metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­manganese(II) bis­­[4-(pyridin-2-ylmeth­­oxy)benzoate] dihydrate

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 3 October 2011; accepted 5 October 2011; online 12 October 2011)

The MnII atom in the title salt, [Mn(H2O)6](C13H10NO3)2·2H2O, lies on a center of inversion in an octa­hedron of water mol­ecules. The cations, anions and uncoordinated water mol­ecules are linked by O—H⋯O and O—H⋯N hydrogen bonds into a three-dimensional network. The anion is essentially planar, with an r.m.s. deviation of all non-H atoms of 0.068 Å.

Related literature

For the isotypic Co(II) salt, see: Zhang et al. (2011[Zhang, L.-W., Gao, S. & Ng, S. W. (2011). Acta Cryst. E67, m1519.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(H2O)6](C13H10NO3)2·2H2O

  • Mr = 655.51

  • Triclinic, [P \overline 1]

  • a = 7.4895 (18) Å

  • b = 7.6409 (18) Å

  • c = 13.791 (3) Å

  • α = 84.498 (4)°

  • β = 82.851 (5)°

  • γ = 72.576 (5)°

  • V = 745.7 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 293 K

  • 0.19 × 0.12 × 0.11 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.909, Tmax = 0.946

  • 7320 measured reflections

  • 3387 independent reflections

  • 1971 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.191

  • S = 1.07

  • 3387 reflections

  • 196 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O1 0.84 1.94 2.760 (3) 164
O1w—H12⋯O4wi 0.84 1.83 2.668 (4) 175
O2w—H21⋯O2 0.85 1.83 2.680 (3) 175
O2w—H22⋯O2ii 0.85 1.92 2.744 (3) 164
O3w—H31⋯O1iii 0.84 1.97 2.805 (3) 172
O3w—H32⋯N1iv 0.85 1.96 2.789 (4) 168
O4w—H41⋯O2 0.84 2.12 2.888 (4) 151
O4w—H42⋯O3wv 0.84 2.40 3.165 (4) 151
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+2, -z+1; (iii) -x+1, -y+1, -z+1; (iv) x, y-1, z+1; (v) x, y+1, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

First-row transition metal dications form a plethora of metal dicarboxylates; however, occasionally, no direct metal–carboxylate bond is formed, and the product consists of hexaaquametal cations and carboxylate ions, the anion interacting indirectly in an outer-sphere type of coordination. 4-(Pyridin-2-ylmethoxy)benzoic acid is a commercially available carboxylic acid but there are no reports on its metal carboxylates. The reaction of the deprotonated acid with manganese(II) ions gives the hexaaquamanganese(II) salt (Scheme I, Fig. 1). The MnII atom in the salt lies on a center-of-inversion in an octahedron of water molecules. The metal atom interacts with the carboxylate ion indirectly, through the coordinated water molecules, in an outer-sphere type of coordination. The cations, anions and lattice water molecules are linked by O···H···O and O–H···N hydrogen bonds into a three-dimensional network (Table 1).

Related literature top

For the isotypic Co(II) salt, see: Zhang et al. (2011).

Experimental top

Manganese dichloride (1 mmol) was added to an aqueous solution of 4-(pyridin-2-ylmethoxy)benzoic acid (2 mmol) that was earlier been treated with 1M sodium hydroxide to a pH of 6. The filtered solution was set aside for several days, after which colorless prismatic crystals separated from solution.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The water H-atoms were located in a difference Fourier map but were not refined. Their temperature factors were tied by a factor of 1.5 times.

The anisotropic temperature factors of the lattice water O were restrained to be nearly isotropic.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of Mn(H2O)6.2(C13H10NO3).2H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Hexaaquamanganese(II) bis[4-(pyridin-2-ylmethoxy)benzoate] dihydrate top
Crystal data top
[Mn(H2O)6](C13H10NO3)2·2H2OZ = 1
Mr = 655.51F(000) = 343
Triclinic, P1Dx = 1.460 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4895 (18) ÅCell parameters from 3613 reflections
b = 7.6409 (18) Åθ = 3.1–27.5°
c = 13.791 (3) ŵ = 0.51 mm1
α = 84.498 (4)°T = 293 K
β = 82.851 (5)°Prism, colorless
γ = 72.576 (5)°0.19 × 0.12 × 0.11 mm
V = 745.7 (3) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3387 independent reflections
Radiation source: fine-focus sealed tube1971 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 98
Tmin = 0.909, Tmax = 0.946k = 99
7320 measured reflectionsl = 1517
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0912P)2]
where P = (Fo2 + 2Fc2)/3
3387 reflections(Δ/σ)max = 0.001
196 parametersΔρmax = 0.62 e Å3
18 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Mn(H2O)6](C13H10NO3)2·2H2Oγ = 72.576 (5)°
Mr = 655.51V = 745.7 (3) Å3
Triclinic, P1Z = 1
a = 7.4895 (18) ÅMo Kα radiation
b = 7.6409 (18) ŵ = 0.51 mm1
c = 13.791 (3) ÅT = 293 K
α = 84.498 (4)°0.19 × 0.12 × 0.11 mm
β = 82.851 (5)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3387 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1971 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.946Rint = 0.053
7320 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06018 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 1.07Δρmax = 0.62 e Å3
3387 reflectionsΔρmin = 0.70 e Å3
196 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.50000.50000.0466 (3)
O10.4142 (4)0.8219 (3)0.26773 (17)0.0597 (7)
O20.3600 (4)1.0287 (3)0.37937 (16)0.0600 (7)
O30.2466 (4)1.5712 (3)0.00213 (17)0.0659 (8)
O1w0.2694 (3)0.6085 (3)0.41033 (17)0.0540 (6)
H110.29360.67670.36200.081*
H120.15650.65400.43320.081*
O2w0.4579 (4)0.7811 (3)0.52917 (16)0.0540 (7)
H210.43250.85610.47970.081*
H220.50510.83160.56770.081*
O3w0.3151 (4)0.4446 (3)0.63159 (16)0.0571 (7)
H310.39600.35770.65810.086*
H320.26330.52270.67360.086*
O4w0.0862 (4)1.2683 (4)0.5115 (2)0.0882 (10)
H410.13001.19600.46630.132*
H420.17341.27420.54270.132*
N10.1726 (4)1.7360 (4)0.2464 (2)0.0554 (8)
C10.3759 (5)0.9845 (4)0.2909 (2)0.0471 (8)
C20.3404 (5)1.1379 (4)0.2128 (2)0.0453 (8)
C30.3102 (5)1.3176 (5)0.2353 (2)0.0520 (9)
H30.31031.34410.29970.062*
C40.2800 (6)1.4580 (5)0.1630 (2)0.0562 (10)
H40.25951.57850.17890.067*
C50.2800 (5)1.4203 (5)0.0674 (3)0.0510 (9)
C60.3117 (5)1.2423 (4)0.0429 (2)0.0512 (9)
H60.31291.21680.02180.061*
C70.3420 (5)1.1005 (5)0.1161 (2)0.0489 (9)
H70.36350.98000.10000.059*
C80.2382 (6)1.5467 (5)0.0977 (2)0.0548 (9)
H8A0.14411.48560.10350.066*
H8B0.35901.47200.12580.066*
C90.1870 (5)1.7363 (5)0.1506 (2)0.0483 (8)
C100.1244 (6)1.8998 (6)0.2957 (3)0.0645 (11)
H100.11401.90230.36230.077*
C110.0898 (6)2.0632 (5)0.2546 (3)0.0640 (11)
H11A0.05632.17360.29220.077*
C120.1053 (7)2.0615 (6)0.1567 (3)0.0705 (12)
H12A0.08202.17060.12610.085*
C130.1566 (6)1.8933 (5)0.1041 (3)0.0584 (10)
H130.17011.88790.03770.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0650 (6)0.0290 (4)0.0490 (5)0.0172 (4)0.0134 (3)0.0038 (3)
O10.095 (2)0.0304 (13)0.0560 (14)0.0190 (13)0.0203 (13)0.0039 (10)
O20.101 (2)0.0381 (13)0.0470 (15)0.0260 (14)0.0228 (13)0.0079 (10)
O30.117 (2)0.0380 (14)0.0449 (14)0.0237 (15)0.0232 (14)0.0096 (10)
O1w0.0678 (17)0.0374 (13)0.0593 (14)0.0172 (12)0.0174 (12)0.0047 (10)
O2w0.092 (2)0.0215 (11)0.0543 (14)0.0192 (12)0.0222 (13)0.0011 (9)
O3w0.0719 (18)0.0417 (14)0.0531 (14)0.0116 (13)0.0064 (12)0.0035 (11)
O4w0.075 (2)0.081 (2)0.108 (2)0.0244 (18)0.0048 (17)0.0131 (18)
N10.067 (2)0.0510 (19)0.0436 (17)0.0110 (16)0.0098 (14)0.0072 (13)
C10.061 (2)0.0328 (18)0.051 (2)0.0166 (17)0.0157 (16)0.0043 (14)
C20.058 (2)0.0315 (16)0.0491 (19)0.0164 (16)0.0146 (16)0.0064 (13)
C30.079 (3)0.0356 (18)0.0445 (19)0.0180 (18)0.0180 (17)0.0015 (14)
C40.088 (3)0.0320 (18)0.051 (2)0.0170 (19)0.0186 (19)0.0015 (15)
C50.065 (2)0.0371 (18)0.051 (2)0.0164 (17)0.0152 (17)0.0107 (15)
C60.077 (3)0.0346 (18)0.0427 (19)0.0147 (18)0.0149 (17)0.0009 (14)
C70.068 (2)0.0324 (17)0.049 (2)0.0159 (17)0.0134 (17)0.0002 (14)
C80.070 (3)0.042 (2)0.053 (2)0.0189 (19)0.0115 (18)0.0070 (16)
C90.055 (2)0.0383 (19)0.052 (2)0.0150 (17)0.0111 (16)0.0062 (15)
C100.071 (3)0.063 (3)0.050 (2)0.008 (2)0.0110 (19)0.0158 (19)
C110.082 (3)0.041 (2)0.068 (3)0.018 (2)0.020 (2)0.0173 (18)
C120.096 (3)0.044 (2)0.078 (3)0.025 (2)0.031 (2)0.0065 (19)
C130.086 (3)0.046 (2)0.048 (2)0.023 (2)0.0237 (19)0.0065 (16)
Geometric parameters (Å, º) top
Mn1—O2wi2.145 (2)C2—C31.383 (5)
Mn1—O2w2.145 (2)C2—C71.388 (4)
Mn1—O1w2.163 (2)C3—C41.378 (4)
Mn1—O1wi2.163 (2)C3—H30.9300
Mn1—O3w2.229 (2)C4—C51.377 (5)
Mn1—O3wi2.229 (2)C4—H40.9300
O1—C11.252 (4)C5—C61.377 (5)
O2—C11.279 (4)C6—C71.394 (4)
O3—C51.374 (4)C6—H60.9300
O3—C81.418 (4)C7—H70.9300
O1w—H110.8420C8—C91.521 (4)
O1w—H120.8447C8—H8A0.9700
O2w—H210.8498C8—H8B0.9700
O2w—H220.8503C9—C131.360 (5)
O3w—H310.8419C10—C111.361 (6)
O3w—H320.8451C10—H100.9300
O4w—H410.8414C11—C121.368 (5)
O4w—H420.8401C11—H11A0.9300
N1—C101.337 (4)C12—C131.385 (5)
N1—C91.339 (4)C12—H12A0.9300
C1—C21.499 (4)C13—H130.9300
O2wi—Mn1—O2w180.00 (11)C2—C3—H3119.7
O2wi—Mn1—O1w94.67 (8)C5—C4—C3120.2 (3)
O2w—Mn1—O1w85.33 (8)C5—C4—H4119.9
O2wi—Mn1—O1wi85.33 (8)C3—C4—H4119.9
O2w—Mn1—O1wi94.67 (8)O3—C5—C4114.9 (3)
O1w—Mn1—O1wi180.0O3—C5—C6124.7 (3)
O2wi—Mn1—O3w85.49 (9)C4—C5—C6120.4 (3)
O2w—Mn1—O3w94.51 (9)C5—C6—C7119.3 (3)
O1w—Mn1—O3w93.70 (9)C5—C6—H6120.3
O1wi—Mn1—O3w86.30 (9)C7—C6—H6120.3
O2wi—Mn1—O3wi94.51 (9)C2—C7—C6120.5 (3)
O2w—Mn1—O3wi85.49 (9)C2—C7—H7119.7
O1w—Mn1—O3wi86.30 (9)C6—C7—H7119.7
O1wi—Mn1—O3wi93.70 (9)O3—C8—C9107.4 (3)
O3w—Mn1—O3wi180.0O3—C8—H8A110.2
C5—O3—C8119.0 (3)C9—C8—H8A110.2
Mn1—O1w—H11113.3O3—C8—H8B110.2
Mn1—O1w—H12123.8C9—C8—H8B110.2
H11—O1w—H12108.4H8A—C8—H8B108.5
Mn1—O2w—H21113.9N1—C9—C13122.8 (3)
Mn1—O2w—H22133.0N1—C9—C8114.5 (3)
H21—O2w—H22106.7C13—C9—C8122.7 (3)
Mn1—O3w—H3197.6N1—C10—C11124.1 (4)
Mn1—O3w—H32123.2N1—C10—H10117.9
H31—O3w—H32108.4C11—C10—H10117.9
H41—O4w—H42110.0C10—C11—C12118.5 (3)
C10—N1—C9116.7 (3)C10—C11—H11A120.7
O1—C1—O2123.2 (3)C12—C11—H11A120.7
O1—C1—C2119.5 (3)C11—C12—C13118.4 (4)
O2—C1—C2117.2 (3)C11—C12—H12A120.8
C3—C2—C7119.0 (3)C13—C12—H12A120.8
C3—C2—C1120.8 (3)C9—C13—C12119.4 (4)
C7—C2—C1120.2 (3)C9—C13—H13120.3
C4—C3—C2120.6 (3)C12—C13—H13120.3
C4—C3—H3119.7
O1—C1—C2—C3175.7 (3)C1—C2—C7—C6179.1 (3)
O2—C1—C2—C36.2 (5)C5—C6—C7—C20.0 (6)
O1—C1—C2—C72.7 (5)C5—O3—C8—C9176.3 (3)
O2—C1—C2—C7175.4 (3)C10—N1—C9—C130.5 (6)
C7—C2—C3—C40.8 (6)C10—N1—C9—C8178.8 (3)
C1—C2—C3—C4179.2 (4)O3—C8—C9—N1179.6 (3)
C2—C3—C4—C50.2 (6)O3—C8—C9—C130.3 (5)
C8—O3—C5—C4178.1 (3)C9—N1—C10—C110.1 (6)
C8—O3—C5—C61.8 (6)N1—C10—C11—C120.2 (7)
C3—C4—C5—O3179.4 (4)C10—C11—C12—C130.3 (6)
C3—C4—C5—C60.5 (6)N1—C9—C13—C121.1 (6)
O3—C5—C6—C7179.3 (4)C8—C9—C13—C12178.2 (4)
C4—C5—C6—C70.6 (6)C11—C12—C13—C91.0 (7)
C3—C2—C7—C60.7 (6)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O10.841.942.760 (3)164
O1w—H12···O4wii0.841.832.668 (4)175
O2w—H21···O20.851.832.680 (3)175
O2w—H22···O2iii0.851.922.744 (3)164
O3w—H31···O1i0.841.972.805 (3)172
O3w—H32···N1iv0.851.962.789 (4)168
O4w—H41···O20.842.122.888 (4)151
O4w—H42···O3wv0.842.403.165 (4)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z+1; (iii) x+1, y+2, z+1; (iv) x, y1, z+1; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Mn(H2O)6](C13H10NO3)2·2H2O
Mr655.51
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4895 (18), 7.6409 (18), 13.791 (3)
α, β, γ (°)84.498 (4), 82.851 (5), 72.576 (5)
V3)745.7 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.19 × 0.12 × 0.11
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.909, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
7320, 3387, 1971
Rint0.053
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.191, 1.07
No. of reflections3387
No. of parameters196
No. of restraints18
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.70

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O10.841.942.760 (3)163.8
O1w—H12···O4wi0.841.832.668 (4)174.7
O2w—H21···O20.851.832.680 (3)175.2
O2w—H22···O2ii0.851.922.744 (3)164.0
O3w—H31···O1iii0.841.972.805 (3)172.4
O3w—H32···N1iv0.851.962.789 (4)167.8
O4w—H41···O20.842.122.888 (4)151.3
O4w—H42···O3wv0.842.403.165 (4)150.9
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x, y1, z+1; (v) x, y+1, z.
 

Acknowledgements

This work was supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), the Key Project of the Education Bureau of Heilongjiang Province (No. 12511z023) and the University of Malaya.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L.-W., Gao, S. & Ng, S. W. (2011). Acta Cryst. E67, m1519.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds