metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(methyl xanthato)-κS;κ2S:S′-(tri­phenyl­phosphane-κP)palladium(II)

aInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México, D. F., 04510, Mexico
*Correspondence e-mail: simonho@unam.mx

(Received 23 September 2011; accepted 2 October 2011; online 12 October 2011)

The title compound, [Pd(C2H3OS2)2(C18H15P)], features a palladium complex with a triphenyl­phosphane ligand and two xanthate ligands, one of them coordinates in a bidentate and the other in a monodentate fashion, giving rise to a slightly distorted square-planar coordination of the PdII ion. As a result of this difference in the coordination modes, the C—S bond lengths are different, viz. 1.687 (2) and 1.692 (2) Å in the bidentate ligand and 1.723 (2) Å in the monodentate ligand, whereas the non-coordinating S atom has a C—S distance of 1.649 (2) Å. The crystal packing is stabilized by C—H⋯O inter­actions.

Related literature

For background information on xanthates, see: Karlin (2005[Karlin, D. K. (2005). Editor. Progress in Inorganic Chemistry, Vol. 53. New York: John Wiley & Sons.]); Friebolin et al. (2005[Friebolin, W., Schilling, G., Zöller, M. & Amtmann, E. (2005). J. Med. Chem. 48, 7925-7931.]). For crystal engineering, see: Tiekink (2003[Tiekink, E. R. T. (2003). CrystEngComm, 5, 101-113.]). For bond-length data, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C2H3OS2)2(C18H15P)]

  • Mr = 583.00

  • Triclinic, [P \overline 1]

  • a = 9.5595 (10) Å

  • b = 9.5883 (10) Å

  • c = 14.4661 (16) Å

  • α = 73.619 (1)°

  • β = 87.492 (2)°

  • γ = 69.617 (1)°

  • V = 1190.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 298 K

  • 0.30 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: analytical (SADABS, Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.712, Tmax = 0.817

  • 9954 measured reflections

  • 4371 independent reflections

  • 4021 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.064

  • S = 1.10

  • 4371 reflections

  • 274 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O20i 0.93 2.64 3.211 120
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Xanthates ligands are a kind of compounds that can be coordinated to metal centers in different fashions, being found in coordination as monodentate, bidentate or even as a bridge, such richness in coordination modes very often leads to diverse structural motifs in the solid state (Karlin, 2005). It is precisely due to these structural features that these ligands are commonly involved in different supramolecular interactions such as D—H···S, D—H···O and S···Metal (D=C, N, O), all of these interactions being of important relevance to crystal engineering (Tiekink, 2003). Moreover, complexes including xanthate ligands in its structure have shown diverse applications at the industrial level, as chelating and flotation agents, while in bioinorganic chemistry they have found important applications as antitumoral agents (Friebolin et al. 2005).

The molecular structure of the title compound (I) shown in Figure 1, consists of two xanthate and one triphenylphosphane ligands coordinated to the Pd(II) center, in an almost square planar arrangement about the Pd(II) atom [0.0272 (3) Å]. The two xanthates ligands exhibiting different bond fashions, having one of them coordinated in a bidentate manner while the second one is attached to the palladium only by one sulfur atom in a monodentate way. The bond distances of Pd—S observed on the bidetate ligand 2.3386 (6)Å for Pd—S2 and 2.3581 (6)Å for Pd—S1 are larger than that observed Pd—S3 for the mondentate ligand. The difference between the above mentioned bond distances being due in part to the fact that the C22—S4 distance has a double bond character (1.649 (2) Å) and thus is shorter than C22—S4 (1.723 (2)Å which shows a commonly single bond character (Table 1). A revision of the Cambridge Structural Database (Allen, 2002), for Pd—S distances in bidentate and monodentate ligands, affords distance values of 2.31–2.33Å which are shorter than the data observed for the title compound (I). In absence of hydrogen bond donors, the molecules arrange as a centrosymmetric dimers generated by C—H···O and a weak intermolecular Pd–S interaction of 3.521 (2)Å.

Related literature top

For background information on xanthates, see; Karlin (2005); Friebolin et al. (2005). For crystal engineering, see: Tiekink (2003). For bond-length data, see: Allen (2002).

Experimental top

The title compound was synthesized by mixing Et3N (0.2 mL) and excess CS2 (2 mL) in methanol (10 mL). After stirring the resulting solution for 4 h at room temperature, trans-[(Ph3P)2PdCl2] (100 mg, 0.14 mmol) was added, affording a yellow precipitate that was filtered and washed with methanol. Crystals suitable for X-ray analysis were obtained upon recrystallization from a mixture of dichloromethane and isopropyl alcohol.

Refinement top

The positional parameters of H atoms were calculated geometrically (C—H = 0.93Å for C—H arom. and 0.96 for C—H of methyl groups). The H atoms were fixed with Uiso(H) = 1.2Ueq and Uiso(H) = 1.5Ueq of the attached non-H atom.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with the numbering scheme. Displacement ellipsoids are shown at the 40% probability level. H atoms have been omitted for clarity.
Bis(methyl xanthato)-κS;κ2S:S'- (triphenylphosphane-κP)palladium(II) top
Crystal data top
[Pd(C2H3OS2)2(C18H15P)]Z = 2
Mr = 583.00F(000) = 588
Triclinic, P1Dx = 1.627 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5595 (10) ÅCell parameters from 8044 reflections
b = 9.5883 (10) Åθ = 2.3–25.4°
c = 14.4661 (16) ŵ = 1.22 mm1
α = 73.619 (1)°T = 298 K
β = 87.492 (2)°Prism, orange
γ = 69.617 (1)°0.30 × 0.22 × 0.20 mm
V = 1190.3 (2) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4371 independent reflections
Radiation source: fine-focus sealed tube4021 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 0.83 pixels mm-1θmax = 25.4°, θmin = 2.4°
ω scansh = 1111
Absorption correction: analytical
(SADABS, Bruker, 1999)
k = 1111
Tmin = 0.712, Tmax = 0.817l = 1717
9954 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0336P)2 + 0.178P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
4371 reflectionsΔρmax = 0.32 e Å3
274 parametersΔρmin = 0.42 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0063 (7)
Crystal data top
[Pd(C2H3OS2)2(C18H15P)]γ = 69.617 (1)°
Mr = 583.00V = 1190.3 (2) Å3
Triclinic, P1Z = 2
a = 9.5595 (10) ÅMo Kα radiation
b = 9.5883 (10) ŵ = 1.22 mm1
c = 14.4661 (16) ÅT = 298 K
α = 73.619 (1)°0.30 × 0.22 × 0.20 mm
β = 87.492 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4371 independent reflections
Absorption correction: analytical
(SADABS, Bruker, 1999)
4021 reflections with I > 2σ(I)
Tmin = 0.712, Tmax = 0.817Rint = 0.025
9954 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.10Δρmax = 0.32 e Å3
4371 reflectionsΔρmin = 0.42 e Å3
274 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd0.557109 (17)0.946630 (17)0.158062 (11)0.03533 (8)
S10.62793 (7)1.11131 (6)0.02530 (4)0.04484 (15)
S20.77698 (7)0.78738 (7)0.10997 (4)0.04619 (15)
S30.34534 (7)1.12011 (7)0.20223 (4)0.04483 (15)
S40.16108 (9)1.44896 (8)0.16359 (6)0.0674 (2)
P0.53719 (6)0.75832 (6)0.29129 (4)0.03699 (14)
C10.6235 (2)0.5585 (2)0.28557 (16)0.0402 (5)
C20.5382 (3)0.4710 (3)0.2782 (2)0.0540 (6)
H20.43460.51300.27790.065*
C30.6064 (3)0.3212 (3)0.2714 (2)0.0673 (8)
H30.54820.26330.26610.081*
C40.7577 (4)0.2585 (3)0.2723 (2)0.0650 (8)
H40.80270.15790.26760.078*
C50.8448 (3)0.3428 (3)0.2801 (2)0.0614 (7)
H50.94840.29920.28110.074*
C60.7775 (3)0.4931 (3)0.28646 (18)0.0511 (6)
H60.83640.55030.29140.061*
C70.6282 (3)0.7628 (3)0.39762 (16)0.0431 (5)
C80.6358 (3)0.9006 (3)0.40261 (19)0.0527 (6)
H80.59900.98930.35070.063*
C90.6979 (3)0.9080 (4)0.4844 (2)0.0683 (8)
H90.70101.00240.48760.082*
C100.7548 (3)0.7795 (4)0.5605 (2)0.0745 (9)
H100.79670.78560.61540.089*
C110.7498 (4)0.6417 (4)0.5555 (2)0.0845 (10)
H110.79050.55280.60670.101*
C120.6853 (4)0.6327 (3)0.4754 (2)0.0739 (9)
H120.68010.53840.47350.089*
C130.3460 (2)0.7770 (2)0.32140 (16)0.0409 (5)
C140.2973 (3)0.7726 (3)0.41336 (19)0.0536 (6)
H140.36350.75850.46320.064*
C150.1497 (3)0.7892 (4)0.4307 (2)0.0727 (9)
H150.11650.78750.49230.087*
C160.0524 (3)0.8082 (4)0.3579 (3)0.0754 (9)
H160.04660.81900.37010.090*
C170.1000 (3)0.8112 (3)0.2669 (2)0.0656 (8)
H170.03400.82190.21790.079*
C180.2455 (3)0.7983 (3)0.24803 (18)0.0521 (6)
H180.27660.80390.18570.063*
C190.7744 (2)0.9505 (3)0.02430 (16)0.0398 (5)
O200.87376 (17)0.95924 (18)0.03937 (12)0.0483 (4)
C210.9931 (3)0.8175 (3)0.0439 (2)0.0579 (7)
H21A1.04370.76370.01870.087*
H21B1.06290.84310.08940.087*
H21C0.95160.75220.06410.087*
C220.2955 (2)1.3103 (3)0.13247 (16)0.0414 (5)
O230.3687 (2)1.33360 (19)0.05373 (13)0.0590 (5)
C240.3206 (4)1.4853 (3)0.0161 (2)0.0767 (9)
H24A0.21891.51270.03850.115*
H24B0.38351.48340.06970.115*
H24C0.32761.56060.01370.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.03777 (12)0.02838 (11)0.03679 (11)0.01107 (8)0.00156 (7)0.00519 (7)
S10.0442 (3)0.0308 (3)0.0494 (3)0.0087 (2)0.0092 (3)0.0027 (2)
S20.0444 (3)0.0313 (3)0.0524 (3)0.0074 (2)0.0049 (3)0.0038 (3)
S30.0462 (3)0.0334 (3)0.0465 (3)0.0086 (2)0.0072 (3)0.0061 (2)
S40.0682 (5)0.0440 (4)0.0658 (4)0.0038 (3)0.0171 (4)0.0105 (3)
P0.0415 (3)0.0315 (3)0.0367 (3)0.0151 (2)0.0002 (2)0.0046 (2)
C10.0460 (12)0.0321 (11)0.0396 (12)0.0144 (10)0.0015 (9)0.0044 (9)
C20.0512 (14)0.0393 (13)0.0719 (17)0.0182 (11)0.0005 (12)0.0130 (12)
C30.0733 (19)0.0424 (15)0.092 (2)0.0259 (14)0.0023 (16)0.0193 (15)
C40.079 (2)0.0354 (14)0.0713 (18)0.0102 (14)0.0053 (15)0.0130 (13)
C50.0541 (15)0.0444 (15)0.0676 (17)0.0055 (12)0.0035 (13)0.0033 (13)
C60.0478 (14)0.0423 (14)0.0576 (15)0.0166 (11)0.0018 (11)0.0038 (11)
C70.0448 (12)0.0462 (13)0.0390 (12)0.0183 (11)0.0016 (9)0.0100 (10)
C80.0506 (14)0.0484 (14)0.0602 (15)0.0137 (12)0.0036 (12)0.0208 (12)
C90.0618 (17)0.075 (2)0.076 (2)0.0173 (15)0.0012 (15)0.0412 (17)
C100.0581 (17)0.118 (3)0.0530 (17)0.0248 (18)0.0002 (13)0.0404 (19)
C110.113 (3)0.084 (2)0.0465 (16)0.032 (2)0.0208 (17)0.0012 (16)
C120.109 (2)0.0577 (17)0.0515 (16)0.0359 (18)0.0187 (16)0.0022 (13)
C130.0447 (12)0.0312 (11)0.0446 (12)0.0152 (10)0.0043 (10)0.0051 (9)
C140.0610 (16)0.0489 (14)0.0514 (14)0.0208 (13)0.0104 (12)0.0142 (12)
C150.0672 (19)0.075 (2)0.0714 (19)0.0249 (16)0.0293 (16)0.0181 (16)
C160.0468 (16)0.069 (2)0.099 (3)0.0192 (15)0.0192 (17)0.0101 (18)
C170.0473 (15)0.0649 (18)0.075 (2)0.0190 (14)0.0063 (14)0.0050 (15)
C180.0465 (13)0.0534 (15)0.0492 (14)0.0169 (12)0.0005 (11)0.0042 (12)
C190.0379 (11)0.0373 (12)0.0426 (12)0.0126 (10)0.0004 (9)0.0092 (10)
O200.0407 (9)0.0436 (9)0.0509 (9)0.0084 (7)0.0091 (7)0.0080 (8)
C210.0419 (13)0.0569 (16)0.0669 (17)0.0056 (12)0.0112 (12)0.0216 (14)
C220.0411 (12)0.0374 (12)0.0437 (12)0.0111 (10)0.0005 (10)0.0111 (10)
O230.0658 (11)0.0359 (9)0.0562 (10)0.0039 (8)0.0164 (9)0.0036 (8)
C240.093 (2)0.0384 (15)0.0670 (19)0.0032 (15)0.0225 (16)0.0050 (13)
Geometric parameters (Å, º) top
Pd—P2.2924 (6)C9—H90.9300
Pd—S32.3267 (6)C10—C111.361 (5)
Pd—S22.3386 (6)C10—H100.9300
Pd—S12.3581 (6)C11—C121.373 (4)
S1—C191.687 (2)C11—H110.9300
S2—C191.692 (2)C12—H120.9300
S3—C221.723 (2)C13—C141.384 (3)
S4—C221.649 (2)C13—C181.386 (3)
P—C71.818 (2)C14—C151.384 (4)
P—C131.819 (2)C14—H140.9300
P—C11.827 (2)C15—C161.367 (5)
C1—C21.383 (3)C15—H150.9300
C1—C61.384 (3)C16—C171.369 (4)
C2—C31.386 (4)C16—H160.9300
C2—H20.9300C17—C181.375 (4)
C3—C41.359 (4)C17—H170.9300
C3—H30.9300C18—H180.9300
C4—C51.373 (4)C19—O201.301 (3)
C4—H40.9300O20—C211.455 (3)
C5—C61.387 (4)C21—H21A0.9600
C5—H50.9300C21—H21B0.9600
C6—H60.9300C21—H21C0.9600
C7—C81.371 (3)C22—O231.316 (3)
C7—C121.381 (3)O23—C241.447 (3)
C8—C91.377 (4)C24—H24A0.9600
C8—H80.9300C24—H24B0.9600
C9—C101.359 (4)C24—H24C0.9600
P—Pd—S388.08 (2)C10—C11—C12120.6 (3)
P—Pd—S295.32 (2)C10—C11—H11119.7
S3—Pd—S2175.72 (2)C12—C11—H11119.7
P—Pd—S1168.78 (2)C11—C12—C7120.3 (3)
S3—Pd—S1101.78 (2)C11—C12—H12119.8
S2—Pd—S174.60 (2)C7—C12—H12119.8
C19—S1—Pd85.06 (8)C14—C13—C18119.3 (2)
C19—S2—Pd85.56 (8)C14—C13—P122.88 (19)
C22—S3—Pd115.44 (8)C18—C13—P117.85 (18)
C7—P—C13105.95 (10)C15—C14—C13119.7 (3)
C7—P—C1104.63 (10)C15—C14—H14120.2
C13—P—C1104.52 (10)C13—C14—H14120.2
C7—P—Pd110.69 (8)C16—C15—C14120.4 (3)
C13—P—Pd114.35 (7)C16—C15—H15119.8
C1—P—Pd115.78 (7)C14—C15—H15119.8
C2—C1—C6118.7 (2)C15—C16—C17120.3 (3)
C2—C1—P121.55 (18)C15—C16—H16119.9
C6—C1—P119.78 (18)C17—C16—H16119.9
C1—C2—C3120.4 (2)C16—C17—C18120.0 (3)
C1—C2—H2119.8C16—C17—H17120.0
C3—C2—H2119.8C18—C17—H17120.0
C4—C3—C2120.3 (3)C17—C18—C13120.3 (3)
C4—C3—H3119.9C17—C18—H18119.8
C2—C3—H3119.9C13—C18—H18119.8
C3—C4—C5120.4 (3)O20—C19—S1119.69 (17)
C3—C4—H4119.8O20—C19—S2125.54 (17)
C5—C4—H4119.8S1—C19—S2114.77 (13)
C4—C5—C6119.7 (3)C19—O20—C21118.96 (19)
C4—C5—H5120.2O20—C21—H21A109.5
C6—C5—H5120.2O20—C21—H21B109.5
C1—C6—C5120.6 (2)H21A—C21—H21B109.5
C1—C6—H6119.7O20—C21—H21C109.5
C5—C6—H6119.7H21A—C21—H21C109.5
C8—C7—C12118.7 (2)H21B—C21—H21C109.5
C8—C7—P119.16 (18)O23—C22—S4123.92 (17)
C12—C7—P122.1 (2)O23—C22—S3115.46 (16)
C7—C8—C9120.1 (3)S4—C22—S3120.60 (14)
C7—C8—H8120.0C22—O23—C24119.4 (2)
C9—C8—H8120.0O23—C24—H24A109.5
C10—C9—C8121.1 (3)O23—C24—H24B109.5
C10—C9—H9119.5H24A—C24—H24B109.5
C8—C9—H9119.5O23—C24—H24C109.5
C9—C10—C11119.2 (3)H24A—C24—H24C109.5
C9—C10—H10120.4H24B—C24—H24C109.5
C11—C10—H10120.4
P—Pd—S1—C1926.14 (14)C13—P—C7—C1281.9 (3)
S3—Pd—S1—C19177.19 (8)C1—P—C7—C1228.2 (3)
S2—Pd—S1—C190.47 (8)Pd—P—C7—C12153.6 (2)
P—Pd—S2—C19174.52 (8)C12—C7—C8—C90.8 (4)
S3—Pd—S2—C1932.0 (3)P—C7—C8—C9176.9 (2)
S1—Pd—S2—C190.46 (8)C7—C8—C9—C101.2 (4)
P—Pd—S3—C22174.99 (9)C8—C9—C10—C110.1 (5)
S2—Pd—S3—C2232.3 (3)C9—C10—C11—C121.4 (5)
S1—Pd—S3—C220.40 (9)C10—C11—C12—C71.8 (6)
S3—Pd—P—C785.16 (8)C8—C7—C12—C110.7 (5)
S2—Pd—P—C792.24 (8)P—C7—C12—C11178.3 (3)
S1—Pd—P—C766.54 (14)C7—P—C13—C147.9 (2)
S3—Pd—P—C1334.40 (8)C1—P—C13—C14102.3 (2)
S2—Pd—P—C13148.20 (8)Pd—P—C13—C14130.10 (18)
S1—Pd—P—C13173.90 (12)C7—P—C13—C18171.35 (18)
S3—Pd—P—C1156.01 (8)C1—P—C13—C1878.4 (2)
S2—Pd—P—C126.60 (8)Pd—P—C13—C1849.2 (2)
S1—Pd—P—C152.30 (14)C18—C13—C14—C150.1 (4)
C7—P—C1—C2127.6 (2)P—C13—C14—C15179.3 (2)
C13—P—C1—C216.5 (2)C13—C14—C15—C160.8 (4)
Pd—P—C1—C2110.26 (19)C14—C15—C16—C170.2 (5)
C7—P—C1—C653.8 (2)C15—C16—C17—C181.3 (5)
C13—P—C1—C6164.93 (19)C16—C17—C18—C132.2 (4)
Pd—P—C1—C668.3 (2)C14—C13—C18—C171.5 (4)
C6—C1—C2—C30.4 (4)P—C13—C18—C17179.2 (2)
P—C1—C2—C3178.2 (2)Pd—S1—C19—O20179.27 (18)
C1—C2—C3—C40.3 (5)Pd—S1—C19—S20.68 (11)
C2—C3—C4—C50.1 (5)Pd—S2—C19—O20179.3 (2)
C3—C4—C5—C60.4 (5)Pd—S2—C19—S10.69 (11)
C2—C1—C6—C50.0 (4)S1—C19—O20—C21175.44 (16)
P—C1—C6—C5178.6 (2)S2—C19—O20—C214.6 (3)
C4—C5—C6—C10.4 (4)Pd—S3—C22—O239.4 (2)
C13—P—C7—C895.7 (2)Pd—S3—C22—S4172.25 (10)
C1—P—C7—C8154.22 (19)S4—C22—O23—C246.8 (4)
Pd—P—C7—C828.8 (2)S3—C22—O23—C24171.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O20i0.932.643.211120
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Pd(C2H3OS2)2(C18H15P)]
Mr583.00
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.5595 (10), 9.5883 (10), 14.4661 (16)
α, β, γ (°)73.619 (1), 87.492 (2), 69.617 (1)
V3)1190.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.30 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionAnalytical
(SADABS, Bruker, 1999)
Tmin, Tmax0.712, 0.817
No. of measured, independent and
observed [I > 2σ(I)] reflections
9954, 4371, 4021
Rint0.025
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.064, 1.10
No. of reflections4371
No. of parameters274
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.42

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O20i0.932.6433.211120.0
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

RRM would like to thank CONACYT for a postdoctoral scholarship (Agreement 290586-UNAM). Support of this research by CONACYT (154732) and PAPIIT (IN201711) is gratefully acknowledged.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationFriebolin, W., Schilling, G., Zöller, M. & Amtmann, E. (2005). J. Med. Chem. 48, 7925–7931.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKarlin, D. K. (2005). Editor. Progress in Inorganic Chemistry, Vol. 53. New York: John Wiley & Sons.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2003). CrystEngComm, 5, 101–113.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds