metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chloridodiphen­yl{[1-(1,3-thia­zol-2-yl-κN)ethyl­­idene]-4-phenyl­thio­semicarbazidato-κ2N1,S}tin(IV) methanol monosolvate

aDepartment of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: ramaiyer.venkatraman@jsums.edu

(Received 2 September 2011; accepted 14 September 2011; online 30 September 2011)

The title compound, [Sn(C6H5)2(C12H11N4S2)Cl]·CH4O, is formed during the reaction between 2-acetyl­thia­zole 4-phenyl­thio­semicarbazone (Hacthptsc) and diphenyl­tin(IV) dichloride in methanol. In the crystal structure, the Sn atom exhibits an octa­hedral geometry with the [N2S] anionic tridentate thio­semicarbazone ligand having chloride trans to the central N and the two phenyl groups trans to each other. The Sn—Cl distance is 2.5929 (6), Sn—S is 2.4896 (6) and Sn—N to the central N is 2.3220 (16) Å. The MeOH mol­ecules link the Sn complexes into one-dimensional chains via N—H⋯O and O—H⋯Cl hydrogen bonds.

Related literature

For the biological activity and structural characteristics of tin compounds of thio­semicarbazones, see: Teoh et al. (1999[Teoh, S. G., Ang, S. H. & Ong, C. W. (1999). J. Organomet. Chem. 580, 17-21.]); Gielen et al. (2005[Gielen, M., Biesemans, R. & Willen, R. (2005). Appl. Organomet. Chem. 19, 440-450.]); Chaudhary et al. (2009[Chaudhary, P., Swami, M., Sharma, D. K. & Singh, R. V. (2009). Appl. Organomet. Chem. 23, 140-149.]); Bamgboye & Bamgboye (1988[Bamgboye, T. T. & Bamgboye, O. A. (1988). Inorg. Chim. Acta, 144, 249-252.]); Barberi et al. (1993[Barberi, R. S., Beraldo, H. O., Filgueiras, C. A. L., Abras, A., Nixon, J. F. & Hitchcock, P. B. (1993). Inorg. Chim. Acta, 206, 169-172.]); Casas et al. (1994[Casas, J. S., Castineiras, A., Sanchez, A., Sordo, J., Vazquez-Lopez, A., Rodriguez-Argiuelles, M. C. & Russo. U. (1994). Inorg. Chim. Acta, 221, 61-68.], 1996[Casas, J. S., Castineiras, A., Couce, M. D., Martinez, G., Sordo, J. & Varela, J. M. (1996). J. Organomet. Chem. 517, 165-172.], 1997[Casas, J. S., Castineiras, A., Martinez, E. G., Gonzalez, A. S., Sanchez, A. & Sordo, J. (1997). Polyhedron, 16, 795-800.]); De Sousa et al. (2001[De Sousa, G. F., Francisco, R. H. P., Gambardella, M. T. P., Santos, R. H. A. & Abras, A. (2001). J. Braz. Chem. Soc. 12, 722-728.]); Li et al. (2011[Li, M. X., Zhang, D., Zhang, L. Z., Niu, J. Y. & Ji, B. S. (2011). J. Organomet. Chem. 696, 852-858.]); Macias et al. (1989[Macias, A., Rodriguez-Arguelles, M. C., Suarez, M. I., Casas, J. S. & Sordo, J. (1989). J. Chem. Soc. Dalton Trans. pp. 1787-1791.]); Huheey et al. (1993[Huheey, J. E., Keiter, E. A. & Keitar, R. L. (1993). Inorganic Chemistry. Principles of Structure and Reactivity, 4th ed. New York: Harper Collins.]). For related structures, see: Venkatraman et al. (2004[Venkatraman, R., Ray, P. C. & Fronczek, F. R. (2004). Acta Cryst. E60, m1035-m1037.], 2007[Venkatraman, R., Sitole, L., Adams, T. D., Cameron, J. A. & Fronczek, F. R. (2007). Acta Cryst. E63, m2212-m2213.], 2009[Venkatraman, R., Sitole, L. & Fronczek, F. R. (2009). Acta Cryst. E65, m1653-m1654.]); Swesi et al. (2006a[Swesi, A. T., Farina, Y., Venkatraman, R. & Ng, S. W. (2006a). Acta Cryst. E62, m3016-m3017.],b[Swesi, A. T., Farina, Y., Venkatraman, R. & Ng, S. W. (2006b). Acta Cryst. E62, m3018-m3019.],c[Swesi, A. T., Farina, Y., Venkatraman, R. & Ng, S. W. (2006c). Acta Cryst. E62, m3020-m3021.]); Sreekanth & Kurup (2004[Sreekanth, A. & Kurup, M. R. P. (2004). Polyhedron, 23, 969-978.]); Mendes et al. (2008[Mendes, I. C., Moreira, J. P., Ardission, J. D., dos Santos, R. G., da Silva, P. R. O., Garcia, I., Castineiras, A. & Beraldo, H. (2008). J. Med. Chem. 43, 1454-1461.]); Li et al. (2011[Li, M. X., Zhang, D., Zhang, L. Z., Niu, J. Y. & Ji, B. S. (2011). J. Organomet. Chem. 696, 852-858.]). For standard bond lengths, see: Allen et al. (1979[Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., Hummelink, T., Hummelink-Peters, B. G., Kennard, O., Motherwell, W. D. S., Rodgers, J. R. & Watson, D. G. (1979). Acta Cryst. B35, 2331-2339.]); Davies (1998[Davies, A. G. (1998). Radical Chemistry of Tin, 2nd ed., edited by P. J. Smith, pp. 265-289. London: Blackie.]); Dey et al. (2003[Dey, D. K., Samanta, B., Lycka, A. & Dahlenburg, L. (2003). Z. Naturforsch. Teil B, 58, 336-344.]). For graph-set analysis, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)2(C12H11N4S2)Cl]·CH4O

  • Mr = 615.75

  • Monoclinic, P 21 /n

  • a = 8.5971 (10) Å

  • b = 20.182 (3) Å

  • c = 15.794 (2) Å

  • β = 102.050 (7)°

  • V = 2680.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 297 K

  • 0.30 × 0.20 × 0.17 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.709, Tmax = 0.818

  • 31922 measured reflections

  • 8479 independent reflections

  • 6194 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.070

  • S = 1.01

  • 8479 reflections

  • 316 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯O1 0.85 (2) 2.08 (2) 2.930 (3) 175 (2)
O1—H1S⋯Cl1i 0.76 (4) 2.52 (4) 3.248 (2) 162 (4)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Metal complexes of heterocyclic thiosemicarbazones have been the subject of intensive research for the past three decades. Among the non-transitional metals, organotin(IV) based compounds received prominence due to their structural features and potent biological activity (Teoh et al., 1999; Gielen et al., 2005; Chaudhary et al., 2009; Bamgboye & Bamgboye, 1988; Barberi et al., 1993; Casas et al., 1994; Casas, et al., 1996; Casas et al., 1997; De Sousa et al., 2001; Li et al., 2011). Continuing with this type of study (Venkatraman et al., 2009; Venkatraman et al., 2007; Swesi et al., 2006a,b,c; Venkatraman et al., 2004), we describe here the structure of a diphenyltin chloro derivative of thiazole-2-carbaldehyde N(4)-phenyl-3-thiosemicarbazone.

The tin atom is coordinated by the tridentate ligand through the thiazole ring nitrogen, the azomethine nitrogen and thiolate sulfur atom. The octahedral complex also contains one chloro ligand trans to the central N atom of the tridentate ligand and two diphenyl groups trans to each other, as shown in Fig. 1. The tridentate ligand is reasonably planar, its 18 nonhydrogen atoms having a mean deviation of 0.082 Å from coplanarity, and a maximum of 0.176 (3) Å for methyl group C5. The bite angles of the 5-membered chelate rings are N1—Sn1—S1, 76.39 (4)° and N1—Sn1—N3, 67.57 (6)°. The two phenyl groups form a trans angle C13—Sn1—C19 154.86 (8)°, and the chloro ligand forms a trans angle N1—Sn1—Cl1 165.94 (4)°. The Sn—Cl bond is in the range of normal covalent radii (2.37–2.60 Å, Casas et al., 1997; Davies, 1998). The Sn—C (phenyl) distances are similar to those in other tin complexes reported by us earlier(Venkatraman et al., 2004; 2007; 2009; Swesi et al., 2006a,b,c). The bond length Sn—C increases with an increase in coordination number, being longer in the title compound than in four-coordinate Ph2SnCl2 [2.122 (2) Å] and is higher than expected (Dey et al., 2003). The C—S bond distance of 1.755 (2) Å is slightly shorter than a C—S single bond (1.81 Å) but longer than a C—S double bond (1.62 Å) (Macias et al., 1989; Huheey et al., 1993). The relatively shorter bond length of Sn—N1 (imine) (2.3322 Å) compared with Sn—N3 (thiazole) is attributed stronger base nature of thiazole nitrogen (Sreekanth & Kurup, 2004; Mendes et al., 2008; Li et al., 2011).

Two types of intermolecular hydrogen bonds are present, each involving both the Sn complex and the methanol solvent molecule. The amino N4—H group donates to methanol O1, and the methanol O1—H donates to the chloro ligand at 1/2 + x, 1/2 - y, 1/2 + z. The combination of the two hydrogen bonds forms chains of alternating Sn complexes and methanol molecules in the [1 0 1] direction, having graph set C22(8) (Etter, 1990), as shown in Fig. 2.

Related literature top

For the biological activity and structural characteristics of tin compounds of thiosemicarbazones, see: Teoh et al. (1999); Gielen et al. (2005); Chaudhary et al. (2009); Bamgboye & Bamgboye (1988); Barberi et al. (1993); Casas et al. (1994, 1996, 1997); De Sousa et al. (2001); Li et al. (2011); Macias et al. (1989); Huheey et al. (1993). For related structures, see: Venkatraman et al. (2004, 2007, 2009); Swesi et al. (2006a,b,c); Sreekanth Sreekanth & Kurup (2004); Mendes et al. (2008); Li et al. (2011). For reference bond lengths [ok as edited?], see: Allen et al. (1979); Davies (1998); Dey et al. (2003). For graph-set analysis, see: Etter (1990).

Experimental top

Equimolar amounts of diphenyltin dichloride and 2-acetylthiazole 4-phenylthiosemicarbazone in dry methanol were refluxed for a period of 2 h and then allowed to cool to room temperature in presence of air. Yellow crystals of the tin complex (1) appeared in about a week.

Refinement top

All H atoms on C were placed in calculated positions, guided by difference maps, with C—H bond distances 0.93–0.96 Å. N—H and solvent O—H hydrogen coordinates were refined. Displacement parameters for H atoms were assigned as Uiso=1.2Ueq (1.5 for Me and OH). A torsional parameter was refined for each methyl group.

Structure description top

Metal complexes of heterocyclic thiosemicarbazones have been the subject of intensive research for the past three decades. Among the non-transitional metals, organotin(IV) based compounds received prominence due to their structural features and potent biological activity (Teoh et al., 1999; Gielen et al., 2005; Chaudhary et al., 2009; Bamgboye & Bamgboye, 1988; Barberi et al., 1993; Casas et al., 1994; Casas, et al., 1996; Casas et al., 1997; De Sousa et al., 2001; Li et al., 2011). Continuing with this type of study (Venkatraman et al., 2009; Venkatraman et al., 2007; Swesi et al., 2006a,b,c; Venkatraman et al., 2004), we describe here the structure of a diphenyltin chloro derivative of thiazole-2-carbaldehyde N(4)-phenyl-3-thiosemicarbazone.

The tin atom is coordinated by the tridentate ligand through the thiazole ring nitrogen, the azomethine nitrogen and thiolate sulfur atom. The octahedral complex also contains one chloro ligand trans to the central N atom of the tridentate ligand and two diphenyl groups trans to each other, as shown in Fig. 1. The tridentate ligand is reasonably planar, its 18 nonhydrogen atoms having a mean deviation of 0.082 Å from coplanarity, and a maximum of 0.176 (3) Å for methyl group C5. The bite angles of the 5-membered chelate rings are N1—Sn1—S1, 76.39 (4)° and N1—Sn1—N3, 67.57 (6)°. The two phenyl groups form a trans angle C13—Sn1—C19 154.86 (8)°, and the chloro ligand forms a trans angle N1—Sn1—Cl1 165.94 (4)°. The Sn—Cl bond is in the range of normal covalent radii (2.37–2.60 Å, Casas et al., 1997; Davies, 1998). The Sn—C (phenyl) distances are similar to those in other tin complexes reported by us earlier(Venkatraman et al., 2004; 2007; 2009; Swesi et al., 2006a,b,c). The bond length Sn—C increases with an increase in coordination number, being longer in the title compound than in four-coordinate Ph2SnCl2 [2.122 (2) Å] and is higher than expected (Dey et al., 2003). The C—S bond distance of 1.755 (2) Å is slightly shorter than a C—S single bond (1.81 Å) but longer than a C—S double bond (1.62 Å) (Macias et al., 1989; Huheey et al., 1993). The relatively shorter bond length of Sn—N1 (imine) (2.3322 Å) compared with Sn—N3 (thiazole) is attributed stronger base nature of thiazole nitrogen (Sreekanth & Kurup, 2004; Mendes et al., 2008; Li et al., 2011).

Two types of intermolecular hydrogen bonds are present, each involving both the Sn complex and the methanol solvent molecule. The amino N4—H group donates to methanol O1, and the methanol O1—H donates to the chloro ligand at 1/2 + x, 1/2 - y, 1/2 + z. The combination of the two hydrogen bonds forms chains of alternating Sn complexes and methanol molecules in the [1 0 1] direction, having graph set C22(8) (Etter, 1990), as shown in Fig. 2.

For the biological activity and structural characteristics of tin compounds of thiosemicarbazones, see: Teoh et al. (1999); Gielen et al. (2005); Chaudhary et al. (2009); Bamgboye & Bamgboye (1988); Barberi et al. (1993); Casas et al. (1994, 1996, 1997); De Sousa et al. (2001); Li et al. (2011); Macias et al. (1989); Huheey et al. (1993). For related structures, see: Venkatraman et al. (2004, 2007, 2009); Swesi et al. (2006a,b,c); Sreekanth Sreekanth & Kurup (2004); Mendes et al. (2008); Li et al. (2011). For reference bond lengths [ok as edited?], see: Allen et al. (1979); Davies (1998); Dey et al. (2003). For graph-set analysis, see: Etter (1990).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level, and the solvent is not shown.
[Figure 2] Fig. 2. The unit cell, showing hydrogen-bonded chains.
Chloridodiphenyl{[1-(1,3-thiazol-2-yl-κN)ethylidene]-4- phenylthiosemicarbazidato-κ2N1,S}tin(IV) methanol monosolvate top
Crystal data top
[Sn(C6H5)2(C12H11N4S2)Cl]·CH4OF(000) = 1240
Mr = 615.75Dx = 1.526 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7958 reflections
a = 8.5971 (10) Åθ = 2.5–32.0°
b = 20.182 (3) ŵ = 1.23 mm1
c = 15.794 (2) ÅT = 297 K
β = 102.050 (7)°Fragment, yellow
V = 2680.0 (6) Å30.30 × 0.20 × 0.17 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
8479 independent reflections
Radiation source: fine-focus sealed tube6194 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and φ scansθmax = 32.0°, θmin = 2.6°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 1212
Tmin = 0.709, Tmax = 0.818k = 2825
31922 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0236P)2 + 0.9273P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
8479 reflectionsΔρmax = 0.35 e Å3
316 parametersΔρmin = 0.58 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00176 (19)
Crystal data top
[Sn(C6H5)2(C12H11N4S2)Cl]·CH4OV = 2680.0 (6) Å3
Mr = 615.75Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.5971 (10) ŵ = 1.23 mm1
b = 20.182 (3) ÅT = 297 K
c = 15.794 (2) Å0.30 × 0.20 × 0.17 mm
β = 102.050 (7)°
Data collection top
Nonius KappaCCD
diffractometer
8479 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
6194 reflections with I > 2σ(I)
Tmin = 0.709, Tmax = 0.818Rint = 0.027
31922 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.35 e Å3
8479 reflectionsΔρmin = 0.58 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.400041 (15)0.263309 (7)0.526902 (8)0.03515 (5)
Cl10.66803 (7)0.21480 (4)0.50486 (4)0.06294 (17)
S10.35758 (7)0.31789 (3)0.38254 (3)0.04796 (14)
S20.09795 (9)0.29250 (4)0.75637 (4)0.06512 (19)
N10.17015 (18)0.32507 (8)0.52098 (10)0.0356 (4)
N20.10480 (19)0.36198 (9)0.44956 (11)0.0403 (4)
N30.2829 (2)0.24841 (9)0.66321 (12)0.0419 (4)
N40.1258 (2)0.39796 (10)0.31437 (12)0.0426 (4)
H4N0.175 (3)0.3937 (12)0.2732 (15)0.051*
C10.1632 (2)0.28859 (11)0.66081 (13)0.0396 (4)
C20.2388 (3)0.23643 (14)0.80026 (17)0.0615 (7)
H20.25400.22020.85650.074*
C30.3249 (3)0.21897 (13)0.74245 (15)0.0540 (6)
H30.40800.18870.75540.065*
C40.0950 (2)0.32769 (11)0.58439 (13)0.0402 (5)
C50.0537 (3)0.36652 (15)0.58116 (17)0.0617 (7)
H5A0.04120.41010.55900.092*
H5B0.07460.37000.63840.092*
H5C0.14100.34450.54400.092*
C60.1826 (2)0.36139 (10)0.38687 (13)0.0367 (4)
C70.0056 (2)0.44193 (11)0.29689 (14)0.0430 (5)
C80.0943 (4)0.46150 (16)0.35598 (19)0.0756 (9)
H80.07060.44510.41220.091*
C90.2185 (4)0.50555 (18)0.3312 (2)0.0845 (10)
H90.27790.51810.37150.101*
C100.2564 (3)0.53100 (16)0.2506 (2)0.0739 (8)
H100.33950.56110.23540.089*
C110.1695 (3)0.51142 (17)0.1920 (2)0.0796 (9)
H110.19410.52810.13600.096*
C120.0455 (3)0.46717 (15)0.21483 (17)0.0631 (7)
H120.01180.45430.17380.076*
C130.2818 (3)0.17040 (12)0.49558 (13)0.0445 (5)
C140.1166 (3)0.16993 (15)0.47549 (18)0.0676 (8)
H140.06120.20910.47870.081*
C150.0335 (4)0.11204 (19)0.4508 (2)0.0847 (10)
H150.07710.11270.43770.102*
C160.1118 (5)0.05441 (17)0.4454 (2)0.0839 (10)
H160.05530.01560.42880.101*
C170.2748 (5)0.05366 (15)0.4646 (2)0.0842 (10)
H170.32890.01420.46090.101*
C180.3598 (4)0.11156 (13)0.48954 (17)0.0652 (7)
H180.47040.11050.50230.078*
C190.5337 (2)0.33492 (11)0.61156 (13)0.0408 (5)
C200.6194 (3)0.31871 (15)0.69410 (15)0.0557 (6)
H200.62460.27490.71270.067*
C210.6963 (3)0.36751 (19)0.74819 (17)0.0714 (9)
H210.75180.35640.80340.086*
C220.6916 (3)0.43192 (19)0.7215 (2)0.0784 (10)
H220.74280.46450.75880.094*
C230.6124 (3)0.44858 (15)0.6407 (2)0.0732 (8)
H230.61140.49240.62230.088*
C240.5321 (3)0.39994 (13)0.58489 (17)0.0544 (6)
H240.47760.41160.52970.065*
O10.2782 (3)0.38699 (13)0.16545 (14)0.0795 (7)
H1S0.252 (5)0.357 (2)0.137 (3)0.119*
C250.4439 (4)0.38909 (18)0.1816 (2)0.0845 (10)
H25A0.48190.42190.22500.127*
H25B0.47800.40030.12920.127*
H25C0.48600.34650.20160.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03442 (8)0.03828 (8)0.03287 (8)0.00389 (6)0.00732 (5)0.00039 (6)
Cl10.0524 (3)0.0723 (4)0.0704 (4)0.0224 (3)0.0273 (3)0.0048 (3)
S10.0483 (3)0.0618 (4)0.0370 (3)0.0164 (3)0.0163 (2)0.0096 (2)
S20.0809 (4)0.0739 (5)0.0516 (4)0.0144 (4)0.0391 (3)0.0095 (3)
N10.0337 (8)0.0375 (9)0.0366 (9)0.0025 (7)0.0096 (7)0.0025 (7)
N20.0351 (8)0.0463 (11)0.0394 (9)0.0050 (7)0.0072 (7)0.0068 (8)
N30.0436 (9)0.0452 (11)0.0387 (10)0.0031 (8)0.0129 (8)0.0029 (7)
N40.0435 (10)0.0478 (11)0.0363 (10)0.0051 (8)0.0078 (8)0.0054 (8)
C10.0424 (10)0.0421 (11)0.0380 (11)0.0025 (9)0.0171 (9)0.0008 (9)
C20.0757 (17)0.0685 (18)0.0436 (13)0.0027 (14)0.0202 (12)0.0133 (12)
C30.0571 (14)0.0582 (16)0.0458 (13)0.0055 (12)0.0089 (11)0.0108 (11)
C40.0361 (10)0.0438 (12)0.0431 (11)0.0001 (9)0.0137 (9)0.0022 (9)
C50.0471 (13)0.0786 (19)0.0665 (17)0.0212 (13)0.0285 (12)0.0139 (14)
C60.0356 (10)0.0370 (11)0.0359 (10)0.0009 (8)0.0038 (8)0.0009 (8)
C70.0411 (11)0.0379 (12)0.0463 (12)0.0010 (9)0.0004 (9)0.0034 (10)
C80.086 (2)0.079 (2)0.0632 (18)0.0403 (17)0.0187 (15)0.0179 (15)
C90.084 (2)0.088 (2)0.083 (2)0.0415 (18)0.0211 (17)0.0145 (19)
C100.0612 (16)0.0656 (19)0.085 (2)0.0173 (14)0.0066 (15)0.0078 (16)
C110.0730 (19)0.090 (2)0.0663 (19)0.0237 (17)0.0076 (15)0.0245 (17)
C120.0585 (14)0.0755 (19)0.0516 (15)0.0139 (13)0.0030 (12)0.0135 (13)
C130.0581 (13)0.0454 (13)0.0306 (10)0.0060 (10)0.0104 (9)0.0026 (9)
C140.0623 (16)0.0642 (18)0.080 (2)0.0180 (13)0.0245 (14)0.0305 (15)
C150.083 (2)0.093 (3)0.084 (2)0.041 (2)0.0294 (17)0.0394 (19)
C160.129 (3)0.066 (2)0.0580 (18)0.045 (2)0.0219 (19)0.0142 (15)
C170.143 (3)0.0404 (16)0.0615 (19)0.0015 (18)0.0033 (19)0.0003 (13)
C180.0880 (19)0.0441 (15)0.0547 (15)0.0070 (14)0.0050 (13)0.0002 (12)
C190.0299 (9)0.0526 (14)0.0417 (11)0.0009 (9)0.0115 (8)0.0092 (10)
C200.0470 (12)0.0766 (18)0.0439 (13)0.0096 (12)0.0106 (10)0.0023 (12)
C210.0528 (15)0.119 (3)0.0429 (14)0.0235 (16)0.0124 (11)0.0221 (16)
C220.0642 (17)0.098 (3)0.077 (2)0.0290 (17)0.0238 (16)0.0406 (19)
C230.0661 (17)0.0568 (18)0.098 (2)0.0130 (14)0.0212 (16)0.0207 (16)
C240.0479 (12)0.0528 (15)0.0614 (15)0.0000 (11)0.0089 (11)0.0047 (12)
O10.0758 (14)0.1003 (19)0.0638 (14)0.0098 (13)0.0178 (11)0.0101 (11)
C250.084 (2)0.095 (3)0.080 (2)0.0011 (19)0.0276 (17)0.0158 (18)
Geometric parameters (Å, º) top
Sn1—C192.134 (2)C10—H100.9300
Sn1—C132.141 (2)C11—C121.379 (4)
Sn1—N12.3220 (16)C11—H110.9300
Sn1—S12.4896 (6)C12—H120.9300
Sn1—N32.5779 (18)C13—C181.377 (3)
Sn1—Cl12.5929 (6)C13—C141.389 (3)
S1—C61.755 (2)C14—C151.383 (4)
S2—C21.696 (3)C14—H140.9300
S2—C11.718 (2)C15—C161.355 (5)
N1—C41.301 (2)C15—H150.9300
N1—N21.371 (2)C16—C171.371 (5)
N2—C61.306 (2)C16—H160.9300
N3—C11.304 (3)C17—C181.391 (4)
N3—C31.364 (3)C17—H170.9300
N4—C61.364 (3)C18—H180.9300
N4—C71.418 (3)C19—C241.377 (3)
N4—H4N0.85 (2)C19—C201.396 (3)
C1—C41.459 (3)C20—C211.379 (4)
C2—C31.337 (3)C20—H200.9300
C2—H20.9300C21—C221.364 (5)
C3—H30.9300C21—H210.9300
C4—C51.491 (3)C22—C231.358 (4)
C5—H5A0.9600C22—H220.9300
C5—H5B0.9600C23—C241.401 (4)
C5—H5C0.9600C23—H230.9300
C7—C121.368 (3)C24—H240.9300
C7—C81.380 (3)O1—C251.395 (4)
C8—C91.382 (4)O1—H1S0.76 (4)
C8—H80.9300C25—H25A0.9600
C9—C101.348 (4)C25—H25B0.9600
C9—H90.9300C25—H25C0.9600
C10—C111.363 (4)
C19—Sn1—C13154.86 (8)C10—C9—H9118.9
C19—Sn1—N190.24 (7)C8—C9—H9118.9
C13—Sn1—N195.85 (8)C9—C10—C11118.1 (3)
C19—Sn1—S1103.35 (6)C9—C10—H10120.9
C13—Sn1—S1101.78 (6)C11—C10—H10120.9
N1—Sn1—S176.39 (4)C10—C11—C12120.9 (3)
C19—Sn1—N378.98 (7)C10—C11—H11119.5
C13—Sn1—N380.88 (7)C12—C11—H11119.5
N1—Sn1—N367.57 (6)C7—C12—C11121.0 (3)
S1—Sn1—N3143.93 (4)C7—C12—H12119.5
C19—Sn1—Cl187.85 (5)C11—C12—H12119.5
C13—Sn1—Cl191.74 (6)C18—C13—C14117.9 (2)
N1—Sn1—Cl1165.94 (4)C18—C13—Sn1123.85 (18)
S1—Sn1—Cl190.49 (2)C14—C13—Sn1118.16 (19)
N3—Sn1—Cl1125.54 (4)C15—C14—C13120.9 (3)
C6—S1—Sn198.55 (7)C15—C14—H14119.5
C2—S2—C189.55 (12)C13—C14—H14119.5
C4—N1—N2115.29 (16)C16—C15—C14120.6 (3)
C4—N1—Sn1123.10 (14)C16—C15—H15119.7
N2—N1—Sn1121.61 (11)C14—C15—H15119.7
C6—N2—N1115.61 (16)C15—C16—C17119.6 (3)
C1—N3—C3110.72 (19)C15—C16—H16120.2
C1—N3—Sn1110.27 (13)C17—C16—H16120.2
C3—N3—Sn1137.91 (15)C16—C17—C18120.4 (3)
C6—N4—C7129.29 (18)C16—C17—H17119.8
C6—N4—H4N115.9 (16)C18—C17—H17119.8
C7—N4—H4N114.8 (16)C13—C18—C17120.6 (3)
N3—C1—C4122.62 (17)C13—C18—H18119.7
N3—C1—S2113.78 (16)C17—C18—H18119.7
C4—C1—S2123.59 (16)C24—C19—C20118.6 (2)
C3—C2—S2110.3 (2)C24—C19—Sn1118.94 (17)
C3—C2—H2124.9C20—C19—Sn1122.45 (19)
S2—C2—H2124.9C21—C20—C19120.2 (3)
C2—C3—N3115.7 (2)C21—C20—H20119.9
C2—C3—H3122.2C19—C20—H20119.9
N3—C3—H3122.2C22—C21—C20120.7 (3)
N1—C4—C1115.86 (18)C22—C21—H21119.7
N1—C4—C5123.70 (19)C20—C21—H21119.7
C1—C4—C5120.43 (18)C23—C22—C21120.2 (3)
C4—C5—H5A109.5C23—C22—H22119.9
C4—C5—H5B109.5C21—C22—H22119.9
H5A—C5—H5B109.5C22—C23—C24120.2 (3)
C4—C5—H5C109.5C22—C23—H23119.9
H5A—C5—H5C109.5C24—C23—H23119.9
H5B—C5—H5C109.5C19—C24—C23120.2 (3)
N2—C6—N4118.77 (18)C19—C24—H24119.9
N2—C6—S1127.81 (16)C23—C24—H24119.9
N4—C6—S1113.42 (15)C25—O1—H1S107 (3)
C12—C7—C8118.0 (2)O1—C25—H25A109.5
C12—C7—N4116.7 (2)O1—C25—H25B109.5
C8—C7—N4125.3 (2)H25A—C25—H25B109.5
C7—C8—C9119.7 (3)O1—C25—H25C109.5
C7—C8—H8120.1H25A—C25—H25C109.5
C9—C8—H8120.1H25B—C25—H25C109.5
C10—C9—C8122.2 (3)
C19—Sn1—S1—C687.39 (9)Sn1—S1—C6—N20.3 (2)
C13—Sn1—S1—C692.81 (9)Sn1—S1—C6—N4179.95 (14)
N1—Sn1—S1—C60.44 (8)C6—N4—C7—C12173.6 (2)
N3—Sn1—S1—C62.17 (11)C6—N4—C7—C87.1 (4)
Cl1—Sn1—S1—C6175.30 (7)C12—C7—C8—C90.3 (5)
C19—Sn1—N1—C474.56 (18)N4—C7—C8—C9179.0 (3)
C13—Sn1—N1—C481.01 (17)C7—C8—C9—C100.5 (6)
S1—Sn1—N1—C4178.25 (17)C8—C9—C10—C110.9 (6)
N3—Sn1—N1—C43.41 (16)C9—C10—C11—C120.4 (5)
Cl1—Sn1—N1—C4156.65 (15)C8—C7—C12—C110.7 (4)
C19—Sn1—N1—N2104.97 (15)N4—C7—C12—C11178.6 (3)
C13—Sn1—N1—N299.46 (15)C10—C11—C12—C70.4 (5)
S1—Sn1—N1—N21.28 (14)C19—Sn1—C13—C1876.4 (3)
N3—Sn1—N1—N2177.06 (16)N1—Sn1—C13—C18179.58 (19)
Cl1—Sn1—N1—N222.9 (3)S1—Sn1—C13—C18103.14 (19)
C4—N1—N2—C6177.74 (19)N3—Sn1—C13—C18113.5 (2)
Sn1—N1—N2—C61.8 (2)Cl1—Sn1—C13—C1812.27 (19)
C19—Sn1—N3—C188.85 (16)C19—Sn1—C13—C14107.3 (2)
C13—Sn1—N3—C1106.27 (16)N1—Sn1—C13—C144.12 (19)
N1—Sn1—N3—C16.02 (14)S1—Sn1—C13—C1473.16 (18)
S1—Sn1—N3—C18.76 (19)N3—Sn1—C13—C1470.24 (18)
Cl1—Sn1—N3—C1168.14 (13)Cl1—Sn1—C13—C14164.03 (18)
C19—Sn1—N3—C377.5 (2)C18—C13—C14—C150.4 (4)
C13—Sn1—N3—C387.4 (2)Sn1—C13—C14—C15176.9 (2)
N1—Sn1—N3—C3172.3 (2)C13—C14—C15—C160.2 (5)
S1—Sn1—N3—C3175.08 (19)C14—C15—C16—C170.1 (5)
Cl1—Sn1—N3—C31.8 (2)C15—C16—C17—C180.1 (5)
C3—N3—C1—C4178.9 (2)C14—C13—C18—C170.4 (4)
Sn1—N3—C1—C48.7 (3)Sn1—C13—C18—C17176.7 (2)
C3—N3—C1—S20.5 (2)C16—C17—C18—C130.2 (5)
Sn1—N3—C1—S2169.73 (10)C13—Sn1—C19—C24161.17 (19)
C2—S2—C1—N30.6 (2)N1—Sn1—C19—C2456.77 (17)
C2—S2—C1—C4179.0 (2)S1—Sn1—C19—C2419.30 (17)
C1—S2—C2—C30.5 (2)N3—Sn1—C19—C24123.84 (17)
S2—C2—C3—N30.3 (3)Cl1—Sn1—C19—C24109.30 (16)
C1—N3—C3—C20.1 (3)C13—Sn1—C19—C2017.0 (3)
Sn1—N3—C3—C2166.14 (19)N1—Sn1—C19—C20121.42 (17)
N2—N1—C4—C1179.97 (17)S1—Sn1—C19—C20162.51 (16)
Sn1—N1—C4—C10.5 (3)N3—Sn1—C19—C2054.35 (16)
N2—N1—C4—C51.2 (3)Cl1—Sn1—C19—C2072.51 (16)
Sn1—N1—C4—C5179.29 (18)C24—C19—C20—C212.0 (3)
N3—C1—C4—N16.4 (3)Sn1—C19—C20—C21176.23 (17)
S2—C1—C4—N1171.93 (17)C19—C20—C21—C220.9 (4)
N3—C1—C4—C5172.5 (2)C20—C21—C22—C230.8 (4)
S2—C1—C4—C59.2 (3)C21—C22—C23—C241.4 (4)
N1—N2—C6—N4178.91 (18)C20—C19—C24—C231.4 (3)
N1—N2—C6—S11.4 (3)Sn1—C19—C24—C23176.88 (18)
C7—N4—C6—N24.4 (3)C22—C23—C24—C190.3 (4)
C7—N4—C6—S1175.87 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O10.85 (2)2.08 (2)2.930 (3)175 (2)
O1—H1S···Cl1i0.76 (4)2.52 (4)3.248 (2)162 (4)
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)2(C12H11N4S2)Cl]·CH4O
Mr615.75
Crystal system, space groupMonoclinic, P21/n
Temperature (K)297
a, b, c (Å)8.5971 (10), 20.182 (3), 15.794 (2)
β (°) 102.050 (7)
V3)2680.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.23
Crystal size (mm)0.30 × 0.20 × 0.17
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.709, 0.818
No. of measured, independent and
observed [I > 2σ(I)] reflections
31922, 8479, 6194
Rint0.027
(sin θ/λ)max1)0.746
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.070, 1.01
No. of reflections8479
No. of parameters316
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.58

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O10.85 (2)2.08 (2)2.930 (3)175 (2)
O1—H1S···Cl1i0.76 (4)2.52 (4)3.248 (2)162 (4)
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

Purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

References

First citationAllen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., Hummelink, T., Hummelink-Peters, B. G., Kennard, O., Motherwell, W. D. S., Rodgers, J. R. & Watson, D. G. (1979). Acta Cryst. B35, 2331–2339.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBamgboye, T. T. & Bamgboye, O. A. (1988). Inorg. Chim. Acta, 144, 249–252.  CrossRef CAS Web of Science Google Scholar
First citationBarberi, R. S., Beraldo, H. O., Filgueiras, C. A. L., Abras, A., Nixon, J. F. & Hitchcock, P. B. (1993). Inorg. Chim. Acta, 206, 169–172.  Google Scholar
First citationCasas, J. S., Castineiras, A., Couce, M. D., Martinez, G., Sordo, J. & Varela, J. M. (1996). J. Organomet. Chem. 517, 165–172.  CSD CrossRef CAS Web of Science Google Scholar
First citationCasas, J. S., Castineiras, A., Martinez, E. G., Gonzalez, A. S., Sanchez, A. & Sordo, J. (1997). Polyhedron, 16, 795–800.  CSD CrossRef CAS Web of Science Google Scholar
First citationCasas, J. S., Castineiras, A., Sanchez, A., Sordo, J., Vazquez-Lopez, A., Rodriguez-Argiuelles, M. C. & Russo. U. (1994). Inorg. Chim. Acta, 221, 61–68.  Google Scholar
First citationChaudhary, P., Swami, M., Sharma, D. K. & Singh, R. V. (2009). Appl. Organomet. Chem. 23, 140–149.  Web of Science CrossRef CAS Google Scholar
First citationDavies, A. G. (1998). Radical Chemistry of Tin, 2nd ed., edited by P. J. Smith, pp. 265–289. London: Blackie.  Google Scholar
First citationDe Sousa, G. F., Francisco, R. H. P., Gambardella, M. T. P., Santos, R. H. A. & Abras, A. (2001). J. Braz. Chem. Soc. 12, 722–728.  CAS Google Scholar
First citationDey, D. K., Samanta, B., Lycka, A. & Dahlenburg, L. (2003). Z. Naturforsch. Teil B, 58, 336–344.  CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGielen, M., Biesemans, R. & Willen, R. (2005). Appl. Organomet. Chem. 19, 440–450.  Web of Science CrossRef CAS Google Scholar
First citationHuheey, J. E., Keiter, E. A. & Keitar, R. L. (1993). Inorganic Chemistry. Principles of Structure and Reactivity, 4th ed. New York: Harper Collins.  Google Scholar
First citationLi, M. X., Zhang, D., Zhang, L. Z., Niu, J. Y. & Ji, B. S. (2011). J. Organomet. Chem. 696, 852–858.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacias, A., Rodriguez-Arguelles, M. C., Suarez, M. I., Casas, J. S. & Sordo, J. (1989). J. Chem. Soc. Dalton Trans. pp. 1787–1791.  Google Scholar
First citationMendes, I. C., Moreira, J. P., Ardission, J. D., dos Santos, R. G., da Silva, P. R. O., Garcia, I., Castineiras, A. & Beraldo, H. (2008). J. Med. Chem. 43, 1454–1461.  CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreekanth, A. & Kurup, M. R. P. (2004). Polyhedron, 23, 969–978.  Web of Science CSD CrossRef CAS Google Scholar
First citationSwesi, A. T., Farina, Y., Venkatraman, R. & Ng, S. W. (2006a). Acta Cryst. E62, m3016–m3017.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSwesi, A. T., Farina, Y., Venkatraman, R. & Ng, S. W. (2006b). Acta Cryst. E62, m3018–m3019.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSwesi, A. T., Farina, Y., Venkatraman, R. & Ng, S. W. (2006c). Acta Cryst. E62, m3020–m3021.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTeoh, S. G., Ang, S. H. & Ong, C. W. (1999). J. Organomet. Chem. 580, 17–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationVenkatraman, R., Ray, P. C. & Fronczek, F. R. (2004). Acta Cryst. E60, m1035–m1037.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationVenkatraman, R., Sitole, L., Adams, T. D., Cameron, J. A. & Fronczek, F. R. (2007). Acta Cryst. E63, m2212–m2213.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVenkatraman, R., Sitole, L. & Fronczek, F. R. (2009). Acta Cryst. E65, m1653–m1654.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds