst. E63, m2212–m2213. Web of Science CSD CrossRef IUCr Journals Google Scholar
Venkatraman, R., Sitole, L. & Fronczek, F. R. (2009). Acta Cryst. E65, m1653–m1654. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metal complexes of heterocyclic thiosemicarbazones have been the subject of intensive research for the past three decades. Among the non-transitional metals, organotin(IV) based compounds received prominence due to their structural features and potent biological activity (Teoh et al., 1999; Gielen et al., 2005; Chaudhary et al., 2009; Bamgboye & Bamgboye, 1988; Barberi et al., 1993; Casas et al., 1994; Casas, et al., 1996; Casas et al., 1997; De Sousa et al., 2001; Li et al., 2011). Continuing with this type of study (Venkatraman et al., 2009; Venkatraman et al., 2007; Swesi et al., 2006a,b,c; Venkatraman et al., 2004), we describe here the structure of a diphenyltin chloro derivative of thiazole-2-carbaldehyde N(4)-phenyl-3-thiosemicarbazone.
The tin atom is coordinated by the tridentate ligand through the thiazole ring nitrogen, the azomethine nitrogen and thiolate sulfur atom. The octahedral complex also contains one chloro ligand trans to the central N atom of the tridentate ligand and two diphenyl groups trans to each other, as shown in Fig. 1. The tridentate ligand is reasonably planar, its 18 nonhydrogen atoms having a mean deviation of 0.082 Å from coplanarity, and a maximum of 0.176 (3) Å for methyl group C5. The bite angles of the 5-membered chelate rings are N1—Sn1—S1, 76.39 (4)° and N1—Sn1—N3, 67.57 (6)°. The two phenyl groups form a trans angle C13—Sn1—C19 154.86 (8)°, and the chloro ligand forms a trans angle N1—Sn1—Cl1 165.94 (4)°. The Sn—Cl bond is in the range of normal covalent radii (2.37–2.60 Å, Casas et al., 1997; Davies, 1998). The Sn—C (phenyl) distances are similar to those in other tin complexes reported by us earlier(Venkatraman et al., 2004; 2007; 2009; Swesi et al., 2006a,b,c). The bond length Sn—C increases with an increase in coordination number, being longer in the title compound than in four-coordinate Ph2SnCl2 [2.122 (2) Å] and is higher than expected (Dey et al., 2003). The C—S bond distance of 1.755 (2) Å is slightly shorter than a C—S single bond (1.81 Å) but longer than a C—S double bond (1.62 Å) (Macias et al., 1989; Huheey et al., 1993). The relatively shorter bond length of Sn—N1 (imine) (2.3322 Å) compared with Sn—N3 (thiazole) is attributed stronger base nature of thiazole nitrogen (Sreekanth & Kurup, 2004; Mendes et al., 2008; Li et al., 2011).
Two types of intermolecular hydrogen bonds are present, each involving both the Sn complex and the methanol solvent molecule. The amino N4—H group donates to methanol O1, and the methanol O1—H donates to the chloro ligand at 1/2 + x, 1/2 - y, 1/2 + z. The combination of the two hydrogen bonds forms chains of alternating Sn complexes and methanol molecules in the [1 0 1] direction, having graph set C22(8) (Etter, 1990), as shown in Fig. 2.