organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Di­cyclo­hexyl-N′′-(2,6-di­fluoro­benzo­yl)-N,N′-di­methyl­phospho­ric tri­amide

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and bDepartment of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
*Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

(Received 20 September 2011; accepted 17 October 2011; online 22 October 2011)

In the title mol­ecule, C21H32F2N3O2P, the P=O and N—H groups are syn with respect to each other, and the P atom is bonded in a distorted tetra­hedral environment. The phosphoryl group adopts an anti orientation with respect to the carbonyl group. The angles at the tertiary N atoms (with bond-angle sums of 358.4 and 357.0°) confirm their sp2 character. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(8) loops.

Related literature

For hydrogen-bond patterns in compounds containing a C(O)NHP(O) skeleton, see: Toghraee et al. (2011[Toghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680-1690.]); Pourayoubi et al. (2011[Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265-o272.]). For background to phospho­ric triamide compounds containing a C(O)NHP(O) skeleton, and related bond lengths, angles and torsion angles, see: Pourayoubi et al. (2010[Pourayoubi, M., Tarahhomi, A., Rheingold, A. L. & Golen, J. A. (2010). Acta Cryst. E66, o3159.]); Amirkhanov et al. (2010[Amirkhanov, O. V., Moroz, O. V., Znovjyak, K. O., Trush, E. A. & Sliva, T. Y. (2010). Acta Cryst. E66, o1102.]); Tarahhomi et al. (2011[Tarahhomi, A., Pourayoubi, M., Rheingold, A. L. & Golen, J. A. (2011). Struct. Chem. 22, 201-210.]). For a description of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C21H32F2N3O2P

  • Mr = 427.47

  • Triclinic, [P \overline 1]

  • a = 10.2322 (6) Å

  • b = 10.6188 (5) Å

  • c = 11.2658 (6) Å

  • α = 69.419 (1)°

  • β = 79.269 (1)°

  • γ = 81.536 (1)°

  • V = 1121.45 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.946, Tmax = 0.961

  • 17147 measured reflections

  • 5053 independent reflections

  • 4421 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.05

  • 5053 reflections

  • 267 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 (1) 1.90 (1) 2.7330 (13) 165 (1)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2005[Bruker (2005). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The patterns of hydrogen bonds and their strengths on phosphoric triamides containing a C(O)NHP(O) skeleton have been discussed (Toghraee et al., 2011; Pourayoubi et al., 2011). The structure determination of the title compound, P(O)[2,6-F2—C6H3C(O)NH][N(CH3)C6H11]2 (Fig. 1), was performed as part of a project in our laboratory on the synthesis of new derivatives of benzoyl phosphoric triamides with formula XC6HnC(O)NHP(O)Y2 (for example, n = 3, X = 2,6-F2 and Y = NHC(CH3)3: Pourayoubi et al., 2010).

In the title phosphoric triamide, the phosphoryl group adopts the anti orientation with respect to the carbonyl group; whereas it is in a syn position relative to the N—H unit. The tetrahedral environment at the P atom is distorted, as previously noted for other phosphoric triamides (Amirkhanov et al., 2010). The PO, CO and P—N bond lengths are within the expected ranges (Tarahhomi et al., 2011).

The hydrogen atom of the C(O)NHP(O) moiety is involved in an intermolecular –PO···H—N– hydrogen bond. Pairs of this type of hydrogen bonds form hydrogen-bonded dimers in the crystal (as R22(8) rings; see: Bernstein et al., 1995).

Related literature top

For hydrogen-bond patterns in compounds containing a C(O)NHP(O) skeleton, see: Toghraee et al. (2011); Pourayoubi et al. (2011). For background to phosphoric triamide compounds containing a C(O)NHP(O) skeleton, and related bond lengths, angles and torsion angles, see: Pourayoubi et al. (2010); Amirkhanov et al. (2010); Tarahhomi et al. (2011). For a description of hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

2,6—F2C6H3C(O)NHP(O)Cl2 was prepared according to the literature method reported by Pourayoubi et al. (2010).

The title compound was synthesized from the reaction of 2,6—F2C6H3C(O)NHP(O)Cl2 (1.09 mmol) with N-methylcyclohexylamine (4.36 mmol) in dry chloroform (30 ml). The amine was added dropwise to a solution of 2,6—F2C6H3C(O)NHP(O)Cl2 at 273 K, with continuous stirring. After 4 h, the solvent was evaporated and the obtained solid was washed with distilled water and recrystallized from a mixture of chloroform and DMF (4:1 v/v) at room temperature. IR (KBr, ν, cm-1): 3063 (NH), 2912, 2752, 1698, 1608, 1470, 1262, 1192, 1155, 997, 864, 815.

Refinement top

All non-H atoms were refined anisotropically by full-matrix least-squares on F2. Hydrogen H1N was found in a difference map and N1—H1N distance was set at 0.87 (1) Å and allowed to refine with Uiso = 1.2Ueq(N1). All other H atoms were placed in calculated positions with C—H distances for CH2 of 0.99 Å, CH3 of 0.98 Å, methine CH of 1.00 Å, and C(Ar)H 0.95 Å, and with Uiso of 1.2 or 1.5 times that of the parent C atom.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. An ORTEP-style plot for the title compound. Displacement ellipsoids are given at 50% probability level and H atoms are drawn as small spheres of arbitrary radii.
N,N'-Dicyclohexyl-N''-(2,6- difluorobenzoyl)-N,N'-dimethylphosphoric triamide top
Crystal data top
C21H32F2N3O2PZ = 2
Mr = 427.47F(000) = 456
Triclinic, P1Dx = 1.266 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2322 (6) ÅCell parameters from 9954 reflections
b = 10.6188 (5) Åθ = 2.4–28.0°
c = 11.2658 (6) ŵ = 0.16 mm1
α = 69.419 (1)°T = 100 K
β = 79.269 (1)°Block, colourless
γ = 81.536 (1)°0.35 × 0.30 × 0.25 mm
V = 1121.45 (10) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5053 independent reflections
Radiation source: fine-focus sealed tube4421 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 28.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.946, Tmax = 0.961k = 1313
17147 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.4607P]
where P = (Fo2 + 2Fc2)/3
5053 reflections(Δ/σ)max < 0.001
267 parametersΔρmax = 0.32 e Å3
1 restraintΔρmin = 0.34 e Å3
0 constraints
Crystal data top
C21H32F2N3O2Pγ = 81.536 (1)°
Mr = 427.47V = 1121.45 (10) Å3
Triclinic, P1Z = 2
a = 10.2322 (6) ÅMo Kα radiation
b = 10.6188 (5) ŵ = 0.16 mm1
c = 11.2658 (6) ÅT = 100 K
α = 69.419 (1)°0.35 × 0.30 × 0.25 mm
β = 79.269 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5053 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4421 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.961Rint = 0.029
17147 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.32 e Å3
5053 reflectionsΔρmin = 0.34 e Å3
267 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.42370 (3)0.41644 (3)0.20824 (3)0.01482 (9)
F10.91928 (9)0.33633 (12)0.27902 (10)0.0491 (3)
F20.68054 (9)0.73518 (9)0.04970 (9)0.0363 (2)
O10.64907 (10)0.41510 (13)0.35266 (9)0.0347 (3)
O20.35023 (8)0.47928 (9)0.09668 (8)0.01753 (19)
N10.57558 (10)0.47579 (11)0.15972 (10)0.0170 (2)
H1N0.5985 (14)0.5054 (14)0.0781 (9)0.020*
N20.34278 (10)0.45423 (10)0.33252 (9)0.0165 (2)
N30.45145 (11)0.25173 (11)0.25782 (11)0.0244 (2)
C10.91678 (14)0.4643 (2)0.19652 (16)0.0392 (4)
C21.03613 (16)0.5176 (3)0.14059 (19)0.0497 (5)
H21.11820.46690.16190.060*
C31.03445 (16)0.6460 (3)0.0529 (2)0.0546 (6)
H31.11660.68420.01370.066*
C40.91532 (17)0.7212 (2)0.02025 (17)0.0463 (5)
H40.91480.80990.04050.056*
C50.79751 (14)0.66235 (18)0.07925 (15)0.0333 (4)
C60.79311 (13)0.53390 (17)0.16838 (13)0.0283 (3)
C70.66617 (13)0.46961 (15)0.23652 (13)0.0236 (3)
C80.27329 (12)0.59130 (12)0.31148 (11)0.0169 (2)
H80.25040.62550.22240.020*
C90.36202 (14)0.69035 (14)0.32103 (14)0.0258 (3)
H9A0.38900.65780.40750.031*
H9B0.44390.69510.25750.031*
C100.28793 (18)0.83088 (16)0.29625 (17)0.0388 (4)
H10A0.34510.89180.30810.047*
H10B0.27010.86730.20640.047*
C110.15626 (17)0.82817 (16)0.38598 (17)0.0385 (4)
H11A0.17430.80160.47530.046*
H11B0.10850.91970.36350.046*
C120.06889 (15)0.72885 (15)0.37619 (16)0.0328 (3)
H12A0.04340.76050.28920.039*
H12B0.01390.72500.43850.039*
C130.14254 (13)0.58770 (14)0.40322 (13)0.0222 (3)
H13A0.16160.55290.49270.027*
H13B0.08520.52570.39330.027*
C140.36037 (14)0.37310 (14)0.46557 (12)0.0248 (3)
H14A0.38930.42970.50660.037*
H14B0.42810.29750.46580.037*
H14C0.27540.33810.51290.037*
C150.57908 (14)0.17673 (14)0.22547 (14)0.0277 (3)
H150.64730.24390.18740.033*
C160.57337 (16)0.11177 (15)0.12540 (14)0.0335 (3)
H16A0.54790.18240.04650.040*
H16B0.50420.04680.15850.040*
C170.70838 (18)0.03820 (16)0.09313 (15)0.0400 (4)
H17A0.69980.00880.03340.048*
H17B0.77500.10490.04970.048*
C180.7570 (2)0.06431 (18)0.21368 (16)0.0476 (5)
H18A0.69570.13690.25170.057*
H18B0.84680.10590.19060.057*
C190.76312 (19)0.00220 (19)0.31179 (17)0.0465 (5)
H19A0.83030.06920.27660.056*
H19B0.79140.06710.39010.056*
C200.62703 (17)0.07244 (16)0.34615 (15)0.0362 (4)
H20A0.63410.11780.40760.043*
H20B0.56130.00450.38770.043*
C210.33158 (15)0.17706 (14)0.30012 (15)0.0304 (3)
H21A0.31010.15600.22830.046*
H21B0.25640.23250.33000.046*
H21C0.34830.09300.37020.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01077 (15)0.01879 (16)0.01385 (15)0.00019 (11)0.00010 (11)0.00559 (12)
F10.0221 (5)0.0863 (8)0.0401 (6)0.0158 (5)0.0113 (4)0.0274 (6)
F20.0281 (5)0.0433 (5)0.0395 (5)0.0109 (4)0.0008 (4)0.0161 (4)
O10.0187 (5)0.0684 (8)0.0170 (5)0.0035 (5)0.0043 (4)0.0164 (5)
O20.0119 (4)0.0264 (5)0.0154 (4)0.0013 (3)0.0006 (3)0.0092 (4)
N10.0116 (5)0.0268 (5)0.0126 (5)0.0012 (4)0.0006 (4)0.0074 (4)
N20.0140 (5)0.0206 (5)0.0124 (5)0.0026 (4)0.0013 (4)0.0044 (4)
N30.0186 (6)0.0198 (5)0.0281 (6)0.0026 (4)0.0060 (5)0.0061 (5)
C10.0152 (7)0.0836 (13)0.0351 (8)0.0013 (7)0.0044 (6)0.0418 (9)
C20.0152 (7)0.1089 (17)0.0493 (11)0.0083 (9)0.0001 (7)0.0576 (12)
C30.0188 (8)0.1161 (19)0.0591 (12)0.0293 (10)0.0157 (8)0.0679 (13)
C40.0354 (9)0.0766 (13)0.0434 (10)0.0298 (9)0.0141 (7)0.0405 (10)
C50.0183 (7)0.0595 (10)0.0340 (8)0.0111 (7)0.0033 (6)0.0307 (8)
C60.0125 (6)0.0588 (10)0.0244 (7)0.0046 (6)0.0005 (5)0.0274 (7)
C70.0127 (6)0.0419 (8)0.0202 (6)0.0028 (5)0.0026 (5)0.0170 (6)
C80.0153 (6)0.0198 (6)0.0155 (6)0.0015 (5)0.0024 (4)0.0070 (5)
C90.0236 (7)0.0311 (7)0.0262 (7)0.0076 (6)0.0032 (5)0.0154 (6)
C100.0485 (10)0.0270 (8)0.0419 (9)0.0089 (7)0.0094 (8)0.0186 (7)
C110.0439 (10)0.0299 (8)0.0419 (9)0.0036 (7)0.0046 (7)0.0202 (7)
C120.0257 (8)0.0348 (8)0.0367 (8)0.0103 (6)0.0032 (6)0.0163 (7)
C130.0143 (6)0.0279 (7)0.0246 (7)0.0012 (5)0.0004 (5)0.0120 (5)
C140.0206 (7)0.0320 (7)0.0141 (6)0.0053 (5)0.0007 (5)0.0023 (5)
C150.0244 (7)0.0221 (7)0.0261 (7)0.0086 (5)0.0052 (6)0.0041 (5)
C160.0380 (9)0.0265 (7)0.0252 (7)0.0099 (6)0.0039 (6)0.0049 (6)
C170.0461 (10)0.0314 (8)0.0272 (8)0.0161 (7)0.0073 (7)0.0051 (6)
C180.0545 (12)0.0374 (9)0.0338 (9)0.0271 (8)0.0017 (8)0.0075 (7)
C190.0461 (11)0.0447 (10)0.0351 (9)0.0269 (8)0.0058 (8)0.0087 (7)
C200.0383 (9)0.0343 (8)0.0266 (8)0.0154 (7)0.0009 (7)0.0080 (6)
C210.0281 (8)0.0204 (7)0.0364 (8)0.0035 (5)0.0085 (6)0.0078 (6)
Geometric parameters (Å, º) top
P1—O21.4848 (9)C11—C121.523 (2)
P1—N21.6348 (11)C11—H11A0.9900
P1—N31.6363 (11)C11—H11B0.9900
P1—N11.6854 (10)C12—C131.5295 (19)
F1—C11.350 (2)C12—H12A0.9900
F2—C51.3552 (19)C12—H12B0.9900
O1—C71.2205 (16)C13—H13A0.9900
N1—C71.3612 (15)C13—H13B0.9900
N1—H1N0.859 (9)C14—H14A0.9800
N2—C141.4725 (15)C14—H14B0.9800
N2—C81.4819 (15)C14—H14C0.9800
N3—C211.4707 (17)C15—C161.528 (2)
N3—C151.4810 (17)C15—C201.5314 (19)
C1—C21.369 (2)C15—H151.0000
C1—C61.399 (2)C16—C171.532 (2)
C2—C31.374 (3)C16—H16A0.9900
C2—H20.9500C16—H16B0.9900
C3—C41.390 (3)C17—C181.526 (2)
C3—H30.9500C17—H17A0.9900
C4—C51.384 (2)C17—H17B0.9900
C4—H40.9500C18—C191.521 (3)
C5—C61.382 (2)C18—H18A0.9900
C6—C71.5046 (18)C18—H18B0.9900
C8—C131.5271 (17)C19—C201.530 (2)
C8—C91.5294 (17)C19—H19A0.9900
C8—H81.0000C19—H19B0.9900
C9—C101.527 (2)C20—H20A0.9900
C9—H9A0.9900C20—H20B0.9900
C9—H9B0.9900C21—H21A0.9800
C10—C111.524 (2)C21—H21B0.9800
C10—H10A0.9900C21—H21C0.9800
C10—H10B0.9900
O2—P1—N2110.40 (5)C11—C12—C13110.95 (12)
O2—P1—N3116.97 (6)C11—C12—H12A109.5
N2—P1—N3105.60 (6)C13—C12—H12A109.5
O2—P1—N1105.57 (5)C11—C12—H12B109.5
N2—P1—N1112.66 (5)C13—C12—H12B109.5
N3—P1—N1105.73 (6)H12A—C12—H12B108.0
C7—N1—P1126.27 (9)C8—C13—C12110.68 (11)
C7—N1—H1N118.7 (10)C8—C13—H13A109.5
P1—N1—H1N114.7 (10)C12—C13—H13A109.5
C14—N2—C8116.58 (10)C8—C13—H13B109.5
C14—N2—P1123.33 (9)C12—C13—H13B109.5
C8—N2—P1118.49 (8)H13A—C13—H13B108.1
C21—N3—C15116.90 (11)N2—C14—H14A109.5
C21—N3—P1115.51 (9)N2—C14—H14B109.5
C15—N3—P1124.57 (9)H14A—C14—H14B109.5
F1—C1—C2118.10 (16)N2—C14—H14C109.5
F1—C1—C6118.56 (14)H14A—C14—H14C109.5
C2—C1—C6123.28 (19)H14B—C14—H14C109.5
C1—C2—C3118.40 (17)N3—C15—C16113.22 (12)
C1—C2—H2120.8N3—C15—C20111.07 (11)
C3—C2—H2120.8C16—C15—C20111.21 (12)
C2—C3—C4121.52 (15)N3—C15—H15107.0
C2—C3—H3119.2C16—C15—H15107.0
C4—C3—H3119.2C20—C15—H15107.0
C5—C4—C3117.7 (2)C15—C16—C17111.21 (14)
C5—C4—H4121.1C15—C16—H16A109.4
C3—C4—H4121.1C17—C16—H16A109.4
F2—C5—C6118.33 (12)C15—C16—H16B109.4
F2—C5—C4118.37 (17)C17—C16—H16B109.4
C6—C5—C4123.29 (16)H16A—C16—H16B108.0
C5—C6—C1115.79 (14)C18—C17—C16111.24 (13)
C5—C6—C7124.16 (13)C18—C17—H17A109.4
C1—C6—C7120.02 (15)C16—C17—H17A109.4
O1—C7—N1123.71 (12)C18—C17—H17B109.4
O1—C7—C6120.91 (11)C16—C17—H17B109.4
N1—C7—C6115.38 (11)H17A—C17—H17B108.0
N2—C8—C13111.30 (10)C19—C18—C17111.16 (14)
N2—C8—C9112.22 (10)C19—C18—H18A109.4
C13—C8—C9110.75 (10)C17—C18—H18A109.4
N2—C8—H8107.4C19—C18—H18B109.4
C13—C8—H8107.4C17—C18—H18B109.4
C9—C8—H8107.4H18A—C18—H18B108.0
C10—C9—C8110.65 (12)C18—C19—C20110.98 (16)
C10—C9—H9A109.5C18—C19—H19A109.4
C8—C9—H9A109.5C20—C19—H19A109.4
C10—C9—H9B109.5C18—C19—H19B109.4
C8—C9—H9B109.5C20—C19—H19B109.4
H9A—C9—H9B108.1H19A—C19—H19B108.0
C11—C10—C9111.80 (13)C19—C20—C15110.31 (12)
C11—C10—H10A109.3C19—C20—H20A109.6
C9—C10—H10A109.3C15—C20—H20A109.6
C11—C10—H10B109.3C19—C20—H20B109.6
C9—C10—H10B109.3C15—C20—H20B109.6
H10A—C10—H10B107.9H20A—C20—H20B108.1
C12—C11—C10110.74 (13)N3—C21—H21A109.5
C12—C11—H11A109.5N3—C21—H21B109.5
C10—C11—H11A109.5H21A—C21—H21B109.5
C12—C11—H11B109.5N3—C21—H21C109.5
C10—C11—H11B109.5H21A—C21—H21C109.5
H11A—C11—H11B108.1H21B—C21—H21C109.5
O2—P1—N1—C7164.83 (11)P1—N1—C7—C6178.43 (10)
N2—P1—N1—C744.27 (13)C5—C6—C7—O1131.18 (15)
N3—P1—N1—C770.59 (12)C1—C6—C7—O147.0 (2)
O2—P1—N2—C14157.51 (10)C5—C6—C7—N149.58 (19)
N3—P1—N2—C1430.20 (11)C1—C6—C7—N1132.22 (14)
N1—P1—N2—C1484.74 (11)C14—N2—C8—C1350.03 (14)
O2—P1—N2—C837.41 (10)P1—N2—C8—C13143.89 (9)
N3—P1—N2—C8164.72 (9)C14—N2—C8—C974.73 (13)
N1—P1—N2—C880.35 (9)P1—N2—C8—C991.36 (11)
O2—P1—N3—C2160.31 (12)N2—C8—C9—C10178.90 (11)
N2—P1—N3—C2162.93 (11)C13—C8—C9—C1056.04 (15)
N1—P1—N3—C21177.45 (10)C8—C9—C10—C1155.54 (17)
O2—P1—N3—C1599.32 (12)C9—C10—C11—C1255.57 (19)
N2—P1—N3—C15137.44 (11)C10—C11—C12—C1356.09 (18)
N1—P1—N3—C1517.82 (13)N2—C8—C13—C12177.37 (10)
F1—C1—C2—C3177.59 (14)C9—C8—C13—C1257.05 (14)
C6—C1—C2—C30.3 (2)C11—C12—C13—C857.15 (16)
C1—C2—C3—C40.3 (2)C21—N3—C15—C1654.69 (16)
C2—C3—C4—C50.0 (2)P1—N3—C15—C16104.68 (13)
C3—C4—C5—F2179.09 (13)C21—N3—C15—C2071.27 (17)
C3—C4—C5—C60.2 (2)P1—N3—C15—C20129.36 (12)
F2—C5—C6—C1179.04 (12)N3—C15—C16—C17178.75 (11)
C4—C5—C6—C10.2 (2)C20—C15—C16—C1755.36 (16)
F2—C5—C6—C70.8 (2)C15—C16—C17—C1854.61 (19)
C4—C5—C6—C7178.10 (13)C16—C17—C18—C1955.4 (2)
F1—C1—C6—C5177.37 (12)C17—C18—C19—C2056.9 (2)
C2—C1—C6—C50.1 (2)C18—C19—C20—C1557.2 (2)
F1—C1—C6—C74.3 (2)N3—C15—C20—C19176.48 (14)
C2—C1—C6—C7178.47 (13)C16—C15—C20—C1956.45 (18)
P1—N1—C7—O12.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.86 (1)1.90 (1)2.7330 (13)165 (1)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H32F2N3O2P
Mr427.47
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.2322 (6), 10.6188 (5), 11.2658 (6)
α, β, γ (°)69.419 (1), 79.269 (1), 81.536 (1)
V3)1121.45 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.946, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
17147, 5053, 4421
Rint0.029
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.05
No. of reflections5053
No. of parameters267
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.34

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.859 (9)1.895 (10)2.7330 (13)164.5 (14)
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAmirkhanov, O. V., Moroz, O. V., Znovjyak, K. O., Trush, E. A. & Sliva, T. Y. (2010). Acta Cryst. E66, o1102.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPourayoubi, M., Tarahhomi, A., Rheingold, A. L. & Golen, J. A. (2010). Acta Cryst. E66, o3159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265–o272.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarahhomi, A., Pourayoubi, M., Rheingold, A. L. & Golen, J. A. (2011). Struct. Chem. 22, 201–210.  Web of Science CSD CrossRef CAS Google Scholar
First citationToghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680–1690.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds