inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Penta­terbium lithium tris­­tannide, Tb5LiSn3

aIvano-Frankivsk National Medical University, Department of Chemistry, Galytska str. 2, 76018 Ivano-Frankivsk, Ukraine, bDepartment of Inorganic Chemistry, Ivan Franko Lviv National University, Kyryla and Mefodiya str., 6, 79005 Lviv, Ukraine, and cInstitute of Chemistry, Environment Protection and Biotechnology, Jan Dlugosz University, al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland
*Correspondence e-mail: tarasiuk.i@gmail.com

(Received 30 September 2011; accepted 7 October 2011; online 12 October 2011)

The new ternary phase penta­terbium lithium tris­tannide, Tb5LiSn3, crystallizes in the hexa­gonal Hf5CuSn3 structure type, which is a `filled' version of the binary RE5Sn3 phases (Mn5Si3-type) (RE is rare earth). The asymmetric unit contains two Tb sites (site symmetries 3.2 and m2m), one Li site (site symmetry [\overline{3}].m) and one Sn site (site symmetry m2m). The 14-vertex Frank–Kasper polyhedra are typical for Li and Tb atoms. The environment of the Sn atom is a pseudo-Frank–Kasper polyhedron with a coordination number of 13 for the tin atom. One of the Tb atoms is enclosed in a 17-vertex polyhedron. The metallic type of bonding was indicated by an analysis of the inter­atomic distances.

Related literature

For the Hf5CuSn3 structure type, see: Rieger & Parthé (1965[Rieger, W. & Parthé, E. (1965). Monatsh. Chem. 96, 232-241.]). For related structures, see: Pavlyuk & Bodak (1992a[Pavlyuk, V. & Bodak, O. (1992a). Akad. Nauk SSSR Izv. Met. 6, 207-210.],b[Pavlyuk, V. & Bodak, O. (1992b). Inorg. Mater. 28, 877-879.]); Pavlyuk et al. (1989[Pavlyuk, V., Bodak, O., Pecharskii, V., Skolozdra, R. & Gladyshevskii, E. (1989). Inorg. Mater. 25, 962-965.], 1991[Pavlyuk, V., Bodak, O. & Bruskov, V. (1991). Dop. Akad. Nauk Ukraine, 1, 112-114.], 1993[Pavlyuk, V., Bodak, O. & Kevorkov, D. (1993). Dop. Akad. Nauk Ukraine, 9, 84-87.]). For the magnetic properties of related compounds, see: Tran et al. (2008[Tran, V. H., Gamza, M., Slebarski, A. & Miiller, W. (2008). J. Alloys Compd, 451, 457-460.]).

Experimental

Crystal data
  • Tb5LiSn3

  • Mr = 1157.72

  • Hexagonal, P 63 /m c m

  • a = 9.0122 (14) Å

  • c = 6.5744 (13) Å

  • V = 462.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 45.56 mm−1

  • T = 293 K

  • 0.07 × 0.05 × 0.03 mm

Data collection
  • Oxford Diffraction Xcalibur3 CCD diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.322, Tmax = 0.657

  • 1907 measured reflections

  • 216 independent reflections

  • 207 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.066

  • S = 1.33

  • 216 reflections

  • 14 parameters

  • Δρmax = 1.08 e Å−3

  • Δρmin = −1.47 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The RE5TM3 (RE - rare earth, T - Cu, Ag and M - Sn, Pb) ternary stannides crystallize in a hexagonal Hf5CuSn3 (superstructure to Ti5Ga4-type) with space group P63/mcm (Rieger and Parthé, 1965). These intermetallic compounds are characterized by two different sites for the RE atoms located at 4 d and 6 g, respectively. The Sn or Pb atoms are located at the next 6 g site and the transitions atoms occupy 2 b site.The RE5TM3 intermetallics are 'filled' version of the binary RE5M3 phases which crystallize in Mn5Si3 structure type. It is also possible, that the transition metals fill the octahedral voids.

For the Ce based compounds, Ce5TM3, investigated by (Tran et al., 2008) are found multiple magnetic phase transitions at low temperatures and discussed the role of f-spd hybridization on the evolution of heavy-fermion behaviour.

We detected the new ternary compound during the systematic study of ternary alloys of Tb—Li—Sn system from the concentration region with low content of lithium. The powder diffraction pattern of this compound is similar to the powder pattern of the RE5Sn3 (RE - rare-earth metals) binary phases, but has some differences. So we decided to further study this phase using single-crystal method. Obtained single-crystal data show that the title compound crystallizes with the hexagonal space group P63/mcm as a Hf5CuSn3 type. The projection of the unit cell and coordination polyhedra of the atoms are shown in Fig. 1. The distribution of tin and lithium atoms in three-dimensional-nets consisted of Tb atoms are shown in Fig. 2.

The number of neighbouring atoms correlates well with the dimensions of the central atoms. The Tb atoms are enclosed in 14- and 17-vertex polyhedra. The coordination polyhedron of the Sn atom is pseudo Frank-Kasper polyhedron with CN=13. Lithium atom is surrounded by 14 neighbours atoms in the form of 14-vertex Frank-Kasper polyhedron. The shortest interatomic distances in the title compound are in the typical for intermetallic compounds ranges and indicate metallic type of bonding.

In the title compound lithium atoms occupy the same crystallographic position that the atoms of transition metal in the original structure type. The same was observed previously when we studied RELiSn2 compounds with the CeNiSi2 structure type (Pavlyuk et al., 1989), RELiGe with the ZrNiAl type (Pavlyuk et al., 1991 and Pavlyuk & Bodak, 1992a), RE3Li2Ge3 with Hf3Ni2Si3 type (Pavlyuk & Bodak, 1992b), solid solutions RLixCu2 - xSi2 and RLixCu2 - xGe2 (Pavlyuk et al., 1993).

Related literature top

For the Hf5CuSn3 structure type, see: Rieger & Parthé (1965). For related structures, see: Pavlyuk & Bodak (1992a,b); Pavlyuk et al. (1989, 1991, 1993). For the magnetic properties of related compounds, see: Tran et al. (2008).

Experimental top

Terbium, lithium and tin, all with a nominal purity more than 99.9 wt. %, were used as starting elements. First, the pieces of the pure metals with a stoichiometry Tb55Li10Sn35 were pressed into pellet, enclosed in tantalum crucible and placed in a resistance furnace with a thermocouple controller. Heating rate from room temperature to 670 K was equal 5 K per minute. At this temperature the alloy was held over 2 d and then the temperature was increased from 670 to 1070 K over 1 h. Then the alloy was annealed at this temperature for 8 h and slowly cooled down to room temperature. After the melting and annealing procedures, the total weight loss was less than 2%. Small good quality single-crystal of the title compound was isolated from alloy.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The projection of the unit cell and coordination polyhedra of the atoms.
[Figure 2] Fig. 2. The distribution of tin and lithium atoms in three-dimensional-nets consisted of Tb atoms.
Pentaterbium lithium tristannide top
Crystal data top
Tb5LiSn3Dx = 8.315 Mg m3
Mr = 1157.72Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mcmCell parameters from 1907 reflections
Hall symbol: -P 6c 2θ = 2.6–27.4°
a = 9.0122 (14) ŵ = 45.56 mm1
c = 6.5744 (13) ÅT = 293 K
V = 462.4 (2) Å3Prism, metallic dark grey
Z = 20.07 × 0.05 × 0.03 mm
F(000) = 956
Data collection top
Oxford Diffraction Xcalibur3 CCD
diffractometer
216 independent reflections
Radiation source: fine-focus sealed tube207 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 0 pixels mm-1θmax = 27.4°, θmin = 2.6°
ω scansh = 1111
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1111
Tmin = 0.322, Tmax = 0.657l = 08
1907 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.021Secondary atom site location: difference Fourier map
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0268P)2 + 3.977P]
where P = (Fo2 + 2Fc2)/3
S = 1.33(Δ/σ)max < 0.001
216 reflectionsΔρmax = 1.08 e Å3
14 parametersΔρmin = 1.47 e Å3
Crystal data top
Tb5LiSn3Z = 2
Mr = 1157.72Mo Kα radiation
Hexagonal, P63/mcmµ = 45.56 mm1
a = 9.0122 (14) ÅT = 293 K
c = 6.5744 (13) Å0.07 × 0.05 × 0.03 mm
V = 462.4 (2) Å3
Data collection top
Oxford Diffraction Xcalibur3 CCD
diffractometer
216 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
207 reflections with I > 2σ(I)
Tmin = 0.322, Tmax = 0.657Rint = 0.021
1907 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02114 parameters
wR(F2) = 0.0660 restraints
S = 1.33Δρmax = 1.08 e Å3
216 reflectionsΔρmin = 1.47 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tb10.25088 (10)0.00000.25000.0479 (3)
Tb20.33330.66670.00000.0535 (3)
Sn30.60694 (14)0.00000.25000.0493 (4)
Li40.00000.00000.00000.055 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.0478 (4)0.0481 (5)0.0479 (5)0.0241 (3)0.0000.000
Tb20.0536 (4)0.0536 (4)0.0532 (6)0.0268 (2)0.0000.000
Sn30.0491 (5)0.0493 (7)0.0496 (6)0.0247 (4)0.0000.000
Li40.07 (2)0.07 (2)0.03 (2)0.033 (11)0.0000.000
Geometric parameters (Å, º) top
Tb1—Li42.7952 (8)Tb2—Tb1xii3.8093 (7)
Tb1—Li4i2.7952 (8)Tb2—Tb1xi3.8093 (7)
Tb1—Sn3ii3.1066 (11)Tb2—Tb1xiii3.8093 (8)
Tb1—Sn3iii3.1066 (11)Tb2—Tb1ix3.8093 (7)
Tb1—Sn33.2090 (16)Sn3—Tb1xvii3.1066 (11)
Tb1—Sn3iv3.5281 (8)Sn3—Tb1xviii3.1066 (11)
Tb1—Sn3v3.5281 (8)Sn3—Tb2vii3.2247 (6)
Tb1—Tb2vi3.8093 (7)Sn3—Tb2vi3.2247 (6)
Tb1—Tb2vii3.8093 (7)Sn3—Tb2ix3.2247 (6)
Tb1—Tb2viii3.8093 (7)Sn3—Tb2viii3.2247 (6)
Tb1—Tb2ix3.8093 (7)Sn3—Tb1iv3.5281 (8)
Tb1—Tb1x3.9161 (17)Sn3—Tb1v3.5281 (8)
Tb2—Sn3xi3.2247 (6)Li4—Tb1xix2.7952 (8)
Tb2—Sn3xii3.2247 (6)Li4—Tb1xx2.7952 (8)
Tb2—Sn3xiii3.2247 (6)Li4—Tb1xiii2.7952 (8)
Tb2—Sn3ix3.2247 (6)Li4—Tb1x2.7952 (8)
Tb2—Sn3xiv3.2247 (6)Li4—Tb1xiv2.7952 (8)
Tb2—Sn3iii3.2247 (6)Li4—Li4i3.2872 (6)
Tb2—Tb2xv3.2872 (6)Li4—Li4xxi3.2872 (6)
Tb2—Tb2xvi3.2872 (6)
Li4—Tb1—Li4i72.03 (3)Sn3xiv—Tb2—Tb1xii144.94 (2)
Li4—Tb1—Sn3ii82.67 (2)Sn3iii—Tb2—Tb1xii123.785 (13)
Li4i—Tb1—Sn3ii82.67 (2)Tb2xv—Tb2—Tb1xii64.439 (7)
Li4—Tb1—Sn3iii82.67 (2)Tb2xvi—Tb2—Tb1xii115.561 (7)
Li4i—Tb1—Sn3iii82.67 (2)Sn3xi—Tb2—Tb1xi53.50 (2)
Sn3ii—Tb1—Sn3iii161.86 (5)Sn3xii—Tb2—Tb1xi110.39 (2)
Li4—Tb1—Sn3143.985 (13)Sn3xiii—Tb2—Tb1xi59.520 (16)
Li4i—Tb1—Sn3143.985 (13)Sn3ix—Tb2—Tb1xi51.60 (2)
Sn3ii—Tb1—Sn399.07 (2)Sn3xiv—Tb2—Tb1xi123.785 (13)
Sn3iii—Tb1—Sn399.07 (2)Sn3iii—Tb2—Tb1xi144.94 (2)
Li4—Tb1—Sn3iv147.31 (3)Tb2xv—Tb2—Tb1xi115.561 (7)
Li4i—Tb1—Sn3iv75.28 (2)Tb2xvi—Tb2—Tb1xi64.439 (7)
Sn3ii—Tb1—Sn3iv93.283 (5)Tb1xii—Tb2—Tb1xi63.16 (2)
Sn3iii—Tb1—Sn3iv93.283 (5)Sn3xi—Tb2—Tb1xiii59.520 (16)
Sn3—Tb1—Sn3iv68.70 (3)Sn3xii—Tb2—Tb1xiii123.785 (13)
Li4—Tb1—Sn3v75.28 (2)Sn3xiii—Tb2—Tb1xiii53.50 (2)
Li4i—Tb1—Sn3v147.31 (3)Sn3ix—Tb2—Tb1xiii144.94 (2)
Sn3ii—Tb1—Sn3v93.283 (5)Sn3xiv—Tb2—Tb1xiii110.39 (2)
Sn3iii—Tb1—Sn3v93.283 (5)Sn3iii—Tb2—Tb1xiii51.60 (2)
Sn3—Tb1—Sn3v68.70 (3)Tb2xv—Tb2—Tb1xiii64.439 (7)
Sn3iv—Tb1—Sn3v137.41 (5)Tb2xvi—Tb2—Tb1xiii115.561 (7)
Li4—Tb1—Tb2vi102.887 (9)Tb1xii—Tb2—Tb1xiii102.753 (8)
Li4i—Tb1—Tb2vi136.924 (8)Tb1xi—Tb2—Tb1xiii93.848 (16)
Sn3ii—Tb1—Tb2vi54.444 (14)Sn3xi—Tb2—Tb1ix123.785 (13)
Sn3iii—Tb1—Tb2vi140.12 (2)Sn3xii—Tb2—Tb1ix59.520 (16)
Sn3—Tb1—Tb2vi53.886 (12)Sn3xiii—Tb2—Tb1ix144.94 (2)
Sn3iv—Tb1—Tb2vi100.83 (2)Sn3ix—Tb2—Tb1ix53.50 (2)
Sn3v—Tb1—Tb2vi51.970 (13)Sn3xiv—Tb2—Tb1ix51.60 (2)
Li4—Tb1—Tb2vii136.924 (8)Sn3iii—Tb2—Tb1ix110.39 (2)
Li4i—Tb1—Tb2vii102.887 (9)Tb2xv—Tb2—Tb1ix115.561 (7)
Sn3ii—Tb1—Tb2vii140.12 (2)Tb2xvi—Tb2—Tb1ix64.439 (7)
Sn3iii—Tb1—Tb2vii54.444 (14)Tb1xii—Tb2—Tb1ix93.848 (16)
Sn3—Tb1—Tb2vii53.886 (12)Tb1xi—Tb2—Tb1ix102.753 (8)
Sn3iv—Tb1—Tb2vii51.970 (13)Tb1xiii—Tb2—Tb1ix160.55 (2)
Sn3v—Tb1—Tb2vii100.83 (2)Tb1xvii—Sn3—Tb1xviii78.14 (5)
Tb2vi—Tb1—Tb2vii107.77 (2)Tb1xvii—Sn3—Tb1140.93 (2)
Li4—Tb1—Tb2viii136.924 (8)Tb1xviii—Sn3—Tb1140.93 (2)
Li4i—Tb1—Tb2viii102.887 (9)Tb1xvii—Sn3—Tb2vii73.951 (16)
Sn3ii—Tb1—Tb2viii54.444 (14)Tb1xviii—Sn3—Tb2vii137.78 (3)
Sn3iii—Tb1—Tb2viii140.12 (2)Tb1—Sn3—Tb2vii72.61 (2)
Sn3—Tb1—Tb2viii53.886 (12)Tb1xvii—Sn3—Tb2vi137.78 (3)
Sn3iv—Tb1—Tb2viii51.970 (13)Tb1xviii—Sn3—Tb2vi73.951 (16)
Sn3v—Tb1—Tb2viii100.83 (2)Tb1—Sn3—Tb2vi72.61 (2)
Tb2vi—Tb1—Tb2viii51.122 (14)Tb2vii—Sn3—Tb2vi145.22 (4)
Tb2vii—Tb1—Tb2viii86.152 (16)Tb1xvii—Sn3—Tb2ix73.951 (16)
Li4—Tb1—Tb2ix102.887 (9)Tb1xviii—Sn3—Tb2ix137.78 (3)
Li4i—Tb1—Tb2ix136.924 (8)Tb1—Sn3—Tb2ix72.61 (2)
Sn3ii—Tb1—Tb2ix140.12 (2)Tb2vii—Sn3—Tb2ix61.287 (15)
Sn3iii—Tb1—Tb2ix54.444 (14)Tb2vi—Sn3—Tb2ix107.56 (2)
Sn3—Tb1—Tb2ix53.886 (12)Tb1xvii—Sn3—Tb2viii137.78 (3)
Sn3iv—Tb1—Tb2ix100.83 (2)Tb1xviii—Sn3—Tb2viii73.951 (16)
Sn3v—Tb1—Tb2ix51.970 (13)Tb1—Sn3—Tb2viii72.61 (2)
Tb2vi—Tb1—Tb2ix86.152 (16)Tb2vii—Sn3—Tb2viii107.56 (2)
Tb2vii—Tb1—Tb2ix51.122 (14)Tb2vi—Sn3—Tb2viii61.287 (15)
Tb2viii—Tb1—Tb2ix107.77 (2)Tb2ix—Sn3—Tb2viii145.22 (4)
Li4—Tb1—Tb1x45.533 (9)Tb1xvii—Sn3—Tb1iv73.62 (2)
Li4i—Tb1—Tb1x45.533 (9)Tb1xviii—Sn3—Tb1iv73.62 (2)
Sn3ii—Tb1—Tb1x50.93 (2)Tb1—Sn3—Tb1iv111.30 (3)
Sn3iii—Tb1—Tb1x110.93 (2)Tb2vii—Sn3—Tb1iv68.510 (11)
Sn3—Tb1—Tb1x150.0Tb2vi—Sn3—Tb1iv125.693 (6)
Sn3iv—Tb1—Tb1x108.33 (2)Tb2ix—Sn3—Tb1iv125.693 (6)
Sn3v—Tb1—Tb1x108.33 (2)Tb2viii—Sn3—Tb1iv68.510 (11)
Tb2vi—Tb1—Tb1x99.726 (11)Tb1xvii—Sn3—Tb1v73.62 (2)
Tb2vii—Tb1—Tb1x148.420 (11)Tb1xviii—Sn3—Tb1v73.62 (2)
Tb2viii—Tb1—Tb1x99.726 (11)Tb1—Sn3—Tb1v111.30 (3)
Tb2ix—Tb1—Tb1x148.420 (11)Tb2vii—Sn3—Tb1v125.693 (6)
Sn3xi—Tb2—Sn3xii163.38 (4)Tb2vi—Sn3—Tb1v68.510 (11)
Sn3xi—Tb2—Sn3xiii72.44 (2)Tb2ix—Sn3—Tb1v68.510 (11)
Sn3xii—Tb2—Sn3xiii96.334 (10)Tb2viii—Sn3—Tb1v125.693 (6)
Sn3xi—Tb2—Sn3ix96.334 (10)Tb1iv—Sn3—Tb1v137.41 (5)
Sn3xii—Tb2—Sn3ix72.44 (2)Tb1xix—Li4—Tb1xx88.933 (19)
Sn3xiii—Tb2—Sn3ix97.06 (4)Tb1xix—Li4—Tb191.067 (19)
Sn3xi—Tb2—Sn3xiv96.334 (10)Tb1xx—Li4—Tb1180.0
Sn3xii—Tb2—Sn3xiv97.06 (4)Tb1xix—Li4—Tb1xiii180.0
Sn3xiii—Tb2—Sn3xiv163.38 (4)Tb1xx—Li4—Tb1xiii91.067 (19)
Sn3ix—Tb2—Sn3xiv96.334 (10)Tb1—Li4—Tb1xiii88.933 (19)
Sn3xi—Tb2—Sn3iii97.06 (4)Tb1xix—Li4—Tb1x91.067 (19)
Sn3xii—Tb2—Sn3iii96.334 (10)Tb1xx—Li4—Tb1x91.067 (19)
Sn3xiii—Tb2—Sn3iii96.334 (10)Tb1—Li4—Tb1x88.933 (19)
Sn3ix—Tb2—Sn3iii163.38 (4)Tb1xiii—Li4—Tb1x88.933 (19)
Sn3xiv—Tb2—Sn3iii72.44 (2)Tb1xix—Li4—Tb1xiv88.933 (19)
Sn3xi—Tb2—Tb2xv120.643 (7)Tb1xx—Li4—Tb1xiv88.933 (19)
Sn3xii—Tb2—Tb2xv59.357 (8)Tb1—Li4—Tb1xiv91.067 (19)
Sn3xiii—Tb2—Tb2xv59.357 (7)Tb1xiii—Li4—Tb1xiv91.067 (19)
Sn3ix—Tb2—Tb2xv120.643 (8)Tb1x—Li4—Tb1xiv180.00 (7)
Sn3xiv—Tb2—Tb2xv120.643 (7)Tb1xix—Li4—Li4i126.015 (13)
Sn3iii—Tb2—Tb2xv59.357 (7)Tb1xx—Li4—Li4i126.015 (13)
Sn3xi—Tb2—Tb2xvi59.357 (7)Tb1—Li4—Li4i53.985 (13)
Sn3xii—Tb2—Tb2xvi120.643 (7)Tb1xiii—Li4—Li4i53.985 (13)
Sn3xiii—Tb2—Tb2xvi120.643 (8)Tb1x—Li4—Li4i53.985 (13)
Sn3ix—Tb2—Tb2xvi59.357 (8)Tb1xiv—Li4—Li4i126.015 (13)
Sn3xiv—Tb2—Tb2xvi59.357 (7)Tb1xix—Li4—Li4xxi53.985 (13)
Sn3iii—Tb2—Tb2xvi120.643 (7)Tb1xx—Li4—Li4xxi53.985 (13)
Tb2xv—Tb2—Tb2xvi180.0Tb1—Li4—Li4xxi126.015 (13)
Sn3xi—Tb2—Tb1xii110.39 (2)Tb1xiii—Li4—Li4xxi126.015 (13)
Sn3xii—Tb2—Tb1xii53.50 (2)Tb1x—Li4—Li4xxi126.015 (13)
Sn3xiii—Tb2—Tb1xii51.60 (2)Tb1xiv—Li4—Li4xxi53.985 (13)
Sn3ix—Tb2—Tb1xii59.520 (16)Li4i—Li4—Li4xxi180.0
Symmetry codes: (i) x, y, z+1/2; (ii) y, xy1, z; (iii) x+y+1, x+1, z; (iv) x+1, y, z+1; (v) x+1, y, z; (vi) x, y1, z; (vii) x+1, y+1, z+1/2; (viii) x, y1, z+1/2; (ix) x+1, y+1, z; (x) x+y, x, z; (xi) y, x+y+1, z; (xii) x, y+1, z; (xiii) y, xy, z; (xiv) xy, x, z; (xv) x, y, z+1/2; (xvi) x, y, z1/2; (xvii) y+1, xy, z; (xviii) x+y+1, x, z; (xix) y, x+y, z; (xx) x, y, z; (xxi) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaTb5LiSn3
Mr1157.72
Crystal system, space groupHexagonal, P63/mcm
Temperature (K)293
a, c (Å)9.0122 (14), 6.5744 (13)
V3)462.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)45.56
Crystal size (mm)0.07 × 0.05 × 0.03
Data collection
DiffractometerOxford Diffraction Xcalibur3 CCD
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.322, 0.657
No. of measured, independent and
observed [I > 2σ(I)] reflections
1907, 216, 207
Rint0.021
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.066, 1.33
No. of reflections216
No. of parameters14
Δρmax, Δρmin (e Å3)1.08, 1.47

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

 

Footnotes

Also at: Institute of Chemistry, Environment Protection and Biotechnology, Jan Dlugosz University, al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland.

Acknowledgements

Financial support from the Ministry of Education and Science, Youth and Sport of Ukraine (N 0111U001089) is gratefully acknowledged.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPavlyuk, V. & Bodak, O. (1992a). Akad. Nauk SSSR Izv. Met. 6, 207–210.  Google Scholar
First citationPavlyuk, V. & Bodak, O. (1992b). Inorg. Mater. 28, 877–879.  Google Scholar
First citationPavlyuk, V., Bodak, O. & Bruskov, V. (1991). Dop. Akad. Nauk Ukraine, 1, 112–114.  Google Scholar
First citationPavlyuk, V., Bodak, O. & Kevorkov, D. (1993). Dop. Akad. Nauk Ukraine, 9, 84–87.  Google Scholar
First citationPavlyuk, V., Bodak, O., Pecharskii, V., Skolozdra, R. & Gladyshevskii, E. (1989). Inorg. Mater. 25, 962–965.  Google Scholar
First citationRieger, W. & Parthé, E. (1965). Monatsh. Chem. 96, 232–241.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTran, V. H., Gamza, M., Slebarski, A. & Miiller, W. (2008). J. Alloys Compd, 451, 457–460.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds